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Abstract: GBM is a high-grade cancer that originates from glial cells and has a poor prognosis.
Although a combination of surgery, radiotherapy, and chemotherapy is prescribed to patients,
GBM is highly resistant to therapies, and surviving cells show increased aggressiveness. In this
study, we investigated the molecular mechanism underlying GBM progression after radiotherapy
by establishing a GBM orthotopic xenograft mouse model. Based on transcriptomic analysis, we
found that the expression of BEX1 and BEX4 was upregulated in GBM cells surviving radiotherapy.
We also found that upregulated expression of BEX1 and BEX4 was involved in the formation of the
filamentous cytoskeleton and altered mechanotransduction, which resulted in the activation of the
YAP/TAZ signaling pathway. BEX1- and BEX4-mediated YAP/TAZ activation enhanced the tumor
formation, growth, and radioresistance of GBM cells. Additionally, latrunculin B inhibited GBM
progression after radiotherapy by suppressing actin polymerization in an orthotopic xenograft mouse
model. Taken together, we suggest the involvement of cytoskeleton formation in radiation-induced
GBM progression and latrunculin B as a GBM radiosensitizer.

Keywords: glioblastoma; actin polymerization; BEX1; BEX4; latrunculin B

1. Introduction

Glioblastoma multiforme (GBM) is a highly advanced brain tumor derived from glial
cells, including oligodendrocytes, astrocytes, and neural stem cells [1]. Surgical removal is
widely performed as a treatment for GBM, followed by radiotherapy and chemotherapy
to eliminate tumor cells in the marginal region of the tumor. However, the prevalence of
high therapeutic resistance and recurrence of GBM prevents complete tumor control and
results in short survival expectancy, with a median survival of about 15 months [2]. As the
recurrence rate of GBM is nearly 100% and the cells show higher resistance to antitumor
therapies, it is necessary to regulate the occurrence of the acquired therapeutic resistance of
GBM [3]. In a previous study, transcriptomic profiles in orthotopically xenografted GBM
cells surviving radiotherapy were analyzed, and a therapeutic strategy to target metabolic
reprogramming was suggested [4]. However, there are still some aspects to be discovered
to overcome GBM resistance.

The brain-expressed X-linked (BEX) family consists of five member genes (from 1 to 5)
commonly located on the X chromosome. The molecular weight of BEXs is approximately
15 kDa, but little is known about their structural characteristics and molecular functions [5].
Since members of the BEX family are also p75 neurotrophin receptor-associated cell death
executors (NADEs), most studies on BEXs have reported their involvement in the regulation
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of apoptosis and some signaling pathways in tumor cells [6,7]. Previous studies have
suggested the oncogenic or tumor-suppressive roles of BEXs, with much controversy.
Additionally, some studies have provided evidence of the involvement of BEXs in various
biological events, such as the regulation of muscle regeneration, neuronal regeneration,
development, and autophagy [8–11]. However, a large portion of the roles of BEXs remain
elusive, and their radiation response has not been reported.

The arrangement of the cytoskeleton significantly affects tumor formation and growth.
In particular, actin filaments, which are formed by the polymerization of globular actin
(G-actin) to filamentous actin (F-actin), determine cell motility and activate signaling
pathways, such as Ca2+, α-catenin/vinculin, and YAP/TAZ, for cellular states [12–14].
Among these, the involvement of YAP/TAZ signaling in mechanotransduction has recently
garnered increasing attention. Yorkie (ortholog of YAP/TAZ) was first found in Drosophila
as an effector of the Hippo signaling pathway, and its role in the maintenance of tissue
homeostasis has been widely studied in mammalian cells. In particular, activated YAP/TAZ
results in elevated tumorigenicity, proliferation, drug resistance, epithelial-to-mesenchymal
transition (EMT), and metastasis in various types of tumor cells with poor prognosis in
patients [15]. However, in glioma, only limited information about the roles of YAP/TAZ in
invasion has been reported.

In this study, we established a GBM orthotopic xenograft mouse model to investigate
the molecular events occurring in surviving GBM cells following radiotherapy. Based on
the result of the transcriptomic analysis, we observed the upregulation of BEX1 and BEX4
expression in post-irradiation GBM cells and discovered downstream molecular events
that account for GBM aggressiveness.

2. Results
2.1. Expression of BEX1 and BEX4 Was Elevated in Radioresistant GBM Cells

GBM cells surviving radiotherapy often show enhanced radioresistance and progres-
sive phenotypes, resulting in poor prognosis in GBM patients. To investigate the underlying
biological events in these GBM cells, we analyzed the molecular changes in GBM cells
following radiotherapy, based on the microarray results of a previous study to screen
differentially expressed genes using radiotherapy [4]. The heatmap in Figure 1A shows
significant differences in gene expression between the two samples, and we observed that
the expression of BEX1 and BEX4 was increased by irradiation. To confirm the microarray
data, we established an orthotopic GBM xenograft mouse model and verified the expres-
sion of BEX1 and BEX4 in the GBM cells surviving radiotherapy (Figure 1B). As shown
in Figure 1C, the increased expression of these two genes was validated by IHC in GBM
tissues from the mouse models. To confirm the involvement of these genes with GBM pro-
gression in patients, we utilized bioinformatics databases to assess the clinical significance
of their expression. According to the firebrowse database, the expression levels of BEX1
and BEX4 were considerably higher in GBM than in other types of cancers, suggesting that
BEX1 and BEX4 may play an important role in GBM progression (Figure 1D). Additionally,
the analysis from GlioVis based on a recent glioma dataset, the Chinese Glioma Genome
Atlas (CGGA), suggested that the expression of BEX1 and BEX4 was significantly different
according to the subtypes (p-value ≤ 0.0001 or 0.0012, respectively, ANOVA) and was the
highest in the proneural subtype (Figure 1E). Next, we analyzed the relationship between
the expression of each gene and GBM patient survival. Although neither BEX1 nor BEX4
expression was significantly related to the survival of patients with GBM (data not shown,
n = 220), a high expression of BEX1 or BEX4 in proneural GBM marginally reduced the
median survival of patients (Figure 1F). However, the roles of BEX1 and BEX4 in survival
in the mesenchymal subtype were opposite to those in the proneural subtype. In summary,
the expression of BEX1 and BEX4 was elevated in radioresistant GBM cells and specifically
involved in proneural-subtype GBMs according to the databases.
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Figure 1. The expression levels of BEX1 and BEX4 were elevated in radioresistant GBM cells. (A) The heatmap of
differentially expressed genes in the ‘neuronal development’ ontological group between control and irradiated GBM
samples. (B) The schematic description of the generation of orthotopic xenograft GBM mouse model and the irradiation
schedule. (C) Immunohistochemistry (anti-BEX1 and anti-BEX4) of coronal sections from mice bearing U87MG xenografts,
control or treated with IR. BEX1 or BEX4 positive cells were quantified by ImageJ (n = 6). Scale bars, 500 µm (upper)
or 100 µm (lower). (D) The differential expression of BEX1 and BEX4 according to the cancer types analyzed with the
firebrowse database. (E) The differential mRNA expression of BEX1 and BEX4 according to the GBM subtypes. The numeric
data were obtained from GlioVis. (F) The differential prognosis of patients with mesenchymal or proneural GBM according
to the mRNA expression of BEX1 and BEX4. The numeric data were obtained from GlioVis. Statistical analysis was
performed with Student’s t-test for (C) and one-way ANOVA plus a Tukey’s multiple comparisons test for (E). * p < 0.05,
** p < 0.01, **** p < 0.0001.
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2.2. BEX1 and BEX4 Enhanced the Progression of GBM

Based on the elevated expression of BEX1 and BEX4 in radioresistant GBM, we in-
vestigated the involvement of the two genes in GBM progression enhanced following
radiotherapy. In representative GBM cell lines, U87MG and U373MG, the delivery of
radiation increased both the mRNA and protein expression of BEX1 and BEX4 in a time-
dependent manner and 24 h after 6 Gy of IR was selected as the optimized condition for
further experiments (Figure 2A,B and Supplementary Figure S1). This result suggested
that radiation itself can cause an elevated expression of BEX1 and BEX4, as shown in
GBM mouse models. Next, to validate the role of the expression of both genes in sur-
vival, proliferation, migration, and invasion, we conducted clonogenic, migration, and
invasion assays upon the treatment of BEX1 or BEX4 siRNA with or without irradiation
(Supplementary Figure S2). As shown in Figure 2C, knockdown of either BEX1 or BEX4
markedly reduced the survival of GBM cells, which was further reduced when combined
with radiation. In the migration assay, radiation significantly increased the migration ability
of GBM cells, and knockdown of BEX1 or BEX4 prevented their migration (Figure 2D).
Furthermore, the differences caused by the knockdown were more significant when com-
bined with irradiation. The results of the invasion assay showed that knockdown of either
BEX1 or BEX4 markedly reduced the invasiveness of GBM cells both with and without
irradiation (Figure 2E). These results validated the finding that radiation increases the
expression of BEX1 and BEX4, leading to increased survival, proliferation, and invasion of
GBM cells, and suggested the importance of the suppression of the two genes to prevent
the acquisition of aggressiveness of GBM.

2.3. BEX1 and BEX4 Modulated GBM Progression through the Regulation of Mechanotransduction

BEX1 was shown to play a significant role in axon regeneration after neuronal damage,
although the molecular mechanism is unknown. Since axon regeneration processes include
the polymerization of microtubules and actin filaments, we hypothesized that alteration in
cytoskeleton formation is mediated by BEX1 and BEX4 to accelerate cytoskeleton-mediated
tumor progression. As shown in Figure 3A, irradiation induced GBM cells to elongate
into a mesenchymal morphology with more branches, while knockdown of BEX1 or BEX4
prevented this and sustained a cobblestone-like morphology after irradiation. Between
the two core cytoskeletal components, microtubules and actin filaments, previous studies
emphasized the primary involvement of actin filaments in morphological changes and
motility of cells [16]. Therefore, we specifically stained filamentous actin (F-actin) with
phalloidin. As shown in Figure 3B, irradiation induced a more rigid and compact formation
of F-actin, while knockdown of BEX1 or BEX4 reduced the formation of F-actin, which
was more remarkable in irradiated GBM cells. Next, we investigated whether F-actin
formation initiated by BEX1 or BEX4 can be relayed to downstream signaling transduction,
so-called mechanotransduction. Among the cellular mechanical transcription factors,
YAP/TAZ has been found to be crucial in tumor progression. First, based on the fact that
the activity of YAP/TAZ is determined by nuclear localization, we assessed the intracellular
localization of the proteins. Irradiation increased the nuclear accumulation of YAP and TAZ,
which was suppressed by the knockdown of BEX1 and BEX4 (Figure 3C). To validate the
activity of YAP and TAZ, the expression of CCN1 and CCN2, representative transcriptional
target genes of YAP/TAZ, was measured. As shown in Figure 3D, radiation significantly
increased the expression of both genes, and knockdown of BEX1 or BEX4 prevented these
effects. The remarkable association among BEX1, BEX4, CCN1, and CCN2 was validated
using the CGGA database. As shown in Figure 3E, proneural-subtype GBM showed
significant correlations in the expression of each pair of genes, supporting the BEX1- and
BEX4-induced transcriptional activity of YAP/TAZ. Therefore, radiation-induced BEX1 and
BEX4 activated mechanotransduction through the formation of F-actin and enhanced the
transcriptional activation of YAP/TAZ through nuclear localization, which was confirmed
using information from the clinical GBM database.
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Figure 2. BEX1 and BEX4 increase migration and invasion of GBM. (A,B) The time- or dose-dependent alterations in the mRNA
and protein expression levels of BEX1 and BEX4 after irradiation in U87MG and U373MG were assessed by qRT-PCR and Western
blot analysis. (C) The proliferation of U87MG and U373MG cells after knockdown of BEX1 or BEX4 with/without irradiation was
assessed by clonogenic assay, and the colonies were counted by openCFU software (n = 3). (D,E) The migration and invasion
ability of U87MG and U373MG cells after knockdown of BEX1 or BEX4 with/without irradiation was assessed by Transwell
migration or invasion assay and quantified by ImageJ (n = 3). Statistical analysis was performed with one-way ANOVA plus a
Tukey’s multiple comparisons test. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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Figure 3. BEX1 and BEX4 modulate GBM progression through regulation of mechanotransduction. (A) The morphological
changes in U87MG after knockdown of BEX1 or BEX4 with/without irradiation were photographed. (B) The formation
of F-actin in U87MG after knockdown of BEX1 or BEX4 with/without irradiation was visualized by phalloidin staining
assay. F-actin was stained green and nucleus was stained blue. (C) The alteration of subcellular localization of YAP or TAZ
in U87MG after knockdown of BEX1 or BEX4 with/without irradiation was visualized by IF. YAP or TAZ was stained
green and nucleus was stained blue. The nuclear localization of YAP or TAZ was quantified by ImageJ (n = 8). (D) The
mRNA expression levels of CCN1 and CCN2 in U87MG after knockdown of BEX1 or BEX4 with/without irradiation were
assessed by qRT-PCR. (E) Pearson’s correlation plots indicating gene expression levels of BEX1, BEX4, CCN1, and CCN2 in
proneural GBM patients from the CGGA database. Pearson’s correlation coefficient (r) and p-values are shown for each
analysis. Statistical analysis was performed with one-way ANOVA plus a Tukey’s multiple comparisons test for (C,D).
* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

2.4. Regulation of F-Actin Polymerization Reduced Radiation-Induced GBM Progression

We observed that the radiation-induced expression of BEX1 and BEX4 led to F-actin
polymerization and the acquisition of migratory and invasive capacities through the
activation of mechanotransduction. We hypothesized that the regulation of F-actin poly-
merization prevents radiation-induced GBM progression and increases therapeutic efficacy.
Latrunculin (Lat) A and B, natural products from marine sponges, reportedly inhibit F-actin
polymerization, and Lat A exerted stronger biological effects than Lat B [17]. Nevertheless,
we adopted Lat B as an alternative regulator of F-actin polymerization in GBM cells be-
cause intracranial injection of Lat A was reported to induce seizures [18]. To determine the
concentration of Lat B for use as an adjuvant radiosensitizer, we screened the biological
effects of Lat B treatment. As shown in Figure 4A, we observed morphological changes at
a concentration of 100 ng/mL. Next, we confirmed that the expression of EMT markers
altered by irradiation was recovered by Lat B treatment to acquire epithelial phenotypes
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in GBM cells (Figure 4B and Supplementary Figure S3). Additionally, aberrant F-actin
polymerization led to a decrease in the transcriptional activity of YAP and TAZ. Lat B
treatment significantly suppressed the expression of CCN1 and CCN2, and the effects of
radiation on the expression were diminished (Figure 4C). In the clonogenic assay, Lat B
treatment reduced colony growth, while the number of colonies did not change (Figure 4D).
In combination with irradiation, Lat B significantly reduced both the number and size
of colonies. In the migration assay, migration was markedly reduced by Lat B treatment,
and the difference was greater in irradiated cells (Figure 4E). The results of the invasion
assay also indicated that Lat B treatment markedly reduced the invasive ability of GBM
cells (Figure 4F). To examine the effects of Lat B in vivo, we orthotopically implanted
U87MG-luciferase-expressing cells (U87MG-luc) in BALB/c nude mice. The mice were
treated with IR alone or IR in combination with Lat B or TMZ 18 days after the orthotopic
xenograft (Figure 4G). Consequently, Lat B significantly extended the average survival of
tumor-bearing mice and was as effective as TMZ, a standard treatment for GBM, in com-
bination with IR (Figure 4H). Furthermore, in vivo bioluminescent imaging showed that
the IR/Lat B combination significantly inhibited tumor growth (Figure 4I). To investigate
the expression and localization of YAP/TAZ in combination with IR/Lat B, we performed
a histological analysis of the brain tissue. As shown in Figure 4J, YAP/TAZ significantly
increased and accumulated in the nucleus following IR, and their levels were rescued
by IR/Lat B combination therapy. In summary, Lat B treatment reversed the infiltrative
ability of GBM cells and improved the survival of GBM-bearing mice after irradiation by
suppressing F-actin cytoskeleton formation (Figure 5).

Figure 4. Cont.
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Figure 4. Regulation of F-actin polymerization reduces radiation-induced GBM progression. (A) The
dose-dependent morphological changes in U87MG after the treatment of Lat B were photographed.
(B) The expression of proteins involved in migration in U87MG and U373MG was assessed by Western
blot analysis upon treatment of Lat B (100 ng/mL), IR (6 Gy), or Lat B with IR. (C) The mRNA expression
levels of CCN1 and CCN2 in U87MG after the treatment of Lat B were assessed by qRT-PCR. * p < 0.05,
** p < 0.01, *** p < 0.001. (D) The proliferation of U87MG cells after the treatment of Lat B was assessed
using a clonogenic assay, and the colonies were counted by openCFU software (n = 3). (E,F) The migration
and invasion ability of U87MG cells after the treatment of Lat B was assessed by Transwell migration or
invasion assay and quantified by ImageJ (n = 3). (G) A schematic diagram of control, IR (2 Gy× 5), IR with
temozolomide (20 mg/kg, intraperitoneal), and IR with Lat B (25 µg/kg, intracranial) treatment in mice
bearing U87MG-luciferase xenografts (n = 20 mice per group). (H) Survival analysis by Kaplan–Meier
curves and log-rank (Mantel–Cox) test of mice bearing U87MG-luciferase xenografts control, treated with
IR, IR with temozolomide, or IR with Lat B. (I) In vivo bioluminescent images of orthotopic xenografts
derived from U87MG-luciferase in control mice, treated with IR, or IR with Lat B. The images were quanti-
fied by the ROI measurement tool from VISQUE Invivo Smart LF software. (J) Immunohistochemistry
(anti-YAP and anti-TAZ) of coronal sections from mice bearing U87MG-luciferase xenografts, control,
treated with IR, or IR with Lat B. The ratio of YAP- or TAZ-nuclear positive cells was quantified by
ImageJ (n = 6). Arrows indicate nuclear accumulation of YAP or TAZ. Statistical analysis was performed
with one-way ANOVA plus a Tukey’s multiple comparisons test. * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001.
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Figure 5. Schematic diagram depicting that inhibition of actin polymerization by latrunculin B
reduces GBM aggressiveness. IR-induced BEX1 and BEX4 lead to actin polymerization, which
localizes YAP/TAZ to nuclear. YAP/TAZ nuclear translocation induces GBM aggressiveness by
activating the downstream target genes.

3. Discussion

Although a variety of biological roles of BEXs have been previously reported, we first
suggested BEX1- and BEX4-mediated cytoskeleton formation and migration in GBM. BEX1
is the most widely investigated member of the BEX family and is involved in myogenesis,
apoptosis, the activation of NF-kB, neuronal homeostasis, and early development, and
BEX4 reportedly regulates apoptosis and aneuploidy [9,19–22]. Among these, the involve-
ment of BEX1 in myogenesis and that of BEX4 in aneuploidy may suggest a biological
relationship with actin filaments and microtubules, respectively. In addition, BEX1 and
BEX4 may regulate the GBM migratory ability in a synergistic manner because cellular
migration is mediated by filopodia formation consisting of actin filaments and micro-
tubules [23]. Furthermore, BEX1- and BEX4-mediated F-actin polymerization was related
to the activation of downstream signaling, providing more direct evidence of their biolog-
ical roles in cytoskeleton regulation. However, biochemical investigations of their roles
have not been performed, and detailed basic research is needed for a better understanding.

Each member of the BEX family has distinct biological effects, even though their
genomic location and sequences are similar to each other. A large number of studies have
reported that BEX2 increases migratory activity and inhibits the apoptosis of tumor cells
by activating JNK and NF-κB signaling [24–26]. BEX3 has the most distinctive functions,
directly interacting with p75NTR to induce apoptosis [27,28]. The molecular functions of
BEX5 have not been well studied. Despite their contributions to tumor progression, the
expression of three genes was not shown to be differentially expressed with radiotherapy
(1.049-fold in BEX2, 1.057-fold in BEX3, and 1.064-fold in BEX5) in the microarray results.
Although we could not rule out their roles in GBM progression, they are not supposed
to be related to acquired GBM aggressiveness after radiotherapy. Conversely, a study
provided evidence that the correlated expression of BEX1 and BEX4 is associated with lung
adenocarcinoma prognosis [29]. Therefore, the differential transcriptional regulation of
each member of the BEX family may determine the involvement and fate of tumor cells.

In this study, we suggest that Lat B inhibits radioresistance acquisition and GBM
progression by suppressing F-actin formation. The significant involvement of cytoskeleton
organization in the migration and invasion of tumor cells has been widely studied. Actin
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filaments, along with microtubules, function as the core cytoskeleton and regulate the
motility of tumor cells through the formation of the principal structure of filopodia [30].
Although the inhibition of cytoskeleton formation could be life-threatening, the use of
inhibitors for F-actin formation, such as jasplakinolide, cytochalasin D, and Lat A, has
previously been identified as a promising strategy to suppress tumor malignancy [31–33].
Given these observations, it has remarkable potential and further studies are needed to
evaluate the safety of Lat B.

Many studies have reported the significant role of YAP/TAZ in tumor progression. As
a major mechanotransductive signaling pathway, the transcriptional activity of YAP/TAZ
determines the mobile characteristics of tumor cells. Although a few studies have been
conducted on GBM cells, some studies have shown that YAP/TAZ signaling pathways
worsen the prognosis of GBM patients [34,35]. In the same context, some studies provided
molecular evidence for the significant involvement of proteins such as transcriptional
co-activators, kinases, and membrane proteins in the promotion of GBM progression via
the activation of the YAP/TAZ signaling pathway [36,37]. In addition, in the studies
covering the GBM subtypes where YAP/TAZ signaling is majorly involved, the proneural
subtype was mainly affected by the YAP/TAZ signaling pathway, while the significance of
classical and mesenchymal subtypes was controversial [37]. Considering the distinctive
involvement of BEX1 and BEX4 expression in the survival of proneural GBM patients, it
suggests the potential clinical relevance of our findings.

4. Materials and Methods
4.1. Chemicals, Antibodies, and Reagents

Latrunculin B was purchased from Cayman Chemicals (Ann Arbor, MI, USA) and
Phalloidin-iFluor 488 reagent (Cytopainter) was purchased from Abcam (Cambridge,
MA, USA). Antibodies specific for BEX1 and BEX4 were purchased from Abcam and those
specific for p-FAK, E-cadherin, N-cadherin, COL5A1, vimentin, YAP, TAZ, and β-actin were
purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Dulbecco’s modified
Eagle’s medium (DMEM), fetal bovine serum (FBS), penicillin, streptomycin, and TRIzol
were obtained from Thermo Fisher Scientific (Waltham, MA, USA). siRNAs specific for
mRNA of BEX1, BEX4, YAP, and TAZ were purchased from Bioneer (Daejeon, Republic of
Korea) (Table S2).

4.2. Cell Culture and Treatment

The human glioblastoma cell lines U87MG and U373MG were cultured as described
in a previous study [38]. Briefly, the cells were cultured in MEM medium supplemented
with 10% FBS and 1% penicillin/streptomycin and kept in an incubator at 37 ◦C with 5%
CO2 and humidity. To assess the effects of treatment, the cells were incubated in serum-free
media 24 h before treatment. The cells with confluence of approximately 70% were used for the
experiments. X-rays were delivered by an X-ray generator M-150WE (Softex, Tokyo, Japan).

4.3. Animal Care Protocol and Orthotopic Xenograft Mouse Model

Following a previous study, six-week-old male BALB/c athymic nude mice (Orient
Bio, Seongnam, Korea) were used to generate a xenograft mouse model [4]. The mice were
housed individually or in groups of up to five in sterile cages and maintained in animal
care facilities in a temperature-regulated room (23 ± 1 ◦C) with a 12 h light–dark cycle.
All animals were fed water and standard mouse chow ad libitum. U87MG-luciferase-
expressing cells were harvested through trypsinization and suspended at a density of
1 × 105 cells/µL in serum-free media. Next, 5 × 105 cells were injected at stereotactic
coordinates of bregma, −1 mm anteroposterior, and +2 mm mediolateral using stereotaxic
injection frame. Eighteen days after the injection date, 5 µL of Lat B dissolved in ethanol
was intracranially injected using the stereotaxic injection frame at the infusion rate of
0.5 µL/min and 5 min of retention time after infusion. After the cranial injection, the
mouse brains were irradiated with 2 Gy/d for five days at a dose rate of 600 MU/min
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using a TrueBeam STx (Varian Medical Systems, Palo Alto, CA, USA). Xenograft growth
was monitored by bioluminescent imaging using a VISQUE Invivo Smart LF (Vieworks,
Anyang, Republic of Korea). Mice were euthanized when they became moribund to the
extent that they were found to be immobile and unresponsive.

4.4. Ethics Statement

The animal protocol used in this study was approved by the Pusan National University
Institutional Animal Care and Use Committee (PNU-IACUC) for ethical procedures and
scientific care (Approval Number PNU-2020-2809) on 2 December 2020.

4.5. Database Analysis

The firebrowse database was used for analyzing the differential expression of BEX1
and BEX4 in various cancer types (accessed on 23 August 2021). The GlioVis tool was
utilized for analyzing the expression of the genes according to GBM subtype and prognosis
of the patients (accessed on 23 August 2021) [39]. The numeric data were obtained from
GlioVis, and graphs were drawn using Prism 5 software (GraphPad Software, San Diego,
CA, USA).

4.6. Immunofluorescence (IF) and Phalloidin Staining Assay

For IF or phalloidin staining, cells were fixed with 4% paraformaldehyde in phosphate-
buffered saline (PBS) for 20 min, permeabilized in ice-cold acetone for 10 min, washed
three times with PBS, and blocked in blocking buffer (0.1% BSA in PBS) for 30 min. Cells
were stained with primary antibody against YAP and TAZ or phalloidin staining solu-
tion overnight at 4 ◦C and washed three times with PBS. After incubation with DyLight
488-conjugated secondary antibodies (Thermo Scientific, Cleveland, OH, USA) and coun-
terstaining with 4,6-diamidino-2-phenylindole, slides were mounted with VECTASHIELD
Hard-Set Mounting Medium (Vector Laboratories, Burlingame, CA, USA). Fluorescent
images were visualized using a Leica DMi 8 fluorescence microscope (Leica, Wetzlar,
Germany). The nuclear localization of YAP and TAZ was quantified using the ImageJ
colocalization plugin and validated by statistical analyses.

4.7. Immunohistochemistry (IHC)

IHC was conducted as described previously [40]. Brain samples were embedded in
paraffin, and tissue sections were prepared using HistoCore AutoCut (Leica, Deerfield,
IL, USA). Next, the sections were treated with 3% hydrogen peroxide/methanol and
with 0.25% pepsin to retrieve antigens. The samples were incubated in blocking solution
(Dako, Carpinteria, CA, USA), and were incubated at 4 ◦C overnight with the primary
antibodies diluted in the antibody diluent (Dako). Then, the sections were washed with
Tris-buffered saline with 0.1% Tween 20 and incubated with a HRP conjugated secondary
antibody (Dako). A 3,3′-diaminobenzidine substrate chromogen system (Dako) was used to
detect antibody binding. Stained sections were visualized with an Olympus IX71 inverted
microscope (Olympus Optical, Tokyo, Japan). The IHC images were quantified by transforming
images into positive/negative pixels using ImageJ and validated by statistical analyses.

4.8. Clonogenic Assay

A clonogenic assay to assess cell viability and proliferation after treatment was per-
formed as described in a previous study [41]. Cells were seeded at a density of 500 cells
in 35-mm dishes, and 24 h later, they were treated with siRNAs for BEX1, BEX4, or Lat B.
After 24 h of treatment, the cells were grown at 37 ◦C in a 5% CO2/95% air atmosphere
for 14 d. Next, the cells were fixed with 10% methanol/10% acetic acid, stained with 1%
crystal violet, and scanned for data acquisition.
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4.9. Total RNA Isolation and qRT-PCR

For mRNA expression assessment, qRT-PCR was performed as described previ-
ously [4]. Briefly, RNA was isolated with TRIzol, following the manufacturer’s instructions,
and real-time qRT-PCR was conducted by using an Applied Biosystems StepOne Real-Time
PCR System (Applied Biosystems, Foster City, CA, USA). It was performed for 40 cycles at
95 ◦C for 15 s and 60 ◦C for 1 min, followed by thermal denaturation. The primer sequences
used are listed in Supplementary Table S1.

4.10. Western Blot Analysis

Protein expression was measured as described previously [42]. Briefly, whole cell
lysates (WCL) were prepared using radioimmunoprecipitation assay (RIPA) lysis buffer
(50 mM Tris, pH 7.4, 150 mM NaCl, 1% Triton X-100, 25 mM NaF, 1 mM dithiothreitol
(DTT), and 20 mM EGTA supplemented with protease inhibitors), and the protein concen-
trations were measured using a Bio-Rad protein assay kit (Bio-Rad Laboratories, Hercules,
CA, USA). Protein samples were subjected to SDS-PAGE, transferred to a nitrocellulose
membrane, and blocked with 5% bovine serum albumin in TBST (10 mM Tris, 100 mM
NaCl, and 0.1% Tween 20). Next, membranes were probed with primary antibodies and
peroxidase-conjugated secondary antibodies (Santa Cruz Biotechnology, Santa Cruz, CA,
USA). The membranes were analyzed using an ECL detection system (Roche Applied
Science, Indianapolis, IN, USA) with iBright chemi-doc fl000 from Thermo Fisher Scientific.

4.11. Transwell Cell Migration/Invasion Assay

Effects of knockdown of BEX1, BEX4, YAP, or TAZ and treatment of Lat B on cell
migration/invasion ability were investigated by Transwell cell migration/invasion assay,
as previously described [43]. Cells (5 × 104 in serum-free MEM medium) were seeded into
the upper chambers of a 24-well Transwell chamber (Corning, Corning, NY, USA) fitted
with a 5-µm pore size insert and treated with siRNA, Lat B, and/or radiation, for 24 h.
Next, the lower chamber was changed into MEM medium containing 2% FBS. After 12 or
24 h, the upper membrane surface was wiped with a cotton swab to remove cells that had
not migrated to the lower side of the membrane. The upper chambers were fixed with 70%
EtOH, stained with 0.05% crystal violet, and photographed using an AXIO microscope
(Carl Zeiss, Oberkochen, Germany). The images of migration and invasion assays were
quantified by counting the number of cells on the underside of the membrane using ImageJ
and validated by statistical analyses.

4.12. Statistical Analysis

All numerical data are presented as the mean ± standard error from at least three
independent experiments. For quantification, the data were analyzed using t-tests or
ANOVA. Prism 5 software was used for all statistical analyses. Statistical significance was
set at p < 0.05.

5. Conclusions

We found that BEX1 and BEX4 induced F-actin polymerization and the activation
of the YAP/TAZ signaling pathway, which led to GBM aggressiveness. As an inhibitor
of the acquired radioresistance and progression of GBM cells, we suggest that Lat B
has experimental significance. The findings that BEX1 and BEX4 mediate cytoskeleton
formation in GBM cells after radiotherapy and treatment with Lat B, a pharmacological
candidate, can overcome acquired GBM aggressiveness may lead to a therapeutic strategy.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22189845/s1, Figure S1: The time- or dose-dependent alterations in the mRNA and
protein expression levels of BEX1 and BEX4 after irradiation in U87MG and U373MG, Figure S2:
Protein levels of BEX1 and BEX4 upon treatment of their corresponding siRNAs in U87MG and
U373MG, Figure S3: The expression of proteins involved in migration in U87MG and U373MG,
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