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Metabolic syndrome is becoming commoner due to a rise in obesity rates among adults. Generally speaking, a personwithmetabolic
syndrome is twice as likely to develop cardiovascular disease and five times as likely to develop diabetes as someone without
metabolic syndrome. Increasing oxidative stress inmetabolic syndrome and Parkinson’s disease is mentioned in the comprehensive
articles; however, the system review about clear relation between metabolic syndrome and Parkinson’s disease is deficient. In this
review, we will focus on the analysis that the metabolic syndrome may be a risk factor for Parkinson’s disease and the preventions
that reduce the incident of Parkinson’s disease by regulating the oxidative stress.

1. Introduction

Metabolic syndrome is a prevalent and increasing public
health problem worldwide related to many chronic diseases.
Its components mainly include at least insulin resistance,
central obesity, glucose intolerance, dyslipidemia with ele-
vated triglycerides, low HDL cholesterol, microalbuminuria,
predominance of small dense LDL-cholesterol particles,
hypertension, endothelial dysfunction, high waist circum-
ference, oxidative stress, inflammation, tumors, neurode-
generation, and atherosclerosis-based ischemic cardio- or
cerebral-vascular disease. Meanwhile, recent studies have
indicated that increased oxidative stress is the core and a
general character of metabolism-related disease. Parkinson’s
disease, during the past decades, is one of the most frequent
neurodegenerative disorders that cause dementia and it is
one of the leading chronic diseases in all countries and
it also displays the high level of reactive oxygen species
(ROS). A growing body of evidence that has implicated the
components of metabolic syndrome may contribute to the
pathophysiology of Parkinson’s disease. In the current brief
review, we extend this work to search for findings from
studies that provide evidence to clarify it and propose some

prevention to delay the progression of Parkinson’s disease via
regulating the oxidative homeostasis.

2. The Components of Metabolic
Syndrome Act as the Risk Factors
for Parkinson’s Disease

Risk factors for Parkinson’s disease are either the result
of genetic susceptibility (e.g., SNCA, PARK, PINK, and
LRRK2 single nucleotide polymorphisms) or environmental
exposure of a person’s health to an event that can accelerate
or further worsen dysfunction of the central nerve system.
Metabolic syndrome is a crucial element of the environmental
exposure of the global human health. Following up we
will, respectively, introduce the components of metabolic
syndrome that act as the risk factors for Parkinson’s disease.

2.1. Fat and Obesity. Obesity continues to increase rapidly in
the United States [1] and it is well established that obesity
can increase the risk of Parkinson’s disease and decrease life
expectancy. A study has proved that high skinfold thickness
in midlife was associated with Parkinson’s disease [2]. And
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another study found that obesity in middle age increases
the risk of future dementia independently of comorbid
conditions. Perhaps adiposity works together with other risk
factors to increase neurodegenerative disease [3]. In addition,
some evidence shows that body mass index is associated with
a risk of Parkinson’s disease and the effect is graded and
independent of other risk factors [4].

In an animal model of Parkinson’s disease, high fat
diet may lower the threshold for developing Parkinson’s
disease through affecting glucose transport and decreasing
phosphorylation of HSP27 and degradation of I𝜅B𝛼 in the
nigrostriatal system, at least following dopamine-specific
toxin exposure [5, 6]. Moreover, increasing inflammatory
signaling, adipokine levels, oxidative or nitrosative stress,
mitochondrial dysfunction, and lipid metabolism have all
been shown to occur with high fat feeding [7–9].

2.2. Glucose, Hyperglycemia, Insulin Resistance, and Diabetes.
High glucose induced cell death is sustained by oxidative,
nitrosative stress and mitochondrial superoxide generation
through cleavage of the caspase 3 to regulate the apoptotic
pathway [10–14]. In aging, hyperglycemia is also associated
with Parkinson’s disease through damage in central nervous
system, a consequence of long-term exposure to glucose
[15, 16]. Indeed, epidemiologic studies have implicated that
prior type 2 diabetes is also the risk factor of developing
Parkinson’s disease [17]. Although, in different regions, the
Parkinson’s disease patients’ brain exhibits similar cellular
and functional changes with signs of increased oxidative
stress, reduced mitochondrial function, reduced glucose
uptake, and increased peroxidation of cellular membranes
[18].

2.3.Hypertension. Many studies have been carried out on this
topic: whether hypertension is the risk factor for Parkinson’s
disease. Much work, both theoretical and practical, has
been reported recently in this field that hypertension is
less frequent in Parkinson’s disease patient than general
population and others show that there is no difference
between Parkinson’s disease patients and healthy people [19,
20]. Nonetheless, a large prospective study suggested that
Parkinson’s disease risk is not significantly related to history
of hypertension (RR = 0.96; 95% CI = 0.80 to 1.15) [21].
Although a lot of effort is being spent on proving the relation
between Parkinson’s disease and hypertension, the surely
inerrable conclusion has yet to be reached.

2.4. Hyperhomocysteinemia and Endothelial Dysfunction.
Hyperhomocysteinemia, a risk factor for endothelial dys-
function [22], has been involved in the pathophysiology
of neurodegenerative disorders such as Alzheimer disease
and Parkinson disease [23]. And homocysteine leads to
endothelial dysfunction that hydrogen peroxide plays a criti-
cal role in mediating cell injury in vitro [24]. Large increases
in cellular oxidative stress and inflammations occurred in
response to high homocysteine that induced toxicity by
decreasedNAD+ [25–29]. In comparison, recent studies have

also demonstrated that homocysteine is largely involved in
antioxidant and reductive cellular biochemistry [30].

2.5. Inflammations. The involvement of inflammation in
Parkinson’s disease was initially proposed by McGeer et al.
[31] who described the upregulation of HLA-DR-positive
reactive microglia in the substantia nigra of Parkinson’s
disease patients in 1988. Additionally, they also reported that
activated microglia was a contributor of proinflammatory
and neurotoxic factors in Parkinson’s disease patients [32].
Neuroinflammationwhich was induced by exposure to either
toxicants or infectious agents with proinflammatory char-
acteristics as a major factor in the pathogenesis of PD is
wildly accepted at present. Plenty of cytokines such as tumor-
necrosis factor-𝛼 (TNF-𝛼) [32, 33], interleukin 1𝛽 (IL-1𝛽)
and IL-6 [32, 34–36], and the quantities of ROS [32] have
been postulated to be involved in the etiology of Parkin-
son’s disease. Furthermore, recent evidence indicates that
endoplasmic reticulum (ER) stress [37–40] and inflammation
coordinate the pathogenesis of Parkinson’s diseases.

3. Targeting Oxidative
Homeostasis as a Therapeutic Strategy
against Parkinson’s Disease

Agrowing number of studies have been completed to confirm
that stimulation of oxidative stress that initiates apoptosis
in many cells and animal models [11, 14, 41] is pivotal
to the evolution of metabolic syndrome, diabetes, diabetic
neuropathy, and several neurodegenerative disorders, such as
Parkinson’s disease and Alzheimer disease [42–46]. Though
application of antioxidants and some measures in the field
of preventing Parkinson’s disease have proliferated in recent
years, a phyletic classification is lacking. Here we introduce
the potential mechanism under a variety of antioxidants or
other therapeutic strategies to reduce the oxidation stress.

3.1. Plant Extract. Previous works, such as Bournival et al.
[41, 47], Bureau et al. [48], and G ́elinas and Martinoli [49],
reported that several plant extracts are powerful in neuropro-
tective activity of dopaminergic neurons against the oxidative
burden provoked by administration of the potent parkin-
sonian toxin MPP+ in vitro or 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) in vivo. The plant extract, which
contains resveratrol and quercetin and sesamin [41, 47, 48],
fermented papaya preparation [50], cinnamon polyphenols
[51], and estradiol and phytoestrogens [49], was inhibited
by oxidative stress that damages the normal physiological
function of cellular organelle by regulating caspase 3, DNA
fragment, estrogen receptors, cytokines, Akt, p38, MAPK,
and ERK pathway.

An additional research which focuses on the extremely
important antioxidant properties of cannabinoids, extract of
hemp plant, may contribute to the neuroprotective effect in
Parkinson’s disease through banding the canonical cannabi-
noid CB1 and CB2 receptors [52–55].
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Figure 1: Summary of this review about oxidative stress and Parkinson’s disease.

3.2. Uric Acid. A large community-based survey indicated
that the associated higher serum uric acid was able to
decrease the prevalence of Parkinson’s disease [56]. Similarly,
it has been observed that UA levels in the serum of patients
with Parkinson’s disease are lower than in controls and that
increased levels of UA are associated with a lower risk of
Parkinson’s disease [56–59]. Evidence was also proved that
physiological concentration of uric acid would exert antioxi-
dant effects, attenuating neuronal lesions caused by oxygen
radicals, generated during an acute ischemic stroke and in
cases of Parkinson’s disease [60]. It had been established
that the protective mechanisms of uric acid may be through
regulating the DNA damage pathway [60–62]. The recent
study from Massachusetts General Hospital found that the
urate’s ability to protect neurons requires the presence of
astrocytes in Parkinson’s disease unexpectedly [63].

3.3. Molecular Hydrogen. Hydrogen has great potential for
improving oxidative stress-related diseases by inhaling H

2

gas, injecting saline with dissolved H
2
, or drinking water

with dissolved H
2
[64]. Recent basic and clinical research

has revealed that hydrogen is an important physiological
regulatory factor with antioxidant, anti-inflammatory, and
antiapoptotic protective effects on cells and organs [65].
Meanwhile, a large number of studies report that molecular
hydrogen acts as a novel antioxidant and prevents or ame-
liorates diseases associated with oxidative stress in animal
experiments [66–77] and clinical tests [78–81]. Molecular
hydrogen improves obesity and diabetes by inducing hepatic
FGF21 and stimulating fatty acid and glucose expenditure
in mice [64]. Another research reported that molecular
hydrogen is protective against 6-hydroxydopamine-induced

nigrostriatal degeneration in a rat model of Parkinson’s
disease [75]. However, little is known about the mechanism
that H

2
acts on to prevent oxidative stress in Parkinson’s

disease.

3.4. Coffee and Caffeine Intake. Higher coffee and caffeine
intake is associated with a significantly lower incidence of
Parkinson’s disease as discussed by Ross et al. [82]. Caffeine,
a well-known central nervous system stimulant, inhibits the
dopamine neurotransmission through adenosine receptor
antagonism andmobilizes of intracellular calcium [83–85]. In
addition, caffeine was regarded as an antioxidant against all
the three reactive oxygen species, hydroxyl radical, peroxyl
radical, and singlet oxygen [86].

3.5. VitaminD andVitamin E. Individuals with higher serum
vitaminD concentrations showed a reduced risk of Parkinson
disease. The relative risk between the highest and lowest
quartiles was 0.33 (95% confidence interval, 0.14–0.80) [87].
Even so, the exact mechanisms by which vitamin Dmay pro-
tect against Parkinson disease are not fully understood [87].
High vitamin D status, however, has been shown to exhibit
neuroprotective effects through antioxidative mechanisms,
neuronal calcium regulation, immunomodulation, enhanced
nerve conduction, and detoxification mechanisms [88–90].
Furthermore, the central issue in all these studies is to declare
that high intake of dietary vitamin E [91, 92] may protect
against the occurrence of PD, but vitamin C or 𝛽 carotene
does not [92]. And the protective influence for Parkinson’s
disease was seen with both moderate intake (relative risk:
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0.81; 95% CI: 0.67–0.98) and high intake (0.78, 0.57–1.06) of
vitamin E [92, 93].

3.6. Exercise. Inadequate physical activity has also been
shown unequivocally to increase the morbidity and mortal-
ity rates of associated chronic disorders [94–96]. Exercise
reduces the level of systemic inflammation by increasing the
release of adrenaline, cortisol, growth hormone, prolactin,
and other factors that have immunomodulatory effects and
decreasing expression of toll-like receptors at the surface
of monocytes, which have been suggested to be involved
in mediating systemic inflammation [97–99]. Many results
of the present research synthesis support the fact that the
patients with PD improve their physical performance, activ-
ities of daily living [100, 101], and the effect of pharma-
cologic therapy [102] through exercise. The transcriptional
coactivator PGC1𝛼 controls muscle plasticity and suppresses
chronic systemic inflammation via repressing FOXO3 activ-
ity, increasing vascularization, ROS detoxification, and mito-
chondrial and metabolic gene expression [95]. The more
specific mechanisms of the fact that exercise mediates the
beneficial and advantageous effects for Parkinson’s disease
remain enigmatic.

4. Summary

This review summarizes the data to support a link between
oxidative stress andParkinson’s disease (Figure 1). Parkinson’s
disease (PD) is a progressive neurodegenerative disorder
affecting the elder populationmainly and its pathophysiology
as well performs a metabolism-related dysfunction. It has
been believed generally that oxidative stress was found during
Parkinson’s disease developmentwhen it occurs in early stage.
Oxidative stress also is a crucial feather of metabolic syn-
drome. Undoubtedly, Parkinson’s disease should be treated
as a metabolic disease. Numbers of antioxidants are effective
and efficient in the prevention and treatment of Parkinson’s
disease by modulating the oxidative stress, but Parkinson’s
disease whether or not is a metabolic syndrome still needs
further epidemiological, basic science and clinical research.
At present, considerable studies in a new direction are guid-
ing future research on the relationship between Parkinson’s
disease and metabolic syndrome.
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