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Endothelial cell senescence is the main risk factor contributing to vascular dysfunction and the progression of aging-related
cardiovascular diseases. However, the relationship between endothelial cell metabolism and endothelial senescence remains
unclear. The present study provides novel insight into fatty acid metabolism in the regulation of endothelial senescence. In the
replicative senescence model and H2O2-induced premature senescence model of primary cultured human umbilical vein
endothelial cells (HUVECs), fatty acid oxidation (FAO) was suppressed and fatty acid profile was disturbed, accompanied by
downregulation of proteins associated with fatty acid uptake and mitochondrial entry, in particular the FAO rate-limiting
enzyme carnitine palmitoyl transferase 1A (CPT1A). Impairment of fatty acid metabolism by silencing CPT1A or CPT1A
inhibitor etomoxir facilitated the development of endothelial senescence, as implied by the increase of p53, p21, and
senescence-associated β-galactosidase, as well as the decrease of EdU-positive proliferating cells. In the contrary, rescue of FAO
by overexpression of CPT1A or supplement of short chain fatty acids (SCFAs) acetate and propionate ameliorated endothelial
senescence. In vivo, treatment of acetate for 4 weeks lowered the blood pressure and alleviated the senescence-related
phenotypes in aortas of Ang II-infused mice. Mechanistically, fatty acid metabolism regulates endothelial senescence via acetyl-
coenzyme A (acetyl-CoA), as implied by the observations that suppression of acetyl-CoA production using the inhibitor of
ATP citrate lyase NDI-091143 accelerated senescence of HUVECs and that supplementation of acetyl-CoA prevented H2O2-
induced endothelial senescence. Deficiency of acetyl-CoA resulted in alteration of acetylated protein profiles which are
associated with cell metabolism and cell cycle. These findings thus suggest that improvement of fatty acid metabolism might
ameliorate endothelial senescence-associated cardiovascular diseases.

1. Introduction

Vascular aging accelerates functional and structural deteriora-
tion in the vascular system and contributes to the pathogenesis
of a majority of age-related diseases including hypertension,

atherosclerosis, and vascular cognitive impairment [1–3]. Vas-
cular aging is initiated by endothelial cell senescence [1–3].
Under chronic exposure to cardiovascular risk factors, the
endothelial cells undergo a premature senescent phenotype
that is characterized by cellular senescence and growth arrest,
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oxidative stress, excessive release of inflammatory factors, and
impairment of endothelium-dependent vasorelaxation [4, 5].
Currently, the pathophysiological mechanisms of endothelial
senescence are not fully understood. Exploration of the cellu-
lar and molecular mechanisms of endothelial senescence
may pave the way for therapeutic intervention for vascular
aging-related diseases.

Recently, pathophysiological significance of endothelial
cell metabolism has been receiving growing attention. Endo-
thelial cell metabolism, including glycolysis, fatty acid
metabolism, and amino acid metabolism, plays a pivotal role
in the regulation of endothelial cell proliferation and angio-
genesis [6–8], endothelial activation [9], endothelial hyper-
permeability [10], redox homeostasis [11], and endothelial-
to-mesenchymal transition (EndoMT) [12]. Disturbance of
endothelial cell metabolism accelerates the development of
various vascular diseases, such as atherosclerosis [13], pul-
monary hypertension [14], and cancer [6, 8].

Although endothelial cells primarily rely on glycolysis for
energy production [6], fatty acid metabolism gains increasing
interest following the discovery that fatty acid oxidation-
(FAO-) derived acetyl-coenzyme A (acetyl-CoA) and nico-
tinamide adenine dinucleotide phosphate (NADPH) are
involved in maintaining the homeostasis of endothelial cell.
Endothelial cells metabolize fatty acids to acetyl-CoA, which
is a critical modulator of EndoMT through restraining TGF-
β-Smad signaling by acetylating and stabilizing the inhibi-
tory Smad7 [12]. Moreover, endothelial FAO sustains the tri-
carboxylic acid (TCA) cycle for redox homeostasis through
NADPH regeneration, therefore regulating endothelial acti-
vation and endothelial hyperpermeability [11]. Furthermore,
FAO in endothelial cell regulates biomass synthesis and facil-
itates deoxynucleotide triphosphate (dNTP) production
required for DNA synthesis during endothelial cell prolifera-
tion [7].

In view of the importance of fatty acid metabolism in
modulating endothelial homeostasis [15–18], the present
study was designed to investigate the changes of fatty acid
metabolism in senescent endothelial cells and the potential
regulatory role of fatty acid metabolism in endothelial senes-
cence, in order to provide therapeutic strategy targeting
endothelial cell metabolism for vascular aging and related
cardiovascular diseases.

2. Results

2.1. Endothelial Senescence Was Accompanied by Repression
of Fatty Acid Metabolism. In this study, fatty acid metabo-
lism was studied by examining the palmitate-based
oxygen-consumption rate (OCR) in both H2O2-induced
endothelial senescence and replicative endothelial senes-
cence induced by population doublings in cell culture.
OCR was significantly elevated by stimulation of palmitate-
conjugated bovine serum albumin (Palm-BSA) in the con-
trol cells or young endothelial cells. In contrast, OCR was
suppressed in H2O2-induced senescent cells and in late-
passage cells with or without Palm-BSA treatment
(Figures 1(a)–1(d)). These observations reveal a decline in
fatty acid metabolism during endothelial senescence. In

addition, fatty acid profile was investigated in oxidative
stress-induced endothelial senescence. The results demon-
strated that levels of most medium and long chain fatty acids
(MCFAs and LCFAs) were reduced in senescent endothelial
cells; both saturated fatty acids and unsaturated fatty acids
including mono-unsaturated fatty acids and poly-
unsaturated fatty acids were decreased; methyl linoleate
and docosahexaenoic acid (DHA), which are protective to
endothelial cell function [19], were declined in senescent
endothelial cells as well (Figure 1(e)). Moreover, endothelial
senescence was accompanied by a fall in TCA cycle-
associated organic acid metabolites, including fumarate, L-
malic acid, succinate, and isocitrate, as well as in acetyl-
CoA, an important metabolic product of FAO; meanwhile,
a rise in intracellular NAD/NADH was observed in endothe-
lial senescence (Figure 1(f)). Taken together, these results
suggest that disorder of fatty acid metabolism is involved
in endothelial senescence.

2.2. Level of Enzymes Associated with Fatty Acid Metabolism
Was Altered in Senescent Endothelial Cells. To explore the
possible mechanisms underlying the abnormality of fatty
acid metabolism, mRNA expressions of proteins associated
with fatty acid uptake, transport, and beta-oxidation in
senescent endothelial cells were investigated. Among the
proteins involved in fatty acid transmembrane transport
and activation in endothelial cells [20], including fatty acid
transport protein (FATP) 6, the pm, 4 and 5 subtypes of
fatty acid-binding protein (FABP), as well as type 3 and 4
acyl-CoA synthetase of LCFAs (ACSL), FABP4 and ACSL3
were remarkably downregulated in both H2O2-induced and
replicative endothelial senescence models (Figure S1A).
Additionally, proteins responsible for fatty acid import into
mitochondria, including carnitine palmitoyl transferase 1
(CPT1) located in the outer mitochondrial membrane and
carnitine palmitoyl transferase 2 (CPT2) located in the
inner mitochondrial membrane [21], were significantly
decreased (Figure S1B). On the contrary, the mRNA
expression of enzymes related to fatty acid oxidation
including mitochondrial trifunctional protein subunit ɑ/β
(HADHA and HADHB), long/medium/short chain 3S-
hydroxyacyl-CoA dehydrogenase, enoyl-CoA hydratase, or
3-hydroxyacyl-CoA dehydrogenase (HADH) was slightly
altered, although some of these enzymes showed a
decreased trend in one of the endothelial senescence
models (Figures S1C and S1D). These observations suggest
that downregulation of proteins associated with fatty acid
uptake and mitochondrial entry might probably contribute
to the repression of fatty acid metabolism in endothelial
senescence.

CPT1, the rate-limiting enzyme of FAO, contains 3 iso-
forms: CPT1A, CPT1B, and CPT1C [11]. Among these iso-
forms, CPT1A was the most abundant one expressed in the
endothelial cells (Figure S2). The protein expression of
CPT1A was studied in the senescent endothelial cell
models. The expression of CPT1A was diminished
accompanied by the upregulation of senescent markers p53
and p21, confirming that CPT1A was repressed in
endothelial senescence (Figures 2(a) and 2(b)). Moreover,
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Figure 1: Continued.
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the endothelial expression of CPT1A was determined in the
aortas of two typical animal models with endothelial
senescence, the spontaneously hypertensive rat (SHR) [22]
(Figure S3) and Ang II-infused mice [23, 24]. As compared
to their normotensive controls, the expression of CPT1A in
the endothelial layer of aortas was obviously diminished in
SHR and Ang II-infused mice (Figures 2(c) and 2(d)),
consistently with the in vitro results.

2.3. CPT1A-Dependent FAO Protected against Endothelial
Cell Senescence. Since CPT1 catalyzes the rate-limiting step
of converting acyl-coenzyme A into acyl-carnitines, which
can be transported across mitochondria membranes, and
since CPT1A is the most abundant isoform, CPT1A is
regarded as the rate-limiting enzyme of LCFA oxidation in
endothelial cells [11]. The fall of CPT1A in senescent endo-
thelial cells thus prompted the hypothesis that suppression
of CPT1A-dependent FAO might lead to the development
of endothelial senescence. To test this hypothesis, the effect
of CPT1A knockdown by siRNA or inhibition by etomoxir
(ETO) on endothelial cell senescence was investigated. Among
the four tested CPT1A siRNAs, siRNA-1 demonstrated the
best efficiency and was thus selected for the following studies
(Figure S4). CPT1A siRNA-1 augmented the portion of
senescence-associated-β-galactosidase- (SA-β-gal-) positive
senescent cells (Figure 3(a)), increased the expressions of
cell cycle repressors p53 and p21 in endothelial cells
(Figure 3(b)), and attenuated the ratio of EdU-positive

proliferating cells in a concentration-dependent manner
(Figure 3(c)). Similarly, treatment of CPT1 pharmacological
inhibitor ETO [25] facilitated endothelial senescence dose
and time dependently (Figure S5).

Moreover, the effect of CPT1A overexpression on H2O2-
induced endothelial senescence was examined by transfect-
ing a Flag-labeled CPT1A plasmid, which remarkably upreg-
ulated CPT1A in HUVECs (Figure S6). Overexpression of
CPT1A repressed the increase of SA-β-gal-positive cells
(Figure 3(d)), increased expression of p53 and p21 caused
by H2O2 (Figure 3(e)), and reversed H2O2-induced arrest of
cell proliferation (Figure 3(f)), thus suggesting that CPT1A
ameliorates oxidative stress-induced endothelial senescence.

Taken in conjunction, these observations indicate that
CPT1A-dependent LCFA metabolism could protect against
endothelial senescence. Suppression of CPT1A might proba-
bly contribute to the development of endothelial senescence.

2.4. Supplement of Short Chain Fatty Acids (SCFAs) Rescued
Endothelial Senescence In Vitro and In Vivo. Different from
LCFAs, SCFAs are not dependent on CPT1 for mitochon-
drial entry, but rather cross the mitochondrial membrane
via free diffusion. Thus, SCFAs could bypass the suppres-
sion of CPT1A in endothelial senescence and supplement
fatty acyl for mitochondrial oxidative pathways [26, 27].
SCFAs include acetic acid, propionic acid, and butyric acid.
In this study, acetate or propionate was supplemented to
investigate whether or not SCFAs that bypass the reduced
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Figure 1: Repression of fatty acid metabolism was observed in senescent endothelial cells. (a) Oxygen-consumption rate (OCR) was
measured by XF96 extracellular flux analyzer in HUVECs stimulated with or without H2O2 and palmitate conjugated bovine serum
albumin (Palm-BSA). (b) Bar chart showing the capacity of FAO as determined by analyzing the respiratory capacity of OCR (n = 5). (c)
OCR and Palm-BSA-induced OCR were investigated by XF96 extracellular flux analyzer in senescent endothelial cells (p13-16). (d) Bar
chart showing the capacity of FAO as determined by analyzing the respiratory capacity of OCR in young or senescent HUVECs (n = 5).
Data were presented as means ± SEM. #P < 0:05 vs. control BSA and ∗P < 0:05 vs. control/young. (e) Fatty acid profile was measured by
GC/MS in HUVEC senescence model induced by H2O2. n = 3. (f) TCA cycle metabolites were measured by LC/MS in HUVEC
senescence model induced by H2O2. Ratio of NAD to NADH as well as level of acetyl-CoA was calculated. n = 3. Data were presented as
means ± SEM. ∗P < 0:05 vs. control.
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CPT1A were able to ameliorate endothelial senescence. In
H2O2-treated senescent endothelial cells, exogenous acetate
supplementation prevented the increased expression of
SA-β-gal, the upregulation of cell cycle repressors, and
the proliferation block (Figures 4(a)–4(c)). Consistently,
acetate showed antisenescent effect in endothelial cells
with CPT1A silencing or inhibition (Figure 5). Similar as
acetate, treatment of propionate improved endothelial
senescence induced by H2O2 or CPT1A knockdown/inhi-
bition (Figures S7 and S8).

In vivo, acetate was administered to mice continuously
infused by a micropump for 28 days. As shown in
Figures 4(d)–4(g), treatment of acetate remarkably improved
senescence of the endothelial layer of aortas induced by Ang
II, as implied by the results of SA-β-gal staining and immu-
nofluorescence analysis of p53 and DNA damage foci γ-
H2AX. Surprisingly, acetate treatment reversed the elevation
of blood pressure induced by Ang II infusion (Figure 4(d)).

2.5. Fatty Acid Metabolism Regulated Endothelial Senescence
via Acetyl-CoA. Since acetyl-CoA is the final product of fatty
acid metabolism [28], it is possible that the reduction in
LCFA oxidation in endothelial senescence leads to changes
in acetyl-CoA levels. Indeed, overexpression of CPT1A ele-
vated the intracellular level of acetyl-CoA (Figure 6(a)),
whereas deficiency of CPT1A reduced acetyl-CoA produc-
tion (Figure 6(b)). Replenishment of acetate could rebound
the level of acetyl-CoA in endothelial cells with CPT1A
silencing (Figure 6(b)).

It is speculated that lack of acetyl-CoA might lead to
endothelial senescence and that SCFAs might restrain endo-

thelial senescence through replenishing acetyl-CoA. To ver-
ify the role of acetyl-CoA in endothelial senescence, the
inhibitor of ATP citrate lyase (ACLY), the enzyme that con-
verts citric acid into acetyl-CoA [29], was used to suppress
acetyl-CoA production (Figure 6(c)). ACLY inhibitor NDI-
091143 (NDI) augmented senescent marker SA-β-gal, accel-
erated the expressions of p53 and p21, and repressed cell
proliferation, suggesting that reduction of acetyl-CoA levels
exacerbates senescence of endothelial cells (Figures 6(d)–
6(f)). Acetic acid can directly generate acetyl-CoA by acyl-
CoA synthetase (ACS) [30]. Therefore, supplementation of
acetate could compensate for the depleted acetyl-CoA [7,
31]. Indeed, treatment of acetate reversed NDI-induced
senescence in endothelial cells (Figures 6(d)–6(f)).

Moreover, supplementation of acetyl-CoA reversed
H2O2-induced upregulation of senescent markers, further
confirming that acetyl-CoA plays a pivotal role in improving
endothelial senescence (Figure 6(g)).

2.6. Acetylated Protein Profile Was Altered in Senescent
Endothelial Cells. As the final product of FAO, acetyl-
CoA serves as the predominant acetyl donor for lysine
acetylation and thereby links metabolism, signaling, and
epigenetics [32, 33]. The observations that acetyl-CoA par-
ticipated in regulation of endothelial senescence thus
prompted the hypothesis that acetyl-CoA might affect pro-
tein acetylation modification in endothelial senescence. To
test this hypothesis, the acetylated proteins were detected
through Western blotting using an anti-acetyl lysine anti-
body. The results demonstrated that most of the detected
proteins displayed a declined trend of acetylation level in
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Figure 2: CPT1A expression was downregulated during endothelial senescence in vitro and in vivo. CPT1A protein expression was
measured by Western blot in (a) H2O2-induced senescent endothelial cells and (b) replicative senescent endothelial cells. n = 3. Data
were presented as means ± SEM. ∗P < 0:05 vs. control/young. Immunofluorescent staining of CPT1A was performed in the frozen aortic
sections of (c) SHRs and their normotensive control WKY rats and (d) mice infused with or without Ang II for 4 weeks. CD31
represented the endothelial layer. DAPI represents cell nucleus of the vasculature. Merge of CD31 (green) and CPT1A (red) was shown
in yellow and indicated the expression of CPT1A in the endothelial layer. n = 4.
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H2O2-induced senescent endothelial cells (Figure 7(a)). More-
over, a global lysine acetylome analysis was performed in
senescent endothelial cells. Generally, 2706 acetylated proteins
were identified, with 1208 validated acetylated-lysine sites.
Using ratio > +/−2 and P value <0.05 as the screening stan-
dard, 40 proteins with 43 acetylated-lysine sites demonstrated
a significantly decreased acetylation level in the senescent cells
(Figures 7(b)–7(d)). The KEGGpathway analysis revealed that
these proteins were closely related to (1) cell energy metabo-
lism, including enzymes involved in fatty acid metabolism
such as fatty acid synthetase (FASN), HADHA, and HADH,
and that involved in glycolysis such as phosphoglycoside ole-
ate dehydrogenase (GADPH) and platelet-type phosphofruc-
tokinase and (2) cell cycle regulation, including DNA-
dependent protein kinase catalytic subunit (PRKDC) and
40S ribosomal protein S3/8 (Figure 7(e)). Taken together,
these results imply that deficit of acetyl-CoA caused by defect

of CPT1A-dependent fatty acid metabolism leads to suppres-
sion of protein acetylation which in turn exacerbates cell
metabolism and represses cell cycle, finally resulting in endo-
thelial senescence.

3. Discussion

The present study provides novel insight into endothelial
fatty acid metabolism in the regulation of endothelial senes-
cence. Disturbances in fatty acid metabolism occur during
both inducible senescence and replicative senescence in
endothelial cells. This conclusion is supported by the follow-
ing observations: (1) Palm-BSA-stimulated increase of OCR
was abrogated in senescent HUVECs; (2) acetyl-CoA, the
final product of fatty acid metabolism, was declined; (3)
the levels of a series of MCFAs and LCFAs were reduced
during endothelial senescence; and (4) proteins associated
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Figure 3: CPT1A-dependent FAO protected against endothelial cell senescence. (a) SA-β-gal staining (scale bar: 50μm), (b) Western blot
showing the protein expression of p53 and p21, and (c) EdU staining showing the ratio of proliferating endothelial cells (scale bar: 100 μm),
were performed in HUVECs treated with different concentrations of CPT1A siRNA or nontargeted siRNA control (siNC). n = 3. Data were
presented as means ± SEM. ∗P < 0:05 vs. siNC. (d) SA-β-gal staining, (e) the protein expression of p53 and p21, and (f) EdU staining were
investigated in HUVECs transfected with or without CPT1A plasmid, in the presence or absence of H2O2 stimulation. n = 4 ~ 5. Data were
presented as means ± SEM. ∗P < 0:05 vs. control; and #P < 0:05 vs. H2O2.
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with fatty acid uptake and mitochondrial entry were down-
regulated. Usually, the endothelial cells take up MCFAs
and LCFAs from the circulation by designated transporters
including the FATP and FABP family [34, 35]. The down-
regulation of FABPpm, FABP4, and FATP6 in either
H2O2-induced senescence model or replicative senescence
model indicated a defect of fatty acid uptake, in line with
the observations that most of the MCFAs and LCFAs were
decreased in senescent endothelial cells. The ACSL family,
in concert with FATPs, activates fatty acids destined for

beta-oxidation through the process of vectorial acylation
[36]. The decrease of ACSL3 mRNA level thus confirms
the reduced efficiency in the vectorial acylation of exogenous
fatty acids during endothelial senescence. Moreover, the
expressions of CPT1 and CPT2 were attenuated, suggesting
that the trafficking of fatty acids into mitochondria is
repressed. CPT1A, the most abundant isoform of CPT1 in
endothelial cells, displayed a dramatic decrease in both rep-
licative and inducible senescent endothelial cells, as well as
in the endothelial layer of aortas of SHR and Ang II-
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Figure 4: Acetate ameliorated endothelial senescence in vitro and in vivo. (a–c) Acetate was treated for 24 h in senescent HUVECs induced
by H2O2. (a) SA-β-gal staining (scale bar: 50 μm), (b) the protein expression of p53, p21, and p16, and (c) EdU staining (scale bar: 100 μm)
were investigated. n = 3 ~ 4. Data were presented as means ± SEM. ∗P < 0:05 vs. control; and #P < 0:05 vs. H2O2. (d–f) Mice were infused
with saline or Ang II (1,000 ng/kg/min) using osmotic minipumps for 4 weeks. Acetate (200mM) was given in drinking water for 4
weeks in the Ang II+acetate group. (d) Mean arterial pressure was measured by tail-cuff plethysmography. n = 3. Data were presented as
means ± SEM. ∗P < 0:05 vs. saline; and #P < 0:05 vs. Ang II. (e) SA-β-gal staining of the inner layer of aortas of mice. n = 3. (f)
Immunofluorescent staining of p53 was performed in the frozen aortic sections of mice. CD31 represented the endothelial layer. DAPI
represented cell nucleus of the vasculature. Merge of CD31 (green) and CPT1A (red) was shown in yellow and indicated the expression
of CPT1A in the endothelial layer. n = 3. (g) Immunofluorescent staining of γH2A.X was performed in the frozen aortic sections of mice.
n = 3.
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Figure 5: Supplementation of acetate improved endothelial cell senescence induced by si-CPT1A or CPT1A inhibitor ETO. HUVECs were
treated with or without siCPT1A (100 nM) or ETO (50 μM) for 24 h, followed by incubation with acetate (40mM) for 24 h. (a) SA-β-gal
staining (scale bar: 50 μm) (n = 4), (b) Western blot showing the protein expression of p53 (n = 6), and (c) EdU staining (scale bar:
100μm) (n = 4) were investigated. Data were presented as means ± SEM. ∗P < 0:05 vs. control; &P < 0:05 vs. siCPT1A; and #P < 0:05 vs.
ETO.
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Figure 6: Acetyl-CoA was involved in regulatory effect of fatty acid metabolism in endothelial senescence. (a) The levels of acetyl-CoA in
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infused mice. Considering that CPT1A is the rate-limiting
enzyme of FAO [37], the downregulation of CPT1A might
act as a crucial determinant facilitating the disturbance of
fatty acid metabolism during the development of endothe-
lial senescence. After being transported into mitochondria,
acyl-CoA is catalyzed into acetyl-CoA through dehydroge-
nation, hydration, re-dehydrogenation, and thiolysis. These
processes require the dehydrogenases long/medium/short
chain 3S-hydroxyacyl-CoA dehydrogenase, the enoyl-CoA
hydratase, the dehydrogenase HADH which is responsible
for re-dehydrogenation of MCFAs and SCFAs, and mito-
chondrial trifunctional proteins HADHA and HADHB that
exert dehydrogenation, hydration, and thiolysis activities on
LCFAs [38]. Intriguingly, the mRNA levels of these
enzymes were slightly changed in endothelial senescence
models, thus excluding the possibility that abnormality of
the oxidation process of fatty acids is involved in endothe-
lial senescence. Since FAO-derived acetyl-CoA helps to sus-
tain the TCA cycle in conjunction with anaplerotic
substrates, the repression of fatty acid metabolism might
help to explain the decrease of TCA cycle-associated
organic acid metabolites and the increase of NAD/NADH

ratio. Taken together, these findings support the view that
endothelial senescence is accompanied with disruption of
fatty acid metabolism.

The present study also attempted to investigate whether
or not disorder of fatty acid metabolism facilitates the path-
ogenesis of endothelial senescence, and improvement of
fatty acid metabolism could ameliorate endothelial senes-
cence. Taking into consideration the importance of CPT1A
in fatty acid metabolism, CPT1A was knocked down or
inhibited to disrupt fatty acid metabolism or was overex-
pressed to improve FAO. Indeed, CPT1A expression is
closely associated with maintaining high FAO level; deple-
tion or inhibition of CPT1A results in FAO deficiency in
endothelial cells [7, 11, 39]. Our observations demonstrated
that si-CPT1A or CPT1 inhibitor ETO initiated senescence
of endothelial cells in a concentration- and time-dependent
manner, whereas overexpression of CPT1A could reverse
H2O2-induced senescence. Therefore, these results suggest
that maintenance of FAO by CPT1A is important for pro-
tecting against endothelial senescence. In addition, exoge-
nous SCFAs were supplemented to bypass CPT1A defect
in endothelial senescence. Acetic acid is directly converted
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Figure 7: Global proteomic analysis of lysine acetylation in senescent endothelial cells induced by H2O2. (a) Western blot analysis of total
protein acetylation levels. (b) Volcano plot showing the changes of acetylation at intracellular protein lysine sites. (c) Protein index showing
the changes of acetylated proteins. (d) Heat map showing the changes of acetylated level at protein lysine sites with statistical significant
difference. (e) KEGG pathway analysis of proteins with altered acetylation. n = 3.
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into acetyl-CoA by ACS. Propionic acid is catalyzed by ACS
to generate propionyl-CoA, followed by conversion into suc-
cinyl-CoA, and finally entering TCA cycle to produce acetyl-
CoA [40]. Thus, these SCFAs could produce acetyl-CoA, no
matter directly or indirectly, to compensate for the deficit in
LCFAs metabolism and to rescue fatty acid metabolism [7,
26]. According to our observations, both acetate and propi-
onate exhibited antisenescent effect in endothelial cells stim-
ulated by oxidative stress or with CPT1A knockdown or
inhibition. Most importantly, supplement of acetate lowered
the blood pressure and alleviated the senescence-related
phenotypes in arteries of Ang II-infused mice. These con-
vincing evidences thus prompt the conclusion that rescue
of FAO by SCFA supplementation might help to amelio-
rate endothelial senescence and confer endothelial protec-
tion (Figure 7). In fact, our findings about the beneficial
effect of SCFAs on endothelial cells are in line with clinical
and experimental observations that SCFAs protected from
cardiovascular damage and improved cardiovascular health
[41–43] and suggest clinical benefit of SCFA treatment in
endothelial senescence-related diseases. Overall, these find-
ings hint that improvement of fatty acid metabolism in
endothelial cells contributes to maintaining cardiovascular
homeostasis and preventing cardiovascular diseases.

The possible mechanisms underlying the regulation of
fatty acid metabolism in endothelial senescence are still

underexplored. Three possibilities are proposed: (1) fatty
acid-derived dNTPs facilitate DNA synthesis and accelerate
endothelial cell proliferation, ultimately repressing senes-
cence [7]; (2) NADPH, an intermediate product of FAO,
maintains redox homeostasis and prevents endothelial cells
from oxidative stress [11]; and (3) FAO-derived acetyl-
CoA, which acts as a donor providing acetyl group, might
be involved in acetylation modification and epigenetic regu-
lation in endothelial cells to maintain endothelial function
[12]. Our study suggests that fatty acid metabolism regulates
endothelial senescence via production of acetyl-CoA. The
involvement of acetyl-CoA is supported by the following
observations: (1) CPT1A overexpression increased acetyl-
CoA level, while CPT1A knockdown reduced acetyl-CoA
level; (2) suppression of acetyl-CoA production by ACLY
inhibitor NDI accelerated senescence of endothelial cells;
(3) replenishment of acetyl-CoA by acetate supplementation
abolished NDI-induced senescence; and (4) supplementa-
tion of acetyl-CoA prevented H2O2-induced endothelial
senescence.

It is still uncertain how acetyl-CoA regulates endothe-
lial senescence. One possibility is that the lack of acetyl-
CoA due to FAO metabolic defect might probably alter
the acetylated protein profile in senescent endothelial cells.
Indeed, acetylation modification may be enzymatically cat-
alyzed by acetyltransferases like p300, but can also be
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driven nonenzymatically by acetyl-CoA. In most cases,
acetyl-CoA is also used by p300 to acetylate histones and
nonhistones. Therefore, acetyl-CoA is pivotal for catalyzing
acetylation modification. As implied by results of lysine acet-
ylome analysis, those proteins with decreased acetylation
level in senescent HUVECs are involved in regulation of cell
energy metabolism and cell cycle regulation. The observa-
tions of declined acetylation of enzymes related to glycolysis
such as GADPH and platelet-type phosphofructokinase
might allow speculations that fatty acid metabolism might
influence energy homeostasis by coordinating glycolysis,
although FAO itself is dispensable for ATP production.

Intriguingly, the relationship between acetyl-CoA, acety-
lation, and cell senescence seems complicated. In tissues
such as skeletal muscle, heart, and adipose tissue, cytoplas-
mic acetyl-CoA levels are decreased through downregulation
of ACLY in response to calorie restriction, to decrease the
activity of acetyltransferase p300, finally stimulating prolon-
gevity autophagy [44, 45]. These observations seem to be
contradictory to our results that acetyl-CoA prevented endo-
thelial senescence. On the contrary, increasing nuclear
acetyl-CoA levels promotes longevity through increased his-
tone acetylation [44, 46] in the hippocampus and other brain
regions. According to our results, histone acetylation was
not changed according to the whole detected acetyl-lysine
profile, thus excluding the possibility that FAO regulates
endothelial senescence via epigenetic regulation. It seems
that the role of acetyl-CoA in senescence and longevity is
diverse in different cellular compartments, different patho-
logical conditions, and even different species [44]. Since
our study did not separately investigate the role of FAO-
generated acetyl-CoA in the cytoplasm and in the nucleus,
the present results do not permit further speculation on
the reasons for those apparent discrepancies. Further inves-
tigations are needed to elucidate the regulation of acetyl-
CoA in the acetylation substrates during endothelial
senescence.

To be noted, an increase of intracellular NAD/NADH
was observed during H2O2-induced endothelial senescence.
Since NAD+ is required for the activation of sirtuins, the
class III histone deacetylase family, it might lead to the spec-
ulation that sirtuins are activated to coordinate global pro-
tein acetylation together with acetyl-CoA. However, a large
amount of evidence indicates that the expressions of several
sirtuin family members, including SIRT1 [47], SIRT2 [48],
SIRT3 [49], and SIRT6 [50], are significantly decreased dur-
ing endothelial senescence. Thus, it challenged the possibil-
ity that the increased NAD+ is able to compensate the
downregulation of sirtuins. Unlike in heart and skeletal mus-
cle, where global protein acetylation is increased with aging
mainly due to decreased NAD+ levels with aging decreasing
sirtuin activity [51], the change of global protein acetylation
in endothelial cells might be affected by a complex regula-
tory network containing acetyl-CoA, NAD+, sirtuins, and
acetylases like p300.

As a limitation of the present study, the involvement of
fatty acid-derived dNTPs and NADPH in the regulation of
endothelial senescence cannot be excluded, since endothelial
senescence is closely associated with cell cycle regulation and

oxidative stress. Additionally, CPT1A endothelial cell-
specific knockout/transgenic mice were not used to prove
the in vivo effect.

In conclusion, the present study identifies a disturbed
fatty acid profile and suppressed FAO in senescent endothe-
lial cells (Figure 8). FAO impairment by knockdown or inhi-
bition of CPT1A facilitates the development of endothelial
senescence, whereas improvement of fatty acid metabolism
by CPT1A overexpression or SCFA supplementation ame-
liorates endothelial senescence. Mechanistically, fatty acid
metabolism regulates endothelial senescence via acetyl-
CoA-induced acetylation modification. Therefore, therapeu-
tic strategies targeting endothelial fatty acid metabolism
might shed new lights on the treatment of cardiovascular
diseases associated with endothelial senescence and vascular
aging.

4. Materials and Methods

4.1. Cell Culture. Human umbilical cords were collected
from the First Affiliated Hospital of Sun Yat-sen University
in Guangzhou, China. HUVECs were isolated and cultured
as previously described [52]. Briefly, endothelial cells from
the vein of human umbilical cord were digested with trypsin
and cultured in endothelial cells medium (ECM, ScienCell,
San Diego, CA, USA) in a humidified atmosphere of 5%
CO2 at 37

°C.

4.2. Endothelial Cell Senescent Models and Treatments. Rep-
licative endothelial senescence model was induced by popu-
lation doublings in cell culture. Cells at 13~16 passages were
considered as “senescent,” while cells at passage 3~6 were
regarded as the “young” control. For H2O2-induced endo-
thelial senescence model, HUVECs were treated with
100μM H2O2 for 1 h following culture with 20% ECM in
Medium 199 for 48h. In some cases, HUVECs were incu-
bated with the CPT1 inhibitor etomoxir (Macklin, Shanghai,
China) at the concentration of 1μM, 10μM, and 50μM for
24 h or 48h. The ACLY inhibitor NDI-091143 (Macklin,
Shanghai, China) was treated at a final concentration of
1μM for 48 h. Acetate (40mM), propionate (4mM), and
acetyl-CoA sodium salt (1mM) were obtained from Macklin
(Shanghai, China) and were incubated with cells for 24h
after stimulating by H2O2 or etomoxir for 24 h.

4.3. Animal Studies. Animal procedures used in this study
were in accord with institutional guidelines and were
approved by Laboratory Animal Center of the Sun Yat-sen
University. Male C57BL/6 mice (purchased from Guang-
dong GemPharmatech Company) were randomly divided
into 3 groups as follows: (i) control group, (ii) Ang II group,
and (iii) Ang II+acetate (Aladdin) group. At the age of 8
weeks, the mice were infused with saline or Ang II
(1,000 ng·kg-1·min-1) using osmotic minipumps (Model
2004; Alzet) for 4 weeks. At the same time, mice of the
Ang II+acetate group were supplied with 200mM acetate
in drinking water for 4 weeks, refreshed three times per
week. Systolic blood pressure (BP) was measured by tail-
cuff plethysmography (BP-2010A; Softron Biotechnology)
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every week. The body weights of the mice were weighed on a
scale every three days. All the mice were caged in a temper-
ature- and humidity-controlled room with a 12 h light/dark
cycle and fed a standard chow diet and clean water.
Twelve-week-old male Wistar Kyoto (WKY) rats and Spon-
taneous Hypertension Rat (SHR) were purchased from the
Charles River Laboratories (Beijing, China). Blood pressure
was measured at room temperature via carotid artery cannu-
lation after anaesthetization. After being sacrificed, aortas
were dissected in oxygenated ice-cold Kreb’s solution and
then quickly frozen in liquid nitrogen. The frozen aortas
were cut into 5μM frozen sections by Servicebio Company.

4.4. Transfection of CPT1A siRNA or Plasmid. The siRNAs
used to knock down CPT1A in HUVECs were synthesized
by GenePharma (Suzhou, China). CPT1A plasmid was
extracted with Tiangen kit (Beijing, China) and transfected
with jetOPTIMUS (Polyplus-transfection SA, NY, USA).
The nontargeted siRNA was served as negative control
(siNC).

4.5. Western Blot Analysis. For Western blot analysis,
HUVEC lysates were collected with RIPA Buffer (Beyotime,
Shanghai, China) and protein concentration was determined
using a BCA protein assay kit (Thermo Fisher, Rockford, IL,
USA). Proteins were separated by electrophoresis with 10%-
12% SDS polyacrylamide gel and then were transferred to
polyvinylidene difluoride (PVDF) membranes (Millipore,
Billerica, MA, USA). Following blocking at room tempera-
ture with 5% skimmed milk for 1 h, the membranes were
incubated with the indicated primary antibodies at 4°C over-
night. After that, membranes were washed in Tris-buffered
saline tween (TBST) and latter incubated with secondary
anti-rabbit or anti-mouse antibody. The bound secondary
antibody was visualized by chemiluminescence using
ECL™Western Blotting Detection Reagent (GE Healthcare).
The rabbit polyclonal anti-CPT1A, rabbit polyclonal anti-
p53, and rabbit polyclonal anti-p21 were obtained from Pro-
teintech Group (IL, USA), and the rabbit polyclonal anti-p16
was purchased from Abcam (Cambridge, UK).

4.6. Quantitative Real-Time Polymerase Chain Reaction.
Total RNA from cultured HUVECs were extracted using
TRIzol reagent (Takara Biotechnology, Dalian, China)
according to the RNA extraction protocol. Complementary
DNA was prepared using Revert Aid First Strand cDNA
Synthesis Kit (Thermo, MA, USA). The real-time RT-PCR
analysis was performed using 2× SYBR-Green qPCR Mix
(Dongsheng Biotech, Guangzhou, China) with LightCycler
480II (Roche, Basel, Switzerland). Data were analyzed using
the comparative cycling threshold (ΔΔCt) method. The
GAPDH was used as an internal control, and human-
specific primers were synthesized and purified by Sangon
(Shanghai, China). The primer sequences are shown in Sup-
plementary Table 1.

4.7. Senescence-Associated-β-Galactosidase (SA-β-Gal)
Staining. HUVECs were seeded on a fibronectin-coated cul-
ture 48-well plate. The freshly dissected aortas were
mounted on clean plates. SA-β-gal was stained by using a

SA-β-gal detection kit (Beyotime Biotechnology, Shanghai,
China). The cells or aortas were immersed in the staining
solution and incubated at 37°C for 12h. Cells with blue
staining were suggested to be SA-β-gal-positive cells.

4.8. Immunofluorescence Staining. Frozen sections were fixed
with 5% paraformaldehyde for 15 minutes at room temper-
ature. After rinsing, the sections were treated with 0.5% Tri-
ton X-100 to permeate into the cell membrane. Following
washing with PBS 3 times, the sections were blocked with
5% goat serum in PBS for 1 h at room temperature. Anti-
CPT1A, anti-p53, and anti-CD36 primary antibodies were
diluted in 5% goat serum and incubated overnight at 4°C.
After rinsing, sections were revealed by a combination of
anti-mouse and anti-rabbit antibody conjugated to Alexa
Fluor 488 and 594 at 1 : 200. Fluorescent images were cap-
tured by a laser scanning ultrahigh-resolution microscope
(FV 3000, Olympus), and relative fluorescence intensity
was calculated using ImageJ software.

4.9. EdU Staining. Since senescent cells undergo cell cycle
arrest, the defect of proliferation ability suggests cellular
senescence. Thus, the proliferation ability of HUVECs was
determined using the EdU (5-ethynyl-2′-deoxyuridine)
staining kit (RiboBio Co., Ltd., Guangzhou, China) accord-
ing to the protocol. Images were acquired by cell auto imag-
ing system (EVOS FL Auto, Life Technologies, New York,
USA). The EdU-positive cells were shown red. Ratio of pro-
liferating cells was normalized to the total cell numbers
stained with Hoechst (blue).

4.10. Measurements of Fatty Acid Metabolism in HUVECs by
Seahorse Assay. The cell’s ability to metabolize fatty acid was
assessed by Seahorse XF96 extracellular flux analyzer (Agi-
lent, CA, USA). HUVECs were seeded 15,000 per well on
XF96 cell culture microplate. After attaching to the plate,
the cells were incubated with substrate-limited medium
(according to Manufacturer’s protocol) for 4 h. For FAO
assessment, the cells were incubated with FAO assay buffer
in non-CO2 incubator for 45 minutes, followed by addition
of palmitate-conjugated bovine serum albumin (Palm-BSA)
or BSA. Oxygen-consumption rate (OCR) was to assess the
cell’s FAO ability.

4.11. Metabolomics Detecting Fatty Acid Profile and TCA
Metabolites in HUVECs. The treated cells were washed with
PBS and 0.9% NaCl solution, digested with trypsin, centri-
fuged at 800g, 4°C, and then frozen with liquid nitrogen
and stored in -80°C. Cells retrieved from −80°C storage were
ground into fine powder in liquid nitrogen. Powder (60mg)
was vortexed in a 1mL solution of methanol/acetonitrile/
H2O. After sonication for 30min on ice, the mix was stored
at -20°C for 1 h to precipitate proteins. The mix was centri-
fuged for 15min (13,000 rpm, 4°C) and dried by a vacuum
drying system. A targeted metabolic analysis was performed
using an LC-MS/MS system. The dried metabolites were dis-
solved in 100μL of acetonitrile/H2O (1 : 1, v/v) and centri-
fuged (13,000 rpm) for 15min. Electrospray ionization was
conducted with an Agilent 1290 Infinity chromatography
system and AB Sciex QTRAP 5500 mass spectrometer.
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NH4COOH (15mM) and acetonitrile were used as mobile
phases A and B, respectively. A binary solvent gradient was
used as follows: A, NH4COOH; B, 0-18min at 90% to 40%
acetonitrile; 18-18.1min at 40% to 90% acetonitrile; and
18.1-23min at 90% acetonitrile. The LCMS/MS was oper-
ated in the negative mode under the following conditions:
source temperature, 450°C; ion source gas 1, 45; ion source
gas 2, 45; curtain gas, 30; and ion spray voltage floating
(ISVF), -4500V. Metabolites from six individual samples
from one group were detected. Metabolomics was performed
by Shanghai Applied Protein Technology Co. Ltd. (Shang-
hai, China).

4.12. Proteomic Profiling of Lysine Acetylation. HUVECs
were seeded in 100mm culture dishes for treatment. After
that, the cells were washed with precooled PBS, lysed, and
collected by urea lysate. The cell lysate was cleaved into pro-
teins by trypsin. The acetylated peptides were enriched using
the PTMScan® Pilot Acetyl-Lysine Motif Kit (Cell Signaling
Technology, Massachusetts, USA). The acetylated lysine
motifs were detected by LC/MS/MS (Nanoflow HPLC:
EASY-nLC1000; Q-Exactive Mass: Thermo Finnigan). The
mass-spectrometric data was analyzed by a quantitative pro-
teomics software MaxQuant. The proteomics was performed
by Shanghai Applied Protein Technology Co. Ltd. (Shang-
hai, China).

4.13. Acetyl-CoA Measurement. The cells were collected into
a centrifuge tube. 5 ∗ 105 cells were dissolved in 100μL
extraction solution. After sonication for 30min on ice, the
extraction solution was centrifuged at 10,000g for 10min
to collect supernatant. The supernatant was placed on ice
to be tested. Acetyl-CoA levels were measured using an Ace-
tyl Coenzyme A Content Assay Kit (BOXBIO, AKFA019U-
2, China) following the manufacturer’s protocol.

4.14. Statistical Analysis. Statistical analysis was performed
by unpaired Student’s t-test for control and treatment com-
parisons or by one-way ANOVA analysis with Bonferroni
post hoc test for multiple comparisons. Statistical analyses
were performed using GraphPad Prism 8.0 (GraphPad Soft-
ware, La Jolla, CA, USA). Results were presented as Mean
± SEM. P value <0.05 was considered to indicate statistically
significant differences.
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