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Abstract

Introduction

Anterior segment optical coherence tomography (AS-OCT) is a non-contact, rapid, and

high-resolution in vivo modality for imaging of the eyeball’s anterior segment structures.

Because progressive anterior segment deformation is a hallmark of certain eye diseases

such as angle-closure glaucoma, identification of AS-OCT structural changes over time is

fundamental to their diagnosis and monitoring. Detection of pathologic damage, however,

relies on the ability to differentiate it from normal, age-related structural changes.

Methods and analysis

This proposed large-scale, retrospective cross-sectional study will determine whether

demographic characteristics including age can be predicted from deep learning analysis of

AS-OCT images; it will also assess the importance of specific anterior segment areas of the

eyeball to the prediction. We plan to extract, from SUPREME®, a clinical data warehouse

(CDW) of Seoul National University Hospital (SNUH; Seoul, South Korea), a list of patients

(at least 2,000) who underwent AS-OCT imaging between 2008 and 2020. AS-OCT images

as well as demographic characteristics including age, gender, height, weight and body

mass index (BMI) will be collected from electronic medical records (EMRs). The dataset of

horizontal AS-OCT images will be split into training (80%), validation (10%), and test (10%)

datasets, and a Vision Transformer (ViT) model will be built to predict demographics. Gradi-

ent-weighted Class Activation Mapping (Grad-CAM) will be used to visualize the regions of

AS-OCT images that contributed to the model’s decisions. The accuracy, sensitivity, speci-

ficity, and area under the receiver operating characteristic (ROC) curve (AUC) will be

applied to evaluate the model performance.

Conclusion

This paper presents a study protocol for prediction of demographic characteristics from AS-

OCT images of the eyeball using a deep learning model. The results of this study will aid
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clinicians in understanding and identifying age-related structural changes and other demo-

graphics-based structural differences.

Trial registration

Registration ID with open science framework: 10.17605/OSF.IO/FQ46X.

Introduction

Anterior segment optical coherence tomography (AS-OCT) is an imaging modality that pro-

vides non-contact, rapid, and high-resolution in vivo imaging of anterior segment structures

[1]. With its technological advancement, AS-OCT is becoming more clinically useful for diag-

nosis, monitoring, and treatment of various ocular diseases, and also for preoperative evalua-

tion (e.g. before refractive surgeries) [2–13]. For accurate diagnosis and disease-progression

determination, however, it is crucial to establish the normal ocular structure, which is possible

only based on a thorough understanding of structural changes and differences related to

demographic characteristics.

Previous AS-OCT imaging studies have reported anatomic differences of anterior segment

structures including the cornea, anterior chamber, iris, iridocorneal angle, and trabecular

meshwork that correspond to demographic variables such as age, gender, height or weight

[14–26]. In analyzing large amounts of imaging data, the recent introduction of deep learning

to medicine, which is a form of representation learning whereby multiple processing layers

automatically learn data representations with multiple levels of abstraction [27–29], has shown

its potential additive value for the diagnosis and treatment of ocular diseases [30–37].

Although several studies have related structural differences of the anterior segment to

demographic characteristics [14–26], each study analysis was limited to just a few specific

structures, and their results, which were not verified, are difficult to apply to clinical practice.

Furthermore, only a few studies have analyzed various demographic variables, necessitating

investigation of structural differences using whole anterior segment structures with diverse

demographic parameters. The aim of our study, accordingly, is to predict demographics from

AS-OCT images using deep learning in normal eyes. Our findings will help clinicians to

understand how anterior segment structures differ according to demographics and to identify

the key structures that contribute to such differences.

Materials and methods

Study design and setting

We will conduct a retrospective cross-sectional study including a large number of subjects (at

least 2,000) from Seoul National University Hospital (SNUH) in South Korea, and the protocol

has been registered in the Open Science Framework (https://osf.io/fq46x). A flow chart of our

study is shown in Fig 1.

Participants and data source

A list of eligible participants who meet the inputted search conditions (e.i. our study’s inclu-

sion criteria (noted below)) on SUPREME1, a clinical data warehouse (CDW) of SNUH, will

be obtained. AS-OCT (Visante; Carl Zeiss Meditec, Dublin, CA, USA) images and demo-

graphic data including age, gender, height, weight and body mass index (BMI) will be semi-
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automatically collected from an electronic medical record (EMR) database of BESTCare

(ezCaretech, Seoul, Korea), a hospital information system of SNUH. As for the demographic

data, we will obtain them through SUPREME1, which matches each patient’s data with his or

her identification number.

Inclusion criteria

Patients who underwent AS-OCT imaging between 2008 and 2020 at SNUH and for whom

there are available height and weight measurements taken within 6 months of (before or after)

the imaging will be included.

Exclusion criteria

The exclusion criteria will be as follows: history of prior ocular surgery, laser treatment or

trauma; any ocular or systemic diseases that could affect anterior segment structures, including

corneal disease (e.g., corneal opacity, corneal dystrophy, keratoconus), iridocorneal angle

abnormality (e.g., angle-closure glaucoma), or ocular inflammatory disease (e.g., uveitis);

Fig 1. Study flow chart. Abbreviations: AS-OCT, anterior segment optical coherence tomography; CDW, clinical data warehouse; EMR,

electronic medical record; Grad-CAM, Gradient-weighted Class Activation Mapping; SNUH, Seoul National University Hospital.

https://doi.org/10.1371/journal.pone.0270493.g001
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history of contact lens wear; any medications that could affect anterior segment structures

such as the cornea, iridocorneal angle, or iris; any anterior segment abnormalities precluding

visualization of the anterior segment structure (e.g., significant corneal opacity); any systemic

diseases or therapies affecting height (e.g., Marfan syndrome) or weight (e.g., metabolic dis-

ease, cancer); AS-OCT images of poor quality or with artifacts.

Sample size calculation

We expect that at least 10,000 AS-OCT images will be obtained from at least 2,000 patients.

Since it is considered impossible to estimate the sample size required to train a deep learning

model in advance, we will adjust it during the study based on the model’s performance.

Study procedure

Data preparation. Each of the horizontal AS-OCT images will be split in half along the

vertical midline and resized to 384 x 384 using bicubic interpolation. The entire dataset will be

split into training, validation, and test datasets at a ratio of 8:1:1, and with the training dataset,

the right-side of the split images will be flipped horizontally to align with the left-side images

for data augmentation.

Deep learning model development. For demographics prediction, we will utilize a Vision

Transformer (ViT) model (available at https://github.com/lukemelas/PyTorch-Pretrained-

ViT) that recently was applied for image classification and achieved state of the art, top-1 accu-

racy among the models classified with ImageNet [38]. Among the several ViT models, we will

use the ViT-Base model (ViT-B/16), which will be pre-trained with ImageNet-21k and fine-

tuned with ImageNet-1k. An overview of the ViT model is illustrated in Fig 2.

The 384 x 384 images will be fed into the network as multiple 16 x 16 patches (576 patches

in total) that will be flattened to 1-dimensional vectors for inputs to the ViT encoder. The

encoder consists of alternating layers of multi-head self-attention and Multi-layer Perceptron

Fig 2. Vision transformer model. Abbreviations: BMI, body mass index; MLP, Multi-layer Perceptron.

https://doi.org/10.1371/journal.pone.0270493.g002
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(MLP) blocks, and Layernorm (LN) and residual connections are respectively applied before

and after every block [38]. The output of the transformer encoder will be passed through the

MLP head, and the score value for each class will be obtained.

For each of the demographic characteristics, we will use the following cut-offs:� 75

and> 75,� 60, 60–75 and� 75 years for age;� 170 and> 170 cm for male height;� 155

and> 155 cm for female height; < 70 and� 70 kg for male weight; < 55 and� 55 kg for

female weight, and< 23, 23–25 and� 25 kg/cm2 for BMI. Also, to adjust age, we will analyze

other demographic characteristics including sex, height, weight and BMI using age-matched

groups. As for age, height and weight, we will conduct the analysis dividing groups by sex to

adjust it.

To visualize the regions of the AS-OCT images that contributed to the model’s decisions,

Gradient-weighted Class Activation Mapping (Grad-CAM) [39] will be extracted from the

first LN of the last block of the transformer encoder.

Hardware specifications. CPU: Intel(R) Xeon(R) Gold 5120 CPU @ 2.20 GHz.

GPU: Tesla V100 32GB x2.

Software specifications. Preprocessing: OpenCV 3.4.2.

Deep learning libraries: Pytorch 1.7.1, Python 3.7.

Statistical methods and performance evaluation

To evaluate the performance of the deep learning model, the accuracy, sensitivity, and specific-

ity will be calculated by the following equations. Also, the area under the receiver operating

characteristic (ROC) curve (AUC), which is drawn by thresholding the output value of the

designed network after normalizing (0~1) by the softmax function, will be calculated.

Accuracy ¼
True Positiveþ True Negative

Total number of subjects

Sensitivity ¼
True Positive

True Positiveþ False Negative

Specif icity ¼
True Negative

True Negativeþ False Positive

Ethics and dissemination

This study was approved by the Institutional Review Board of SNUH (IRB No. H-2104-085-

1212), and the collection and analysis of the data were permitted by the Big data Review Board

(BRB) of SNUH. The study protocol followed the tenets of the Declaration of Helsinki.

Informed consent will be waived due to the retrospective nature of the study. Study findings

will be disseminated through publication in a peer-reviewed journal and presented at relevant

conferences.

Results

To evaluate the feasibility of the DL model, we performed a pilot study. For prediction of age, a

total of 2,615 AS-OCT images were used in the analysis: 2,102 images (360 and 1,742 for

age� 65 and > 65 years, respectively) as a training dataset; 261 images (54 and 207 for

age� 65 and > 65 years, respectively) as a validation dataset, and 252 images (36 and 216 for

age� 65 and > 65 years, respectively) as a test dataset.
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For classifying age� 65 vs.> 65 years, the ViT model achieved an AUC of 0.816, which

was lower than that of DenseNet121 convolutional neural network (CNN, AUC 0.843). With

pre-training, however, the ViT model outperformed DenseNet121 CNN, achieving an AUC of

0.885 (Table 1).

Discussion

AS-OCT is, on the strength of its technical advancement, becoming an increasingly potent

imaging modality for evaluation of various ocular diseases in the field of ophthalmology. In

addition, the ViT, which is an extended, recent application of Transformer to computer vision

inspired by its success in natural language processing, has attained excellent results in image

classification and has shown its usefulness in ophthalmology as well [40, 41]. Indeed, our pilot

study demonstrated a promising potential of ViT for prediction of age from AS-OCT images.

Also, it showed that the pre-trained ViT outperformed CNN, which result being also sup-

ported by Dosovitskiy et al.’s study [38]. Combining the advantages of deep learning with

those of AS-OCT, we expect that our study protocol will help to enhance the utilization of

AS-OCT in clinical practice. Furthermore, our study is of great value in that it will enable

obtaining hidden information on systemic factors from ocular imaging, as was also demon-

strated in earlier studies [42–44].

The strengths of our study are its planned utilization of a deep learning method that will

enable automated and fast analysis of massive, high-resolution AS-OCT imaging data from a

large population. The limitations of the proposed research include potential selection bias due

to its retrospective design, and its limited evaluation of structural differences among different

ethnic groups. Further studies of prospective design that include diverse ethnic groups will fur-

ther expand our knowledge and understanding of normal anterior segment structures.

Conclusion

This paper presents a study protocol for prediction of demographic characteristics based on

AS-OCT images of the eyeball using a deep learning model. The results of this study will help

clinicians to better understand anterior segment structural changes and differences according

to demographic variables in normal eyes, which should ultimately aid in evaluation and man-

agement of ocular diseases in clinical practice.
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Table 1. Performance of deep learning models for prediction of age� 65 vs.> 65 years.

AUC Accuracy Sensitivity Specificity

DenseNet121 (CNN) 0.843 0.821 0.583 0.861

ViT (from scratch) 0.816 0.877 0.333 0.968

ViT (pre-trained) 0.885 0.885 0.556 0.940

Abbreviations: AUC, area under the receiver operating characteristic curve; CNN, convolutional neural network; ViT, Vision Transformer.

https://doi.org/10.1371/journal.pone.0270493.t001
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