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Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous malignancy with a high inci-
dence and poor prognosis. Exploration of the underlying mechanisms and effective 
prognostic indicators is conducive to clinical management and optimization of treat-
ment. The RNA-seq and clinical phenotype data of HCC were retrieved from The 
Cancer Genome Atlas (TCGA), and differential expression analysis was performed. 
Then, a differential lncRNA-miRNA-mRNA regulatory network was constructed, 
and the key genes were further identified and validated. By integrating this network 
with the online tool-based ceRNA network, an HCC-specific ceRNA network was 
obtained, and lncRNA-miRNA-mRNA regulatory axes were extracted. RNAs asso-
ciated with prognosis were further obtained, and multivariate Cox regression mod-
els were established to identify the prognostic signature and nomogram. As a result, 
198 DElncRNAs, 120 DEmiRNAs, and 2827 DEmRNAs were identified, and 30 
key genes identified from the differential network were enriched in four cancer-re-
lated pathways. Four HCC-specific lncRNA-miRNA-mRNA regulatory axes were 
extracted, and SNHG11, CRNDE, MYLK-AS1, E2F3, and CHEK1 were found to 
be related with HCC prognosis. Multivariate Cox regression analysis identified a 
prognostic signature, comprised of CRNDE, MYLK-AS1, and CHEK1, for overall 
survival (OS) of HCC. A nomogram comprising the prognostic signature and patho-
logical stage was established and showed some net clinical benefits. The AUC of 
the prognostic signature and nomogram for 1-year, 3-year, and 5-year survival was 
0.777 (0.657-0.865), 0.722 (0.640-0.848), and 0.630 (0.528-0.823), and 0.751 (0.664-
0.870), 0.773 (0.707-0.849), and 0.734 (0.638-0.845), respectively. These results pro-
vided clues for the study of potential biomarkers and therapeutic targets for HCC. In 
addition, the obtained 30 key genes and 4 regulatory axes might also help elucidate 
the underlying mechanism of HCC.
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1  |   INTRODUCTION

Liver cancers are the fourth leading cause of cancer-re-
lated death worldwide with a dismal 5-year survival rate.1 
Hepatocellular carcinoma (HCC) is the major type of pri-
mary liver cancers. It typically occurs in patients with un-
derlying liver injury, which is mostly caused by hepatitis B 
or C virus infection or alcohol abuse. An effective prognostic 
assessment of HCC can be conducive to cancer management 
and clinical treatment. Currently, the evaluation of HCC 
prognosis is based mainly on tumor stage, histological grade, 
and serum alpha-fetoprotein. However, considering the het-
erogeneity of HCC, the clinical outcomes of different indi-
viduals may vary greatly. Even among patients with the same 
clinicopathological characteristics, predicting the prognosis 
of HCC only on the basis of clinicopathological features may 
be finite. Consequently, more effective prognostic markers 
at the molecular level are needed. In addition, knowing that 
HCC is among the solid cancers with the fewest somatic mu-
tations that can be targeted with molecular therapies,2 it is 
vital to take molecular markers into account when identifying 
the future promising predictive biomarkers and/or potential 
therapeutic targets.

Long noncoding RNAs (lncRNAs) are important regula-
tors of various biological processes, including abnormal tran-
scriptional regulation in tumors, such as cell proliferation, 
cell apoptosis, and cell cycle regulation.3 A key regulatory 
mechanism for lncRNA is the competitive endogenous RNA 
(ceRNA) hypothesis, that is, ceRNA binds to microRNA 
(miRNA) through microRNA response elements and af-
fects microRNA-induced gene silencing.4 LncRNA has been 
suggested as a potential therapeutic target and biomarker in 
many diseases due to its conserved secondary structure and 
higher tissue and organ specificity.5 Recently, several studies 
have emerged, in which the cancer prognostic signature was 
identified by the analysis of a dysregulated lncRNA-related 
ceRNA regulatory network. For HCC, Bai et al.6 constructed 
a risk score system based on 13 lncRNAs through ceRNA 
network analysis. Liao et al.7 constructed a prognostic sig-
nature using three lncRNAs and six mRNAs by establish-
ing a ceRNA network. Zhang et al.8 identified eight mRNA 
biomarkers through the ceRNA network and constructed a 
predictive model for overall HCC survival. However, at pres-
ent, the construction of a ceRNA network is mainly based 
on nondisease-specific online tools, a majority of which are 
based on binary ceRNA pair. Thus, despite being simple and 
convenient, these studies based on online tools might not be 
reflective of the specific population under study and have 

failed to consider the complex interactions among genes. In 
contrast, gene-regulatory network analysis could provide a 
natural framework to explore the interactions among genes 
and take full account of disease-specific data characteristics. 
In addition, exploring the topological changes in disparate 
biological groups (i.e., differential network analysis) may 
yield new findings and be conducive to the exploration of 
underlying mechanisms of diseases.9 Graphical models are 
common methods of constructing differential networks, 
which can eliminate many indirect and spurious associations 
through conditional independent tests so as to obtain a reli-
able network. However, due to the background noise, some 
false positives may still exist in the data-driven methods.10 
Considering this, integrating the data-driven reconstructed 
network and the prior-driven network from online tools may 
be a desirable alternative to obtain a robust disease-specific 
biologically regulatory network.

In this study, a graphical-model-based approach, which 
has not been applied in ceRNA network construction, was 
used to construct a differential lncRNA-miRNA-mRNA net-
work with TCGA-LIHC data. By using the new strategy of in-
tegrating differential network with online tool-based ceRNA 
network, a robust and reliable HCC-specific lncRNA-miR-
NA-mRNA network was obtained. Then, the HCC-specific 
regulatory axes were extracted, from which, the prognostic 
signature was further identified. The new strategy in this 
study could provide powerful guidance in elucidating ln-
cRNA-mediated underlying regulatory mechanisms and 
identifying potential biomarkers or therapeutic targets for 
HCC. Additionally, the prognostic signature identified from 
the regulatory axes was of more biological significance.

2  |   METHODS

The workflow of the present study is displayed in Figure 1.

2.1  |  RNA-Seq data collection and 
preprocessing

The gene expression RNA-seq data of the GDC TCGA-
LIHC cohort, miRNA mature strand expression RNA-seq 
data of the TCGA-LIHC cohort, and the corresponding 
phenotype data were retrieved from UCSC Xena Browser 
(https://xenab​rowser.net) on April 7, 2020. The gene ex-
pression profiles of 374 HCC and 50 adjacent normal liver 
tissues and the miRNA data of 371 HCC and 49 adjacent 
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normal liver tissues were included in the present study. 
LncRNAs and mRNAs in the expression matrix were anno-
tated and distinguished according to the GTF file (gencode.
v33.annotation.gtf) from GENCODE (https://www.genco​
degen​es.org/). The raw log2 (FPKM +1) RNA expression 
data were transformed into transcripts per million (TPM) 
using the following formula:

2.2  |  Identification of differentially 
expressed RNAs

After excluding RNAs with missing or zero expression val-
ues in more than 80% of samples, differential expression 
analysis was performed between tumor and normal tissues 
using the R package limma. RNAs with |log2 fold change 
(FC)| >1 and adjusted P value <0.05 were considered dif-
ferentially expressed. The corresponding volcano plots and 
heatmaps were visualized using the R package ggplot2 and 
pheatmap, respectively.

2.3  |  Construction of a differential lncRNA-
miRNA-mRNA network with qpgraph

The expression matrixes of DElncRNAs, DEmiRNAs, and 
DEmRNAs were merged by sample ID, and samples that 
failed to match were excluded. Then, 49 normal tissues 
and the corresponding 48 tumor tissues were selected to 
construct a lncRNA-miRNA-mRNA triple network for the 
normal and tumor groups, respectively. The edges that did 
not overlap in the two networks were selected to construct 
the differential network, which was named as data-driven 
ceRNA network. The remaining samples in the merged 
RNA data set (i.e., excluding those used to construct the 
differential network) were matched with the corresponding 
phenotype data and served as a validation set for further 
analysis; duplicate samples and those with incomplete sur-
vival information were deleted.

LncRNA-miRNA-mRNA interactive networks were con-
structed with R/Bioconductor package qpgraph (available at 
http://www.bioco​nduct​or.org). Qpgraph was a comprehen-
sive network analysis method by means of q-order correlation 
graph. By performing conditional independence tests of order 
q, many indirect or spurious relationships could be removed. 
Another advantage of qpgraph was that we can choose to cal-
culate and output only the edges of interest, thus, saving a lot 
of time and computing space.11 In qpgraph, the associations 
between two vertices were measured using the non-rejec-
tion rate (NRR), which was defined as the probability of not 

rejecting the null hypothesis of conditional independent tests 
in a limited number of uniformly randomly selected subsets 
Q, such as 100.12 In this study, q was assumed as 1, 10, 15, 
and 20, and the average NRR was calculated, whose thresh-
old was defined as 0.05. In addition, only lncRNA-miRNA 
interactions and miRNA-mRNA interactions were calculated 
and output.

2.4  |  Functional enrichment and PPI 
network analyses

GO and KEGG pathway enrichment analyses were performed 
for DEmRNAs in the differential network with R/Bioconductor 
package clusterProfiler. GO terms and KEGG pathways with 
a P value <0.01 and a q value <0.05 were considered as sig-
nificantly enriched. Genes in the top 20 significant biological 
process (BP) terms, cellular component (CC) terms, molecular 
function (MF) terms, and all the KEGG pathways were filtered 
to perform PPI network analysis with an online STRING data-
base (https://strin​g-db.org/). Only experiments or co-expression 
gene pairs with a combined score ≥0.9 (the highest confidence) 
were included in the PPI network. Then, the MCODE algo-
rithm was applied to identify the densely connected module 
using Cytoscape plugin MCODE with the threshold parameters 
degree cutoff =4, node score cutoff =0.6, K-core =4, and maxi-
mum depth =100. The key genes in the highly correlated sub-
networks were identified using a Cytoscape plugin CytoNCA 
with centrality analyses methods. The expression and survival 
analyses of the key genes were further performed in the GEPIA 
database (http://gepia.cance​r-pku.cn/).13 The gene mutation 
analysis was performed in cBioPortal (https://www.cbiop​ortal.
org/). To explore the functions and potential molecular mecha-
nisms underlying the identified key genes, gene set enrichment 
analysis (GSEA) was performed using the clusterProfiler pack-
age. After performing 1000 permutations, gene sets with a P 
value <0.05 and a q value <0.05 were considered significantly 
enriched.

2.5  |  Construction of a ceRNA network with 
online tools

The identified DElncRNAs, DEmiRNAs, and DEmRNAs were 
used to construct a ceRNA network based on the hypothesis 
that lncRNAs affected the regulation of miRNAs on mRNAs 
by playing a sponge-like role. The lncRNA-miRNA interac-
tions were predicted using miRcode (http://www.mirco​de.org). 
The target mRNAs of miRNAs were predicted using miRWalk 
(http://mirwa​lk.umm.uni-heide​lberg.de/). Only mRNAs pre-
dicted by three databases miRDB, Targetscan, and miRTarBase 
together were considered as miRNA targets. Then, lncRNA-
miRNA interactions and miRNA-mRNA interactions sharing 
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the same miRNAs were selected to construct a ceRNA network, 
which was named as a prior-driven ceRNA network.

2.6  |  Identification and validation of HCC-
specific ceRNA network

The intersection of prior-driven and data-driven ceRNA net-
works was taken as the HCC-specific ceRNA network, which 
was defined as “hub network” and visualized with R package 
igraph. The expressions, prognostic values and associations 
of interested RNAs in the hub network were evaluated in the 
validation set, GEPIA database and GEO dataset GSE45436 
using Kaplan-Meier (KM) estimate, log-rank (LR) test, 
Spearman correlation analysis, and Wilcoxon rank sum test.

2.7  |  Establishment of the prognostic 
signature and nomogram

Multivariate Cox regression analysis was performed on 
DERNAs with prognostic values to obtain the prognostic 
signature for HCC using R package survival. Then, the risk 
score of every patient was calculated using regression coeffi-
cients, and the samples were divided into high- and low-risk 
groups with the median risk score as a cutoff. The Kaplan-
Meier estimate and LR test were further performed to com-
pare the survival time between the two groups. The C-index 
and time-dependent ROC curve were used to evaluate the 
predictive value of the prognostic signature. Subsequently, 
univariate and multivariate Cox regression analyses were 
performed on the prognostic signature along with the clini-
cal variables. A nomogram was constructed with significant 
clinical characteristics and risk scores for better prediction 
and more convenient clinical application. The clinical and 
prognostic values of the nomogram were evaluated with 
C-index, time-dependent ROC curve, calibration curve, and 
decision curve analysis using R package survival, survival-
ROC, timeROC, rms, and stdca.R function.

3  |   RESULTS

3.1  |  Identification of DElncRNA, 
DEmiRNA, and DEmRNA in HCC

According to the differential expression analysis, 198 DElncRNAs 
(171 upregulated and 27 downregulated), 120 DEmiRNAs (27 
upregulated and 93 downregulated), and 2827 DEmRNAs (2375 
upregulated and 452 downregulated) were identified between the 
tumor and adjacent normal tissues. The distributions and expres-
sion patterns of the DERNAs were displayed using volcano plots 
and heatmaps in Figure 2A-Figure 2C.

3.2  |  Construction of a differential ceRNA 
network and identification of key genes

All the DERNAs were further used to construct a lncRNA-
miRNA-mRNA regulatory network in the tumor and 
normal groups using qpgraph. With the conditional inde-
pendence tests of order q (q = 1, 10, 15, and 20) and av-
erage NRR cutoff of 0.05, 11,024, and 4616 edges were 
identified in the tumor and normal groups, respectively. 
Then, a differential network containing 2654 vertices (194 
DElncRNAs, 120 DEmiRNAs, and 2340 DEmRNAs) was 
constructed with the 15,018 non-overlapping edges be-
tween the two groups (Fig. S1).

GO and KEGG enrichment analyses were performed on 
DEmRNAs involved in the network to explore the biological 
functions of the constructed differential network. With the 
threshold P value <0.01 and q value<0.05, 358 GO terms 
(282 BPs, 53 CCs, and 23 MFs) and 14 KEGG pathways 
were significantly enriched. The most significant BP, CC, 
MF, and KEGG pathway were carboxylic acid biosynthetic 
process (GO: 0046394, p = 9.53e - 14), cytoplasmic vesicle 
lumen (GO: 0060205, p = 5.58e - 14), cofactor binding (GO: 
0048037, p = 1.49e - 08), and biosynthesis of amino acids 
(hsa01230, p  =  7.03e - 07), respectively. Figure 3 displays 
the top 20 GO terms and KEGG pathways, among which 
864 DEmRNAs were used to perform PPI network analysis 
and 1104 edges were output with a PPI enrichment P value 
<1.0e - 16, under the threshold of a combined score ≥0.9. 
Then, MCODE module analysis identified four significantly 
correlated modules, and the top two most significant mod-
ules were used for the subsequent analysis, in which module 
1 (Score =35.611) contained 37 nodes and 641 edges (Fig. 
S2), and module 2 (Score=11.111) contained 28 nodes and 
150 edges (Fig. S3). Next, 19 genes in module 1 and 11 genes 
in module 2 were identified as key genes according to the 
centrality analysis because they ranked at the top in the list 
of all the eight centralities (Subgraph, Degree, Eigenvector, 
Information, LAC, Betweenness, Closeness, and Network). 
They were all upregulated in HCC tumor tissues, and most 
of them were shown to be associated with the overall survival 
and were differentially expressed between tumor and normal 
tissues (matched TCGA normal and GTEx data) according to 
the survival and expression analysis in GEPIA (Table 1). The 
mutation analysis in cBioPortal showed that 178 (48.63%) of 
the 366 TCGA-LIHC patients presented with alterations in 
the 30 genes, and amplification constituted the major muta-
tion type (Fig. S4). GSEA was further performed to explore 
the functions and potential molecular mechanisms of the 30 
key genes. The results showed that they were enriched in four 
KEGG pathways: Ribosome (hsa03010, p = 0.0056), proges-
terone-mediated oocyte maturation (hsa04914, p = 0.0100), 
cellular senescence (hsa04218, p  =  0.0259), and cell cycle 
(hsa04110, p = 0.0315) (Table A1).

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45436
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3.3  |  Construction of a Prior-driven 
ceRNA network

For DElncRNAs, 729 lncRNA-miRNA interactions were 
predicted by miRcode; for DEmiRNAs and DEmRNAs, 
273 miRNA-mRNA interactions were predicted by miR-
Walk. In total, 255 lncRNA-miRNA pairs and 247 miRNA-
mRNA pairs sharing the common miRNAs were selected 
to construct a prior-driven ceRNA network, which included 

27 DElncRNAs, 30 DEmiRNAs, and 182 DEmRNAs (Fig. 
S5).

3.4  |  Construction and validation of an 
HCC-specific ceRNA network

In order to elucidate the lncRNA-miRNA-mRNA regu-
latory mechanism in HCC, we take the intersection of the 

Gene log2 FC
Adjust P 
value

GEPIA2 (Match TCGA normal and 
GTEx data)

Log-rank
P value

HR
(high)

Significance
between T&N

Module 1

RPL10A 1.004600 1.16E−17 0.0500 1.4 --

RPL23 1.064366 4.84E−19 0.0069 1.6 *

RPL23A 1.153929 2.62E−18 0.0011 1.8 *

RPL27 1.158706 2.18E−22 0.0017 1.8 *

RPL30 1.324543 2.85E−24 0.2100 1.2 *

RPL35A 1.080957 2.18E−20 0.0210 1.5 *

RPL36 1.018820 2.42E−15 0.0700 1.4 *

RPL37 1.111796 1.63E−20 0.0330 1.5 *

RPL38 1.306653 1.35E−23 0.0094 1.6 *

RPL8 1.478085 2.17E−21 0.0087 1.6 *

RPS16 1.132487 8.09E−20 0.0330 1.5 *

RPS18 1.191214 6.06E−19 0.0780 1.4 *

RPS2 1.037972 3.96E−16 0.0520 1.4 --

RPS21 1.342644 2.01E−20 0.0370 1.4 *

RPS27 1.200106 7.01E−20 0.0670 1.4 *

RPS27A 1.032179 4.03E−18 0.0021 1.7 --

RPS3 1.049939 1.98E−16 0.0110 1.6 --

RPS7 1.173015 4.07E−24 0.0360 1.5 *

RPS8 1.012328 2.64E−17 0.0050 1.6 --

Module 2

ASPM 1.946575 6.67E−26 0.0006 1.8 *

AURKA 2.542411 9.91E−40 0.0002 1.9 *

AURKB 2.368675 1.76E−28 0.0280 1.5 *

BUB1B 1.707165 2.94E−21 0.0028 1.7 *

CCNA2 2.459235 8.96E−29 0.0037 1.7 *

CCNB1 2.911400 7.41E−38 0.0002 2.0 *

KIF20A 2.225952 2.04E−27 0.0034 1.7 *

MAD2L1 1.480848 5.16E−22 0.0047 1.7 *

NUSAP1 2.297342 1.90E−28 0.0063 1.6 *

TPX2 2.152649 2.70E−22 0.0005 1.9 *

UBE2C 3.373763 2.77E−36 0.0530 1.4 *

Indicated that p < 0.05 between tumor and normal tissues.* 

T A B L E  1   Expression and Survival 
analysis of key genes
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prior-driven ceRNA network and the differential ceRNA 
regulatory network, and an HCC-specific ceRNA network 
was obtained (Fig. 4A). This network consisted of 16 edges 
including nine lncRNA-miRNA pairs and seven miRNA-
mRNA pairs. These comprised four lncRNA-miRNA-
mRNA regulatory axes, namely SNHG11/hsa-miR-199a-5p/
E2F3, CRNDE/hsa-miR-199a-5p/E2F3, MYLK-AS1/hsa-
miR-195-5p/CHEK1, and MYLK-AS1/hsa-miR-195-5p/
RASGEF1B. The eight DERNAs in the four regulatory 
axes were selected for further analysis. Of these, lncRNA 
SNHG11, CRNDE, and MYLK-AS1 were upregulated, and 
miRNA miR-199a-5p and hsa-miR-195-5p were downregu-
lated. Further, mRNA E2F3 and CHEK1 were upregulated 
in the tumor group, which conformed to the ceRNA theory. 
However, mRNA RASGEF1B was downregulated in the 
tumor group, which deserves further investigation (Table 2).

Subsequently, Spearman correlation analysis among the 
eight DERNAs was performed in the validation set. The 
correlation heatmap in Figure 4B showed that SNHG11 and 
CRNDE positively correlated with E2F3; MYLK-AS1 neg-
atively correlated with miR-195-5p and RASGEF1B, and 
positively correlated with CHEK1. Further correlation anal-
ysis using data of HCC tumor samples in GEPIA and GEO 
dataset GSE45436 showed almost the consistent conclusions 
(Fig. 5A and Fig. S6). KM estimate and LR test in the valida-
tion set showed that high expression of SNHG11 [HR(high) 
=1.762, 95% CI: 1.161-2.675], CRNDE [HR(high) =1.555, 
95% CI: 1.032-2.343], MYLK-AS1 [HR(high) =2.079, 95% 
CI: 1.367-3.162], E2F3 [HR(high) =1.716, 95% CI: 1.136-
2.593], and CHEK1 [HR(high) =2.568, 95% CI: 1.677-3.931] 
were risk factors for overall survival time of HCC. Also, the 
survival time was significantly shorter in the high-expression 
group than in the low-expression group (Fig. 6). The sur-
vival analysis in GEPIA had roughly the same conclusions 
except SNHG11 (Fig. S7). The expression analysis among 

major pathological stages in GEPIA showed that E2F3 and 
CHEK1 had differential expression levels among four stages, 
both with lower expression levels in stage IV (Fig. 5B). In 
GSE45436, SNHG11, CRNDE, MYLK-AS1, E2F3, and 
CHEK1 were highly expressed in the tumor group, while 
RASGEF1B was the opposite, which were consistent with 
the results of TCGA (Fig. S8).

3.5  |  Identification of prognostic signatures

In order to construct the prognostic model of HCC, lncRNA 
SNHG11, CRNDE, and MYLK-AS1, and mRNA E2F3 and 
CHEK1, which were significantly associated with the prognosis 
of HCC, were selected to perform multivariate Cox regression 
with the optimal subset strategy. The final model consisting of 
CRNDE, MYLK-AS1, and CHEK1 was established and served 
as a prognostic predictive model of HCC [C-index =0.705 
(95% CI: 0.650 to 0.760), p = 1e-07]. The risk score of every 
patient was calculated using the following formula: risk score 
=0.02083 × Exp(CRNDE) +0.02074 × Exp(MYLK-AS1) 
+0.10721 × Exp(CHEK1), where “Exp” denoted the expres-
sion level of lncRNA normalized by mean. Then, patients were 
further divided into high- and low-risk groups according to the 
median risk score. The KM survival curves demonstrated that 
patients in the high-risk group had significantly poorer out-
comes compared with those in the low-risk group [HR =3.199 
(95%CI: 2.052 to 4.986), p = 6e-08] (Fig. 7A). The time-de-
pendent ROC curve analysis showed that the AUC and 95% 
CI (calculated by 10-fold cross validation) of 1-year, 3-year, 
and 5-year survival predicted by the prognostic signature (risk 
score) was 0.777 (95%CI: 0.657-0.865), 0.722 (95%CI: 0.640-
0.848), and 0.630 (95%CI: 0.528-0.823), respectively, indicat-
ing its effectiveness as a potential prognostic biomarker (Fig. 
9B). The risk heatmap, risk curve and survival state diagram for 
high- and low- risk groups were displayed in Figure 7B, Figure 
7C and Figure 7D, respectively.

Subsequently, the expression levels of the eight RNAs in-
volved in the four regulatory axes between high- and low-risk 
groups and between dead and alive groups were analyzed. 
The results showed that SNHG11, CRNDE, MYLK-AS1, 
E2F3, and CHEK1 were significantly highly expressed in the 
high-risk and dead groups; while miR-195-5p, miR-199a-5p, 
and RASGEF1B were lowly expressed in the high-risk group, 
with no significant difference between dead and alive groups 
(Fig. 8A and 8B).

3.6  |  Construction and evaluation of 
predictive nomogram

Univariate and multivariate Cox regression analyses were 
performed for the clinical characteristics, including age, sex, 

T A B L E  2   DERNAs in the four lncRNA-miRNA-mRNA 
regulatory axes

RNA Log2 FC P value
Adjust P 
value

lncRNA

SNHG11 1.270008 9.28E−23 5.03E−21

CRNDE 1.572058 8.94E−18 1.38E−16

MYLK-AS1 1.032068 2.67E−23 1.56E−21

miRNA

has-miR−195-5p −1.801820 7.72E−24 2.25E−22

has-miR−199a−5p −1.95506 4.28E−11 2.46E−10

mRNA

E2F3 1.070448 5.75E−14 1.97E−13

CHEK1 1.259250 7.16E−22 5.18E−21

RASGEF1B −1.112270 1.83E−15 7.17E−15

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45436
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45436
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body mass index (BMI), family history, pathological stage, 
and histological grade, along with the prognostic signature. 
The pathological stage and prognostic signature were found 
to be independent prognostic factors for the overall survival 
of HCC (Table 3). To gain the clinical practical value, a 
predictive nomogram was established and evaluated using 
the pathological stage and prognostic signature (Fig. 9A). 
The C-index of the nomogram was 0.704 (95% CI: 0.647-
0.761), and the AUC and 95% CI (calculated by 10-fold 
cross validation) of 1-year, 3-year, and 5-year survival was 
0.751 (95% CI: 0.664-0.870), 0.773 (95% CI: 0.707-0.849), 
and 0.734 (95% CI: 0.638-0.845), respectively (Fig. 9C). 
The dynamic AUC curves of the pathological stage, prog-
nostic signature, and nomogram demonstrated the better 
predictive power of the prognostic signature and nomogram 
compared with the pathological stage (Fig. 9D). The cali-
bration curves for the 1-year, 3-year, and 5-year survival 
probability showed good consistency between the predicted 
and actual observations (Fig. 10A). The decision curves of 
1-year, 3-year, and 5-year survival showed that within the 
threshold probability range of approximately 0.05-0.6, 0.3-
0.6, and 0.25-0.75, intervening in the patients would get 
more net benefit than the treat-all- or treat-none-patients 
scheme (Fig. 10B).

4  |   DISCUSSION

HCC is a highly heterogeneous malignancy with a poor prog-
nosis and remains a major public health hazard. An in-depth 
exploration of the underlying mechanisms and identifica-
tion of effective prognostic indicators for HCC are condu-
cive to clinical treatment decisions and patient management. 
Recently, an increasing number of studies have illustrated 
that lncRNA plays critical regulatory roles in HCC through 
lncRNA-miRNA-mRNA axes. CACNA1G-AS1 promoted 
the progression of HCC via competitively binding miR-2392 
and alleviating its inhibition on C1orf61.14 MCM3AP-AS1 
promoted the expression of FOXA1 through targeting miR-
194-5p and thus exerted an oncogenic role in HCC.15 DSCR8 

facilitated the activation of the Wnt/β-catenin signaling path-
way in HCC via the DSCR8/miR-485-5p/FZD7 axis.16 A few 
studies identified HCC-related potential prognostic biomark-
ers via the construction of the ceRNA network.6,17,18 However, 
they were based on online tools that failed to take complex 
interactions among genes or disease-specific data features into 
account. This problem was explored in the present study with 
a new strategy, and an HCC-specific ceRNA network was 
constructed, from which the disease-specific regulatory axes 
were extracted. Then, the prognostic signature and predictive 
nomogram were further established.

The differential ceRNA network was constructed using 
qpgraph, a network reconstruction method that makes full 
use of the disease-specific data to analyze complex interac-
tions among genes. In qpgraph, many indirect and spurious 
associations could be eliminated through conditional inde-
pendent tests. Moreover, it allowed to calculate only inter-
ested edges so as to obtain a relatively concise and reliable 
network.

A total of 30 key genes were obtained from PPI network 
analysis for mRNAs in the top 20 GO terms and KEGG path-
ways of the data-driven differential network. Among them, 
18 ribosomal protein genes were enriched in the ribosomal 
pathway. Besides being important components of ribosomes, 
ribosomal proteins also performed some extra-ribosomal 
functions, including oncogenic, tumor-suppressive, and im-
mune responses.19 For example, RPL8 participated in the 
immune response and promoted tumorigenesis by activating 
NF-κBb;20 RPS3 acted as a tumor suppressor by activating 
p53, activating JNK through TRADD and cooperating with 
E2F1;21–23 and RPS7 played an anticancer role by activat-
ing p53, regulating PI3  K/Akt and MAPK, and stabilizing 
GADD45a.24–26 Besides, some ribosomal proteins performed 
both oncogenic and tumor-suppressive roles. For instance, 
RPL23 functioned through sequestering NPM from Miz1,27 
and RPS27 functioned through inducing ITGB4 and acti-
vating NF-κBb to inhibit tumors;28,29 while both of them 
activated p53 to exert the anti-cancer roles.30,31 Importantly, 
RPL36 and RPS2 were reported to be overexpressed in HCC 
and performing the function of maintaining the synthetic 

Variable

Univariate analysis Multivariate analysis

HR (95% CI) P Value HR (95% CI) P Value

Age 1.019(1.002–1.037) 0.028

Gender 1.381(0.903–2.112) 0.137

BMI 1.003(0.969–1.038) 0.880

Family history 0.945(0.599–1.490) 0.807

Pathological Stage 1.816(1.443–2.286) 3.73E−07 1.677 (1.318–2.132) 2.51E−05

Histological Grade 1.144(0.880–1.487) 0.315

prognosis signature 2.718(1.932–3.825) 9.52E−09 2.281 (1.580–3.293) 1.08E−05

T A B L E  3   Univariate and multivariate 
Cox regression analysis of clinical 
characteristics and lncRNA signature on 
overall survival of HCC
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function and facilitating cell proliferation, respectively.32,33 
Since tumor cells were more sensitive to ribosomal inhibi-
tion compared with normal somatic cells, and anti-ribosome 
biogenesis drugs might be less genotoxic to normal cells,19,34 
these genes could be considered as potential candidates for 
the development of ribosomal targeted therapeutic strategies 

for HCC. Additionally, CCNB1 and CCNA2 were enriched 
in three interacting pathways: progesterone-mediated oocyte 
maturation, cellular senescence, and cell cycle. Cyclin-B-
Cdc2 kinase interacted with the mitogen-activated protein 
(MAP) kinase cascade and participated in the regulation of 
cell cycle progression throughout the oocyte maturation.35 

F I G U R E  1   Workflow of the present study
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F I G U R E  2   Volcano plots and heatmaps for the DERNAs. (A) DElncRNA (B) DEmiRNA (C) DEmRNA

F I G U R E  3   Top 20 GO terms (BP, CC, MF) and KEGG pathways
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Cellular senescence was a highly stable cell cycle arrest, and 
the corresponding cell cycle exit was regulated by activating 
p53/p21CIP1 and p16INK4a/Rb tumor suppressor pathways.36 
Intriguingly, the promoting effect of CCNB1 and CCNA2 
on HCC has been reported in previous studies, whose high 
expression could promote cell proliferation, migration, and 

invasion and was closely related to the poor prognosis of 
HCC.37,38 The important regulatory roles of CCNB1 and 
CCNA2 in HCC might provide new clues for exploring the 
underlying mechanism and potential therapeutic targets of 
HCC. In a word, the analyses about the 30 key genes helped 
to elucidate the underlying mechanisms and prognostic 

F I G U R E  4   (A) Visualization of the HCC-specific ceRNA network. The red, green and yellow nodes denoted miRNA, lncRNA, and mRNA, 
respectively. While size of the circles represented the node degrees. (B) Correlation heatmap for DERNAs in the four lncRNA–miRNA–mRNA 
regulatory axes. The texts in the grid denoted the Spearman correlation coefficients and the corresponding P values.

F I G U R E  5   Validation of the eight DERNAs in the four regulatory axes with GEPIA LIHC tumor samples. (A) Scatter plots for Spearman 
correlation analysis. (B) Expression levels of E2F3 and CHEK1 in different tumor pathological stages
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F I G U R E  6   KM curves and log-rank tests for the eight DERNAs in the validation set

F I G U R E  7   (A) KM curves and log-rank test for patients in the high- and low- risk groups. (B) Risk heatmap of CRNDE, MYLK-AS1 and 
CHEK1 for high- and low- risk groups. (C) Risk curve. (D) Survival state diagram
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biomarkers for HCC from the perspective of biological path-
ways. Actually, it was also a combination of data information 
and biological priori information, which might provide pow-
erful evidences for the further study.

Likewise, an HCC-specific ceRNA network was con-
structed by integrating the prior-driven and data-driven 
ceRNA network, and four HCC-related lncRNA-miR-
NA-mRNA regulatory axes SNHG11/hsa-miR-199a-5p/
E2F3, CRNDE/hsa-miR-199a-5p/E2F3, MYLK-AS1/hsa-
miR-195-5p/CHEK1, and MYLK-AS1/hsa-miR-195-5p/
RASGEF1B were identified. Considering the potential ad-
vantages of molecular marker as a biomarker or therapeutic 
target, DERNAs with prognostic values in the four regulatory 
axes were further selected to construct a multivariate Cox re-
gression model. Finally, CRNDE, MYLK-AS1, and CHEK1 
were identified as the prognostic signature, and patients were 
divided into high- and low-risk groups with significantly dif-
ferent prognostic characteristics. The RNA expression levels 
in the four regulatory axes between high- and low-risk groups 
were further analyzed. SNHG11, CRNDE, MYLK-AS1, 

E2F3, and CHEK1 were found to be significantly highly 
expressed in the high-risk group, while miR-195-5p, miR-
199a-5p, and RASGEF1B were lowly expressed in the high-
risk group, demonstrating the vital roles of the four regulatory 
axes in the prognosis of HCC and the prognostic value of the 
prognostic signature.

SNHG11 was a member of a small nucleolar RNA host 
gene family involved in various tumor progressions, such 
as promoting proliferation and metastasis by targeting the 
Wnt/β-catenin signaling pathway and the Hippo pathway 
in lung cancer and colorectal cancer, respectively.39,40 
In HCC, SNHG11 regulated proliferation, migration, 
apoptosis, and autophagy of cancer cells through a hsa-
miR-184/AGO2 axis.41 Colorectal neoplasia differentially 
expressed (CRNDE) was a newly characterized oncogene 
whose levels were elevated in various human malignan-
cies and associated with clinicopathological features and 
a poor prognosis, such as colorectal cancer, lung cancer, 
breast cancer, hepatocellular carcinoma, and so forth. It 
has been identified as a potential diagnostic and prognostic 

F I G U R E  8   Expressions of the eight DERNAs in (A) high- and low-risk groups, and (B) dead and alive groups
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biomarker in various cancers due to the irreplaceable roles 
and the temporal and tissue-specific expression patterns.42 
CRNDE has been confirmed to promote HCC cell pro-
liferation and growth through overexpression and knock-
down experiments in vitro, and the oncogenic role was 
exerted by regulating PI3 K/Akt/β-catenin signaling path-
way.43 Besides, the oncogenic mechanism of CRNDE in 
HCC also included regulating the expression of NF-κB 
and p-Akt through suppressing miR-384, as well as ac-
tivating the mTOR signaling pathway by regulating the 
phosphorylation level of mTOR and P70S6 K,44,45 etc. In 
the identified HCC-specific ceRNA network, SNHG11 
and CRNDE functioned in HCC through the hsa-miR-
199a-5p/E2F3 signaling pathway. MiR-199a-5p was 
shown to be downregulated and acted as a suppressor of 
the Warburg effect in HCC by targeting a 3’-untranslated 
region (UTR) of hypoxia-inducible factor-1α (HIF-1α) or 
hexokinase 2 (HK2), thereby suppressing glucose uptake 
and consumption, lactate production, and cell growth and 
proliferation.46 E2F3 was a member of the E2F transcrip-
tion factor family, which regulated cellular proliferation 
and differentiation. The overexpression or amplification 
of E2F3 was common in various cancers, and its reduction 

could deter cancer progression.47 The copy number gains 
in E2F3b could induce spontaneous HCC in mice, and 
germ-line loss protected mice against HCC.48 Therefore, 
it can be inferred that SNHG11/hsa-miR-199a-5p/E2F3 
and CRNDE/hsa-miR-199a-5p/E2F3 signaling pathways 
might function through regulating cell proliferation and 
migration in HCC.

MYLK antisense RNA 1 (MYLK-AS1) was found to 
be downregulated in colon adenocarcinoma and upreg-
ulated in HCC.49,50 Recently, MYLK-AS1 has been ver-
ified to promote HCC cell proliferation, migration, and 
invasion by overexpression and knockdown experiments 
in vitro. The mechanism was to regulate the EGFR/
HER2-ERK1/2 signaling pathway.51 In the present study, 
MYLK-AS1 played roles in HCC by regulating CHEK1 
and RASGEF1B through hsa-miR-195-5p. MiR-195 was 
reported to be downregulated in several cancers, and its 
overexpression could inhibit the proliferation and mi-
gration and regulate the G1/S transition of cancer cells 
in non-small cell lung cancer, breast cancer, and hepa-
tocellular carcinoma.52–54 In addition, miR-195-5p also 
acted as an anti-oncogene via targeting PHF19 in HCC.54 
CHEK1 was a serine/threonine-specific protein kinase 

F I G U R E  9   (A) Nomogram constructed by the prognosis signature (risk score) and tumor pathological stage. (B) Time dependent ROC curves 
of 1-year, 3-year and 5-year survival for the prognosis signature. (C) Time dependent ROC curves of 1-year, 3-year and 5-year survival for the 
nomogram. (D) Dynamic AUC curves for the single indicators and nomogram.
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mediating cell cycle arrest in response to DNA damage 
and functioned through the PLK-4/ATR/CHEK1 pathway 
in HCC.55,56 RASGEF1B was a guanine-nucleotide ex-
change factor(GEF) expressed in macrophages under the 
stimulation of Toll-like receptor (TLR) agonists, and could 
mediate innate immune responses triggered during micro-
bial infection.57 No mechanistic studies on RASGEF1B 
and HCC have been performed yet. Nevertheless, it is 
presumed that MYLK-AS1/hsa-miR-195-5p/CHEK1 and 
MYLK-AS1/hsa-miR-195-5p/RASGEF1B regulatory 
axes play important roles in HCC by regulating cell cycle 
and immune response.

The underlying functions and regulatory mechanisms of 
the aforementioned four regulatory axes indicated the po-
tential value of CRNDE, MYLK-AS1, and CHEK1 as prog-
nostic markers. A combination of prognostic signature with 
conventional clinical characteristics might provide better pre-
dictive efficacy compared with a single biomarker. Hence, a 
nomogram was established in this study using the prognostic 
signature along with the tumor pathological stage, which also 
acted as an impact factor on the overall survival of HCC. The 
nomogram showed excellent performance in predicting the 
1-year, 3-year, and 5-year survival rates, and had a good clin-
ical application value.

In summary, the identified 30 key genes functioned in 
HCC through four pathways: ribosomes, progesterone-me-
diated oocyte maturation, cell senescence, and cell cycle. 
The four lncRNA-miRNA-mRNA regulatory axes might 
play vital roles in HCC by regulating cell proliferation, cell 
migration, cell cycle, and immune response. Importantly, 
CRNDE, MYLK-AS1, and CHEK1 were identified as po-
tential prognostic markers for HCC, and the corresponding 
nomogram showed some clinical net benefits. However, this 
study still had some limitations. First, the performance of 
the prognostic signature and nomogram could not be vali-
dated in external independent datasets due to either lack of 
MYLK-AS1 expression data or lack of clinical and survival 
data. Second, the functions and regulatory mechanisms of 
the identified lncRNA-miRNA-mRNA axes in HCC need to 
be further verified by experimental studies.
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T A B L E  A 1   GSEA KEGG pathways for key genes.

ID Description Size ES NES
p 
value

q 
value Core enrichment

hsa03010 Ribosome 19 −1 −3.665 0.006 0.011 RPS21/RPL30/RPL38/RPS27/RPS18/
RPS7/RPL27/RPL23A/RPS16/
RPL37/RPL35A/RPL23/RPS3/RPS2/
RPS27A/RPL36/RPS8/RPL10A

hsa04914 Progesterone-mediated oocyte 
maturation

4 0.804 1.703 0.010 0.011 CCNB1/AURKA/CCNA2

hsa04218 Cellular senescence 2 0.929 1.584 0.026 0.017 CCNB1/CCNA2

hsa04110 Cell cycle 4 0.731 1.548 0.032 0.017 CCNB1/CCNA2/BUB1B/MAD2L1
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