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Transcranial direct current stimulation for improving 
ambulation after stroke: a systematic review and 
meta-analysis
Hui-Hsun Tiena, Wen-Yu Liub,c, Yi-Lin Chena, Yi-Chen Wud and Hen-Yu Lienb,e    

Achieving a sufficient level of functional ambulation 
remains to be a challenge to most stroke survivors. 
Different modes of transcranial direct current stimulation 
(tDCS) have been applied for improving various aspects 
of walking and mobility following stroke. However, 
systematic reviews before 2017 provided only general 
effects of tDCS on limited walking outcomes. Therefore, 
the aims of this study were to update the evidence of 
tDCS for improving walking and mobility after stroke with 
emphasis on individual outcomes and to delineate the 
effects of different modes of tDCS in subgroup analysis. 
The systematic search of PubMed, Medline, PEDro, 
Scopus, and Cochrane databases for studies published 
up to January 2019 identified 14 eligible reports. The 
PEDro scale indicated a good methodological quality of 
the included studies (score 6.8). The meta-analysis of 
primary outcomes revealed that active tDCS had no better 
effect than sham on walking speed [n = 7, standardized 
mean difference (SMD) = 0.189, P = 0.252] and 6-minute 
walking distance (n = 3, SMD = 0.209, P = 0.453). Among 
the secondary outcomes, significant positive effects were 
found on functional ambulation category (FAC) (n = 5, 
SMD = 0.542, P = 0.008), Rivermead Mobility Index (n = 3, 
SMD = 0.699, P = 0.008), and timed up and go test (TUG) 

(n = 5, SMD = 0.676, P = 0.001), whereas non-significant 
positive effects were found on Tinetti test (n = 3, SMD 
= 0.441, P = 0.062) and Berg Balance Scale (n = 2, SMD 
= 0.408, P = 0.177). In subgroup analyses, anodal tDCS 
had significant positive effects on FAC (n = 4, SMD = 
0.611, P = 0.005) and dual-hemispheric tDCS on TUG (n 
= 2, SMD = 1.090, P = 0.000). The results provide up-to-
date evidence of variable effects of tDCS on walking and 
functional mobility after stroke. International Journal of 
Rehabilitation Research 43: 299–309 Copyright © 2020 
The Author(s). Published by Wolters Kluwer Health, Inc.
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Introduction
Stroke is a leading cause of disability and morbidity asso-
ciated with substantial economic costs for post-stroke care 
(Rajsic et al., 2019). More than 50% of patients with chronic 
stroke live with motor dysfunctions (Charvet et al., 2015). 
Among them, ambulation difficulty has been identified 
as one of the major functional deficits in stroke survivors 
(Winstein et al., 2016). Furthermore, walking with optimal 
velocity and endurance to support functional ambulation 
remains to be a challenge to most of the stroke survivors 
and rehabilitation personnel (Eng and Tang, 2007).

Transcranial direct current stimulation (tDCS), a nonin-
vasive electrical stimulation technique has been exten-
sively investigated for its effects on stroke recovery 
(Bastani and Jaberzadeh, 2012; Elsner et al., 2016; Li et 

al., 2018). The low-intensity current of tDCS is able to 
modulate the membrane potential of cortical neurons 
and to induce long-term potentiation-like plasticity in 
motor cortex (Paulus et al., 2012; Filmer et al., 2014). 
With a single pair of electrodes, tDCS elicits different 
physiological effects depending on its configurations 
over lesioned or non-lesioned sides of the brain (Nitsche 
and Paulus, 2000). To improve motor recovery after 
stroke, tDCS is expected to balance the abnormal inter-
hemispheric interaction, decrease the maladaptive plas-
ticity of the affected brain (Fregni and Pascual-Leone, 
2007), and enhance motor learning during rehabilitation 
(Kang et al., 2016). At large, the effects of anodal and 
cathodal tDCS on motor recovery of the upper extremity 
for stroke patients have been revealed by many system-
atic reviews and meta-analyses (Bastani and Jaberzadeh, 
2012; Tedesco Triccas et al., 2016; Chhatbar et al., 2016). 
However, compared to the evidences available for effects 
of tDCS on the function of upper extremity, evidences 
on the recovery of lower extremity and ambulation abil-
ity are relatively scarce.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:hyl@mail.cgu.edu.tw?subject=


300 International Journal of Rehabilitation Research 2020, Vol 43 No 4

A recent meta-analysis allocating randomized controlled 
trials published before 2017 revealed a significant effect of 
tDCS on improving general mobility but not on walking 
speed and endurance (Li et al., 2018). However, the pos-
itive effect on general mobility was based on analysis of 
pooled outcome measures [timed up and go (TUG) test, 
Tinetti test, and functional ambulatory category (FAC)] 
with diverse measurement properties among studies. 
Moreover, it was not clear which outcome was selected as 
an index of mobility for certain trials with multiple out-
comes. Furthermore, owing to limited number of trials 
available for analysis, some of the effects of tDCS were 
mixed with the effects of transcutaneous spinal direct 
stimulation (tsDCS) (Picelli et al., 2015). Therefore, 
evidences to the effect of tDCS on ambulation ability 
after stroke remain inconclusive and require update. In 
addition, clinicians have adopted dual-hemispheric or 
bihemispheric tDCS more frequently to enhance motor 
recovery after stroke (Lindenberg et al., 2010; Mahmoudi 
et al., 2011). Therefore, the effects of different modes 
of tDCS should be delineated when evidences become 
available. For these reasons, the aims of this study were 
to investigate the effects of tDCS for improving ambula-
tion ability with outcome representing different aspects 
of walking ability and to perform subgroup analysis 
to delineate the effects of different modes of tDCS on 
improving ambulation ability following stroke.

Methods
Literature search strategy
The Preferred Reporting Items for Systematic Reviews 
and Meta-analyses (PRISMA) was used to guide this sys-
tematic review and meta-analysis (Moher et al., 2009). To 
allocate eligible studies published until January 2019, a 
literature search was performed using the following data-
bases: PubMed, Medline, PEDro, Scopus, and Cochrane. 
The key search terms were: (‘transcranial direct current 
stimulation’ or ‘tDCS’) AND (‘stroke[Mesh]’) AND 
(‘gait’ or ‘ambulation’ or ‘locomotion’). Two reviewers 
independently identified the relevant studies according 
to the inclusion and exclusion criteria and progressively 
retrieved the suitable studies.

Selection criteria
The published articles matched the following criteria 
would be included: (1) application of tDCS in patients 
with stroke who were over 18 years of age; (2) outcome 
assessments including gait parameters, walking speed 
and endurance, functional mobility test or questionnaire 
for walking ability and balance; (3) pre-post and rand-
omized controlled clinical study design; (4) active tDCS 
versus sham tDCS and could combine other rehabilita-
tion treatments in two groups; (5) published in English or 
Chinese language. Studies were excluded if: (1) patients 
had other types of neurological or musculoskeletal dis-
eases or subjects were non-human subjects; (2) treatment 
combined other types of stimulation; (3) the articles were 

non-clinical trials including review, case report, edito-
rial comment, and meta-analysis. Two reviewers inde-
pendently screened the studies by reading titles and 
abstracts of the extracted studies. If the abstracts were 
ambiguous and had no sufficient details, reviewers would 
read the full text to make the final decision. Different 
decisions between reviewers were resolved by consensus.

Quality assessment
Quality assessment was conducted by using the 
Physiotherapy Evidence Database (PEDro) scale to 
evaluate the methodological quality of the eligible stud-
ies (Moseley et al., 2002). The PEDro scale consists of 10 
ratings to assess the methodological quality of a clinical 
study. Total PEDro score ranges from 0 to 10. Scores rang-
ing from 10-9, 8-6, and 5-4 on the PEDro scale have been 
considered as ‘excellent’, ‘good’, and ‘fair’ quality. Studies 
scoring below four are considered as ‘poor’ (Foley et al., 
2003). Furthermore, the strength of evidence for the ther-
apeutic measure was assessed according to Guidelines 
for Management of Ischemic, Transient Ischemic and 
Intracranial Hemorrhage from The European Stroke 
Organization (ESO) (European Stroke Organisation 
(ESO) Executive Committee, ESO Writing Committee, 
2008). Two reviewers independently graded the PEDro 
score of the individual studies. Different scores between 
reviewers were resolved by consensus or by discussing 
with the third independent reviewer.

Outcome measures
The effects of tDCS for ambulation were involved in 
extracting the primary and secondary outcomes from eli-
gible studies. The primary outcomes in this meta-analy-
sis were defined as walking speed and endurance. The 
walking speed was derived from 10-Meter Walking Test 
or by other quantitative gait analysis and the walking 
endurance was represented by 6-Minute Walking Test 
(6MWT). The secondary outcomes were related to 
functional mobility and balance assessed by functional 
ambulation category (FAC), Tinetti test [Performance 
Oriented Mobility Assessment (POMA)], Rivermead 
Mobility Index (RMI), TUG test, and Berg Balance Scale 
(BBS) (Salter et al., 2013; Canbek et al., 2013). However, 
if the required data of the outcome measures were una-
vailable even after contacting the corresponding author, 
we would extract the results but not include the data into 
the meta-analysis.

Data extraction
After two reviewers screened the studies according to 
the inclusion/exclusion criteria, the following data and 
descriptive information relevant to the aims of this study 
were extracted: (1) study design; (2) characteristics of the 
study, including the number and age of subjects, stroke 
type, affected side and stroke duration; (3) parameters 
of tDCS and treatment protocols including the mode of 
application, size of electrode, the placement of electrode, 
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current intensity and density; (4) outcomes for both pre- 
and post-treatment in active and sham tDCS groups; (5) 
harm or adverse effects.

Statistical analysis
The meta-analysis was conducted by using comprehen-
sive meta-analysis (ver. 3.0; Biostat, Englewood, New 
Jersey, USA). The standardized mean differences (SMDs) 
derived from changing scores of post- and pre-treatment 
between active and sham tDCS groups were adopted as 
the measure of effect size. The correlation coefficient 
between pre- and post-treatment was inputted (r = 0.7) 
as a conservative estimate according to the recommen-
dation by Rosenthal (1991). For the cross-over study, we 
extracted the data from the first period only (Elbourne et 
al., 2002). In addition, the heterogeneity in outcome was 
tested by the Q statistic and the I2 test. When P values in 
Cochrane’s Q test were less than 0.10 and I2 values were 
greater than 50%, it showed significant heterogeneity and 
a random effect model was adopted to adjust for variance 
(Higgins and Thompson, 2002; Higgins and Green, 2011). 
Otherwise, the fixed-effect model was used. In the sub-
group analysis, the effects of different stimulation modes 
were investigated for the possible post-hoc subgroup 
effect. Studies were grouped into anodal, cathodal, and 
dual-hemispheric tDCS for further analyses. P < 0.05 was 
considered a statistical significance of each meta-analysis.

Results
Identification and selection of studies
After removing the duplicated studies, screening the 
titles, abstracts, and full-text reviewing the 143 studies 
identified through database searching, 14 studies were 
extracted for the final analysis. The PRISMA flow-
chart (Fig. 1) showed the searching and extracting pro-
cess with results. Among the 14 studies included in the 
final analysis, 13 of them were randomized controlled 
trials. Five studies adopted cross-over design (Table 2) 
(van Asseldonk and Boonstra, 2016; Saeys et al., 2015; 
Klomjai et al., 2018; Manji et al., 2018; Utarapichat and 
Kitisomprayoonkul, 2018). However, two of the 14 stud-
ies (Danzl et al., 2013; van Asseldonk and Boonstra, 2016) 
did not reply upon the data request. The data reported by 
Danzl et al. (2013) were marked in figures only and had 
been extracted by a plot digitizer program (Plot Digitizer, 
2015) in a meta-analysis (Li et al., 2018). However, with 
overlapped means and SDs on the figures, we were not 
confident to extract data directly from those figures 
without confirmations from authors (Danzl et al., 2013). 
Therefore, the results of those two studies were excluded 
from the meta-analysis.

Quality assessment of the studies
The PEDro score of the included 14 studies ranged from 
5 to 9 with a mean score of 6.8, which indicated a good 
methodological quality of the included studies (Foley et 

al., 2003). Besides, six of those studies were ranked as 
the highest level of evidence (class I) and all other stud-
ies were ranked as class II by the classification system 
of ESO (European Stroke Organisation (ESO) Executive 
Committee, ESO Writing Committee, 2008). The rating 
of PEDro scale and level of evidence for each study were 
presented in Table 1.

Participants in the included studies
The 14 studies extracted in this review included a total 
of 266 patients with stroke. The stroke duration ranged 
from 16 days to 152.5 months which comprised patients 
from acute to chronic stage of recovery. The major cause 
of stroke was an ischemic type including 199 patients and 
47 patients were the hemorrhagic type. One of the stud-
ies (n = 20) did not provide the information about the 
type of stroke patients (Cha et al., 2014). Overall, a total 
of 248 patients were allocated in the final meta-analysis. 
The characteristics of participants for each study were 
illustrated in Table 2.

Parameters of transcranial direct current stimulation in 
the included studies
The mode of tDCS application was determined by 
arrangement of the position and polarity of the electrodes 
over ipsilesional or/and contralesional side of brain. In 
the included studies, nine studies used anodal tDCS and 
one study used cathodal tDCS, while three studies used 
dual-hemispheric stimulation by putting anode on ipsile-
sional and cathode on contralesional side of brain. The 
placement of electrode in anodal mode was to place the 
anode overlying the motor cortex of the leg area which 
centered on a short distance lateral to Cz or on C3/C4. 
The reference electrode was put on the contralateral 
supraorbital region near Fp1/Fp2 in most of the studies.

Among the included studies, nine used a current inten-
sity of 2 mA, three used 1.5 mA, and two used 1 mA for 
treatment. As for the size of electrode, most of the trials 
used a 35  cm2 sponge electrode as an active electrode 
(Paulus et al., 2012). The current density of tDCS applica-
tions ranged from 0.029 to 0.08 mA/cm2 while 0.057 mA/
cm2 was the most commonly used current density. Eight 
of the included studies did not provide the fade-in and 
fade-out settings of the tDCS. Other studies faded in and 
faded out the current gradually from 5 to 30 seconds. The 
parameters of tDCS application were listed in Table 3.

Treatment programs along with transcranial direct 
current stimulation
In addition to active and sham tDCS, there were six stud-
ies providing additional treatment with tDCS related to 
ambulation training (Table 2). Among them, three stud-
ies used robot-assisted gait training as rehabilitation pro-
grams (Geroin et al., 2011; Leon et al., 2017; Seo et al., 
2017). One study used robotic gait orthosis (RGO) for 
locomotion training (Danzl et al., 2013) and the other 
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studies used either task-related training (Park et al., 2015) 
or body weight-supported treadmill training (Manji et al., 
2018) to treat gait disturbance after stroke. Besides, four 
studies provided tDCS simultaneously during the treat-
ment program (Geroin et al., 2011; Park et al., 2015; Leon 
et al., 2017; Manji et al., 2018) while two studies applied 
tDCS before interventions (Danzl et al., 2013; Seo et al., 
2017).

Adverse events
Among 14 studies, two studies reported some of the 
adverse events associated with tDCS (Leon et al., 2017; 
Klomjai et al., 2018). Among them, with patients in both 
studies reported transitory itching and tingling during 

tDCS. In addition, one subject experienced mild head-
ache after tDCS and resolved without any treatment 
within 24  h (Klomjai et al., 2018). Furthermore, one 
patient was excluded due to mild headache during and 
after stimulation (Leon et al., 2017). According to the 
Common Terminology Criteria for Adverse Events, the 
above results suggested tDCS may cause mild to moder-
ate adverse events (grades 1 and 2) which involved mild 
symptoms with or without medical treatment (Antal et al., 
2017). However, the reports of adverse events were incon-
sistent in the included studies. Five of them reported no 
adverse effect associated with tDCS (Geroin et al., 2011; 
Danzl et al., 2013; Tahtis et al., 2014; Saeys et al., 2015; 
Utarapichat and Kitisomprayoonkul, 2018) while seven 

Fig. 1

The PRISMA flowchart of the searching process.
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studies did not provide such information (Cha et al., 2014; 
Fusco et al., 2014; Chang et al., 2015; Park et al., 2015; van 
Asseldonk and Boonstra, 2016; Seo et al., 2017; Manji et 
al., 2018).

Quantitative data synthesis
Among all of the meta-analysis, the only marginal het-
erogeneity was found on the effect of dual-hemispheric 
tDCS on Tinetti test in subgroup analysis (I2 = 52.065%). 
Therefore, only that effect was analyzed by the random 
effect model and the rest of analyses adopted the fixed 
effect model.

In the analyses of the primary outcomes, active tDCS 
did not improve walking speed [n = 7; SMD: 0.189, 95% 
confidence interval (CI) −0.135 to 0.513, P = 0.252] and 
6MWT (n = 3; SMD: 0.209, 95% CI −0.338 to 0.756, P = 
0.453) better than the sham tDCS (Fig. 2).

In the analyses of the secondary outcomes, significant and 
beneficial effects of active tDCS were found on FAC (n 
= 5; SMD = 0.542, 95% CI 0.142–0.942, P = 0.008), RMI 
(n = 3; SMD = 0.699, 95% CI 0.180–1.219, P = 0.008), 
and TUG (n = 5; SMD = 0.676, 95% CI 0.293–1.058, P = 
0.001). However, the effects on Tinetti test (n = 3; SMD 
= 0.441, 95% CI −0.022 to 0.904, P = 0.062) and BBS (n = 
2; SMD = 0.408, 95% CI −0.184 to 0.999, P = 0.177) were 
both insignificant but in favor of the active tDCS than 
the sham tDCS (Fig. 2).

When the effects of tDCS were further analyzed accord-
ing to the mode of application, significant effects of 
anodal tDCS on FAC (n = 4; SMD = 0.611, 95% CI 0.186–
1.036, P = 0.005) and dual-hemispheric tDCS on TUG (n 
= 2; SMD = 1.090, 95% CI 0.507–1.672, P = 0.000) were 
extracted from subgroup analyses (Fig. 2).

Discussion
In this study, we evaluated the effects of tDCS on the recov-
ery of ambulation ability in patients with stroke. Meta-
analysis on studies with proper design and methodological 
quality revealed positive effects of active tDCS in half of 

the outcomes measuring walking ability (3/6). Essentially, 
FAC, RMI, and TUG improved significantly following 
active tDCS (effect sizes: 0.542–0.687). However, tDCS 
had non-significant effects on walking speed, walking 
endurance (6MWT), and Tinetti test. Yet, all these effects 
were in favor of the active tDCS rather than sham tDCS. 
Similarly, active tDCS could not effectively improve BBS. 
Furthermore, subgroup analyses revealed that, anodal 
tDCS had significant effect on FAC (n = 4; effect size = 
0.611) while dual-hemispheric tDCS improved TUG (n = 
2; effect size = 1.090) significantly (Fig. 2f).

Results of this meta-analysis provide up-to-date evi-
dence that tDCS has the beneficial effects to restore 
walking ability and functional mobility following stroke. 
After stroke, decreased excitability of the motor cortex 
owing to lesion of the affected brain or unbalanced tran-
scallosal inhibition or both have been documented for 
decades (McDonnell and Stinear, 2017). Thus, tDCS was 
expected to balance the excitability between two hem-
ispheres after brain lesion (Fregni and Pascual-Leone, 
2007; Gomez Palacio Schjetnan et al., 2013). The study 
has revealed that unilateral anodal tDCS applied on the 
leg area of the primary motor cortex of the affected hem-
isphere during walking could increase excitability of the 
motor cortex while simultaneously decrease excitability 
of the unaffected side (Jayaram and Stinear, 2009). It is 
feasible to stimulate the leg area of the primary motor 
cortex which is located in the edge of the hemisphere 
and the mesial surface in the median longitudinal fissure 
(Penfield and Boldrey, 1937). In addition, meta-analysis 
showed that tDCS improved muscle strength of lower 
limb in stroke (Li et al., 2018) and increased the activity of 
motor cortex involved in learning (Madhavan and Shah, 
2012). Thus, tDCS was expected to be able to improve 
the walking ability following stroke.

Compared to the most recent meta-analysis on the 
effects of tDCS on walking after stroke (Li et al., 2018) 
which allocated 10 studies (n = 194) published between 
2011 and 2016 into analysis, four of these studies were 
excluded from our analysis owing to that the effect of 

Table 1 PEDro scale for quality assessment and level of evidence by the European Stroke Organization in the included studies

Study 1 2 3 4 5 6 7 8 9 10 11 Total Quality LoE

Geroin et al. (2011) √ √  √   √ √  √ √ 6 Good Class I
Danzl et al. (2013) √ √  √ √  √   √  5 Fair Class II
Cha et al. (2014) √ √      √ √ √ √ 5 Fair Class II
Fusco et al. (2014) √ √  √ √  √   √ √ 6 Good Class II
Tahtis et al. (2014) √ √  √ √  √ √ √ √ √ 8 Good Class I
Chang et al. (2015) √ √  √ √ √ √ √ √ √ √ 9 Excellent Class I
Park et al. (2015) √ √      √ √ √ √ 5 Fair Class II
Saeys et al. (2015) √ √ √ √ √ √ √ √  √ √ 9 Excellent Class I
van Asseldonk and Boonstra (2016) √ √   √ √  √  √ √ 6 Good Class II
Leon et al. (2017) √   √ √ √  √  √ √ 6 Good Class II
Seo et al. (2017) √ √  √ √ √ √ √ √ √ √ 9 Excellent Class I
Klomjai et al. (2018) √ √  √  √ √ √ √ √ √ 8 Good Class I
Manji et al. (2018) √ √  √ √   √ √ √ √ 7 Good Class II
Utarapichat and Kitisomprayoonkul (2018) √ √   √   √ √ √ √ 6 Good Class II

ESO, European Stroke Organization; LoE, level of evidence; PEDro scale, Physiotherapy Evidence Database scale.
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tDCS might be confounded by tsDCS (Picelli et al., 
2015), outcomes did not measure walking ability or 
mobility (Khedr et al., 2013; Montenegro et al., 2016) and 
lack of precise data for analysis (Danzl et al., 2013). In 
contrast, current analysis included five additional stud-
ies published between 2017 and 2018 and provided the 
most up-to-date synthesis of the evidence (12 studies, n 
= 248). Besides, instead of pooling all related measures 
(TUG, Tinetti test, and FAC) into a common category 
of mobility (Li et al., 2018), the current study extracted 
and examined the effects of each mobility measure-
ments. Essentially, analyses revealed that the effect size 
for Tinetti test (SMD = 0.441), walking speed (SMD = 
0.195), and walking endurance (SMD = 0.209) were all 
relatively small and non-significant (Cohen, 1988).

The reason accounting for the small effect size on Tinetti 
test may be that the scale reflects more on balance ability 
than gait or walking performance. Tinetti test comprises 
of a balance subscale (POMA-B) and a gait subscale 
(POMA-G). The balance score of Tinetti test (16/28) 
takes more weight than the gait score (12/28) (Canbek et 
al., 2013). Therefore, Tinetti test may reflect a patient’s 
balance ability better than patient’s gait or walking abil-
ity. Furthermore, according to the previous meta-analy-
ses and our result, tDCS seemed to be less effective on 
improving balance function after stroke (Li et al., 2018; 
Kang et al., 2020). Therefore, we speculated that balance 
ability which depends on the integrated actions of mul-
tiple systems may be difficult to be improved by tDCS 
alone. The same rationale might account for the non-sig-
nificant findings on gait speed and walking endurance 
(6MWT) as well. Balance ability as measured by BBS has 
been identified as the strongest predictor for both 10 m 
and 6 minutes walking in stroke patients (Patterson et al., 
2007). Therefore, when the tDCS could not effectively 
improve balance ability, the capability to improve walk-
ing speed and walking endurance may also be limited.

In subgroup analyses, we found positive effects of the 
unilateral anodal tDCS on FAC (trials = 4) and dual-hem-
ispheric tDCS on TUG (trials = 2). To the best of our 
knowledge, these positive effects were revealed for the 
first time in the literature. From the analysis on FAC, 
when the effect of cathodal tDCS was removed, the effect 
of anodal tDCS remained significant with larger effect 
size (Fig. 2c). Notably, dual-hemispheric tDCS not only 
exerted a larger effect size than unilateral anodal tDCS 
but also was the only significant finding in the subgroup 
analyses on TUG (Fig.  2f). Previous study has demon-
strated that dual-hemispheric tDCS could increase excit-
ability in the ipsilesional hemisphere, reduce cortical 
excitability in the contralesional hemisphere and reduce 
the transcallosal inhibition from the contralesional hem-
isphere simultaneously in stroke patients (Bolognini et 
al., 2011). Therefore, dual-hemispheric tDCS has been 
expected to improve gait or motor performance of lower Ta
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Fig. 2

(Continued)
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extremity in stroke patients better than unilateral tDCS 
(van Asseldonk and Boonstra, 2016). From our review 
and subgroup analyses, four studies have examined 
the effects of dual-hemispheric tDCS on gait-related 

outcomes after stroke. However, due to unavailable 
of research data (van Asseldonk and Boonstra, 2016) 
and limited outcomes adopted by studies, only the 
effects on TUG and Tinetti test could be extracted. In 

Fig. 2 (continued)

Forest plots for primary and secondary outcomes with subgroup analyses of mode application (a) gait speed, (b) six-minute walking test, (c) func-
tional ambulation category, (d) Tinetti test, (e) Rivermead Mobility Index, (f) timed up and go test, (g) Berg Balance Scale. CI, confidence interval; 
Std diff in means, standard difference in means. *Anode tDCS used the fixed-effect model while dual-hemispheric tDCS used the random effect 
model. #Data without subgroup analysis.
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contrast, dual-hemispheric tDCS not only significantly 
improved TUG but also exerted larger effect size (SMD 
= 1.090) than anodal tDCS. It is of interest to know that 
Klomjai et al. (2018) did not find a significant effect of 
dual-hemispheric-tDCS on TUG (P = 0.883). However, 
with statistical synthesis of two studies, the effect of 
dual-hemispheric tDCS on TUG became evident (Tahtis 
et al., 2014; Klomjai et al., 2018). In addition, a strong neg-
ative association had been identified between TUG score 
and the maximal torque generated by gastrocnemius (r 
= −0.86) in people with chronic stroke (Ng and Hui-
Chan, 2005). Thus, when tDCS was found to effectively 
improve muscle strength of lower limb in stroke patients 
(Li et al., 2018), performance of TUG may be enhanced 
by tDCS as well. Based on these findings, current results 
support in part that dual-hemispheric tDCS may have 
its unique contribution in promoting walking ability in 
stroke patients. Finally, in the included studies, only 
Fusco et al. (2014) have examined the effect of cathodal 
tDCS on gait and walking-related performances after 
stroke. Therefore, none of effects could be extracted for 
cathodal tDCS from our analysis.

This systematic review and meta-analysis provides 
up-to-date evidences on the effects of tDCS. However, 
the results should be interpreted with caution under fol-
lowing limitations. First, studies published in languages 
other than English and Chinese were not included. 
Second, two of the included studies did not provide the 
data for quantitative evidence synthesis. Third, to extract 
the effects for each outcome related to walking ability 
and different modes of tDCS, the subgroup analyses 
were limited by the small trial number. Fourth, some of 
the included studies explored the immediate effects of 
tDCS with only one session of treatment (Tahtis et al., 
2014; van Asseldonk and Boonstra, 2016; Klomjai et al., 
2018; Utarapichat and Kitisomprayoonkul, 2018), effects 
revealed by current study may be contributed by single 
as well as multiple sessions of tDCS. Finally, the publi-
cation bias should be considered as a positive result and 
future research should be more representative.

Conclusion
In conclusion, this meta-analysis suggests that tDCS 
improves walking ability with an exception of walk-
ing speed and endurance in patients with stroke. Both 
anodal and dual-hemispheric tDCS exert positive effects 
on promoting walking-related performances after stroke. 
However, difficulty in improving balance performance by 
tDCS may limit the effects of tDCS on walking speed 
and/or walking endurance.
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