Transcranial direct current stimulation for improving ambulation after stroke: a systematic review and meta-analysis

Hui-Hsun Tien^a, Wen-Yu Liu^{b,c}, Yi-Lin Chen^a, Yi-Chen Wu^d and Hen-Yu Lien^{b,e}

Achieving a sufficient level of functional ambulation remains to be a challenge to most stroke survivors. Different modes of transcranial direct current stimulation (tDCS) have been applied for improving various aspects of walking and mobility following stroke. However, systematic reviews before 2017 provided only general effects of tDCS on limited walking outcomes. Therefore, the aims of this study were to update the evidence of tDCS for improving walking and mobility after stroke with emphasis on individual outcomes and to delineate the effects of different modes of tDCS in subgroup analysis. The systematic search of PubMed, Medline, PEDro, Scopus, and Cochrane databases for studies published up to January 2019 identified 14 eligible reports. The PEDro scale indicated a good methodological quality of the included studies (score 6.8). The meta-analysis of primary outcomes revealed that active tDCS had no better effect than sham on walking speed [n = 7, standardized]mean difference (SMD) = 0.189, P = 0.252] and 6-minute walking distance (n = 3, SMD = 0.209, P = 0.453). Among the secondary outcomes, significant positive effects were found on functional ambulation category (FAC) (n = 5,SMD = 0.542, P = 0.008), Rivermead Mobility Index (n = 3, SMD = 0.699, P = 0.008), and timed up and go test (TUG)

Introduction

Stroke is a leading cause of disability and morbidity associated with substantial economic costs for post-stroke care (Rajsic *et al.*, 2019). More than 50% of patients with chronic stroke live with motor dysfunctions (Charvet *et al.*, 2015). Among them, ambulation difficulty has been identified as one of the major functional deficits in stroke survivors (Winstein *et al.*, 2016). Furthermore, walking with optimal velocity and endurance to support functional ambulation remains to be a challenge to most of the stroke survivors and rehabilitation personnel (Eng and Tang, 2007).

Transcranial direct current stimulation (tDCS), a noninvasive electrical stimulation technique has been extensively investigated for its effects on stroke recovery (Bastani and Jaberzadeh, 2012; Elsner *et al.*, 2016; Li *et* (n = 5, SMD = 0.676, P = 0.001), whereas non-significant positive effects were found on Tinetti test (n = 3, SMD = 0.441, P = 0.062) and Berg Balance Scale (n = 2, SMD = 0.408, P = 0.177). In subgroup analyses, anodal tDCS had significant positive effects on FAC (n = 4, SMD = 0.611, P = 0.005) and dual-hemispheric tDCS on TUG (n = 2, SMD = 1.090, P = 0.000). The results provide up-todate evidence of variable effects of tDCS on walking and functional mobility after stroke. *International Journal of Rehabilitation Research* 43: 299–309 Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc.

International Journal of Rehabilitation Research 2020, 43:299-309

Keywords: ambulation, meta-analysis, rehabilitation, stroke, transcranial direct current stimulation

^aDepartment of Physical Therapy, Far Eastern Memorial Hospital, New Taipei City, ^bSchool of Physical Therapy, College of Medicine, Chang Gung University, Taoyuan City, ^cDepartment of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital-Linkao Branch, Taoyuan City, ^dCardiac Rehabilitation Center, Cheng Hsin General Hospital, Taipei and ^cDepartment of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital-Taoyuan Branch, Taoyuan City, Taiwan

Correspondence to Dr. Hen-Yu Lien, School of Physical Therapy, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City 33302, Taiwan (R.O.C.)

Tel: +886 920359331; e-mail: hyl@mail.cgu.edu.tw

Received 26 November 2019 Accepted 16 June 2020

al., 2018). The low-intensity current of tDCS is able to modulate the membrane potential of cortical neurons and to induce long-term potentiation-like plasticity in motor cortex (Paulus et al., 2012; Filmer et al., 2014). With a single pair of electrodes, tDCS elicits different physiological effects depending on its configurations over lesioned or non-lesioned sides of the brain (Nitsche and Paulus, 2000). To improve motor recovery after stroke, tDCS is expected to balance the abnormal interhemispheric interaction, decrease the maladaptive plasticity of the affected brain (Fregni and Pascual-Leone, 2007), and enhance motor learning during rehabilitation (Kang et al., 2016). At large, the effects of anodal and cathodal tDCS on motor recovery of the upper extremity for stroke patients have been revealed by many systematic reviews and meta-analyses (Bastani and Jaberzadeh, 2012; Tedesco Triccas et al., 2016; Chhatbar et al., 2016). However, compared to the evidences available for effects of tDCS on the function of upper extremity, evidences on the recovery of lower extremity and ambulation ability are relatively scarce.

This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

A recent meta-analysis allocating randomized controlled trials published before 2017 revealed a significant effect of tDCS on improving general mobility but not on walking speed and endurance (Li et al., 2018). However, the positive effect on general mobility was based on analysis of pooled outcome measures [timed up and go (TUG) test, Tinetti test, and functional ambulatory category (FAC)] with diverse measurement properties among studies. Moreover, it was not clear which outcome was selected as an index of mobility for certain trials with multiple outcomes. Furthermore, owing to limited number of trials available for analysis, some of the effects of tDCS were mixed with the effects of transcutaneous spinal direct stimulation (tsDCS) (Picelli et al., 2015). Therefore, evidences to the effect of tDCS on ambulation ability after stroke remain inconclusive and require update. In addition, clinicians have adopted dual-hemispheric or bihemispheric tDCS more frequently to enhance motor recovery after stroke (Lindenberg et al., 2010; Mahmoudi et al., 2011). Therefore, the effects of different modes of tDCS should be delineated when evidences become available. For these reasons, the aims of this study were to investigate the effects of tDCS for improving ambulation ability with outcome representing different aspects of walking ability and to perform subgroup analysis to delineate the effects of different modes of tDCS on improving ambulation ability following stroke.

Methods

Literature search strategy

The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) was used to guide this systematic review and meta-analysis (Moher *et al.*, 2009). To allocate eligible studies published until January 2019, a literature search was performed using the following databases: PubMed, Medline, PEDro, Scopus, and Cochrane. The key search terms were: ('transcranial direct current stimulation' or 'tDCS') AND ('stroke[Mesh]') AND ('gait' or 'ambulation' or 'locomotion'). Two reviewers independently identified the relevant studies according to the inclusion and exclusion criteria and progressively retrieved the suitable studies.

Selection criteria

The published articles matched the following criteria would be included: (1) application of tDCS in patients with stroke who were over 18 years of age; (2) outcome assessments including gait parameters, walking speed and endurance, functional mobility test or questionnaire for walking ability and balance; (3) pre-post and randomized controlled clinical study design; (4) active tDCS versus sham tDCS and could combine other rehabilitation treatments in two groups; (5) published in English or Chinese language. Studies were excluded if: (1) patients had other types of neurological or musculoskeletal diseases or subjects were non-human subjects; (2) treatment combined other types of stimulation; (3) the articles were non-clinical trials including review, case report, editorial comment, and meta-analysis. Two reviewers independently screened the studies by reading titles and abstracts of the extracted studies. If the abstracts were ambiguous and had no sufficient details, reviewers would read the full text to make the final decision. Different decisions between reviewers were resolved by consensus.

Quality assessment

Quality assessment was conducted by using the Physiotherapy Evidence Database (PEDro) scale to evaluate the methodological quality of the eligible studies (Moseley et al., 2002). The PEDro scale consists of 10 ratings to assess the methodological quality of a clinical study. Total PEDro score ranges from 0 to 10. Scores ranging from 10-9, 8-6, and 5-4 on the PEDro scale have been considered as 'excellent', 'good', and 'fair' quality. Studies scoring below four are considered as 'poor' (Foley et al., 2003). Furthermore, the strength of evidence for the therapeutic measure was assessed according to Guidelines for Management of Ischemic, Transient Ischemic and Intracranial Hemorrhage from The European Stroke Organization (ESO) (European Stroke Organisation (ESO) Executive Committee, ESO Writing Committee, 2008). Two reviewers independently graded the PEDro score of the individual studies. Different scores between reviewers were resolved by consensus or by discussing with the third independent reviewer.

Outcome measures

The effects of tDCS for ambulation were involved in extracting the primary and secondary outcomes from eligible studies. The primary outcomes in this meta-analysis were defined as walking speed and endurance. The walking speed was derived from 10-Meter Walking Test or by other quantitative gait analysis and the walking endurance was represented by 6-Minute Walking Test (6MWT). The secondary outcomes were related to functional mobility and balance assessed by functional ambulation category (FAC), Tinetti test [Performance Oriented Mobility Assessment (POMA)], Rivermead Mobility Index (RMI), TUG test, and Berg Balance Scale (BBS) (Salter et al., 2013; Canbek et al., 2013). However, if the required data of the outcome measures were unavailable even after contacting the corresponding author, we would extract the results but not include the data into the meta-analysis.

Data extraction

After two reviewers screened the studies according to the inclusion/exclusion criteria, the following data and descriptive information relevant to the aims of this study were extracted: (1) study design; (2) characteristics of the study, including the number and age of subjects, stroke type, affected side and stroke duration; (3) parameters of tDCS and treatment protocols including the mode of application, size of electrode, the placement of electrode, current intensity and density; (4) outcomes for both preand post-treatment in active and sham tDCS groups; (5) harm or adverse effects.

Statistical analysis

The meta-analysis was conducted by using comprehensive meta-analysis (ver. 3.0; Biostat, Englewood, New Jersey, USA). The standardized mean differences (SMDs) derived from changing scores of post- and pre-treatment between active and sham tDCS groups were adopted as the measure of effect size. The correlation coefficient between pre- and post-treatment was inputted (r = 0.7)as a conservative estimate according to the recommendation by Rosenthal (1991). For the cross-over study, we extracted the data from the first period only (Elbourne et al., 2002). In addition, the heterogeneity in outcome was tested by the Q statistic and the I^2 test. When P values in Cochrane's Q test were less than 0.10 and I^2 values were greater than 50%, it showed significant heterogeneity and a random effect model was adopted to adjust for variance (Higgins and Thompson, 2002; Higgins and Green, 2011). Otherwise, the fixed-effect model was used. In the subgroup analysis, the effects of different stimulation modes were investigated for the possible post-hoc subgroup effect. Studies were grouped into anodal, cathodal, and dual-hemispheric tDCS for further analyses. P < 0.05 was considered a statistical significance of each meta-analysis.

Results

Identification and selection of studies

After removing the duplicated studies, screening the titles, abstracts, and full-text reviewing the 143 studies identified through database searching, 14 studies were extracted for the final analysis. The PRISMA flowchart (Fig. 1) showed the searching and extracting process with results. Among the 14 studies included in the final analysis, 13 of them were randomized controlled trials. Five studies adopted cross-over design (Table 2) (van Asseldonk and Boonstra, 2016; Saeys et al., 2015; Klomjai et al., 2018; Manji et al., 2018; Utarapichat and Kitisomprayoonkul, 2018). However, two of the 14 studies (Danzl et al., 2013; van Asseldonk and Boonstra, 2016) did not reply upon the data request. The data reported by Danzl et al. (2013) were marked in figures only and had been extracted by a plot digitizer program (Plot Digitizer, 2015) in a meta-analysis (Li et al., 2018). However, with overlapped means and SDs on the figures, we were not confident to extract data directly from those figures without confirmations from authors (Danzl et al., 2013). Therefore, the results of those two studies were excluded from the meta-analysis.

Quality assessment of the studies

The PEDro score of the included 14 studies ranged from 5 to 9 with a mean score of 6.8, which indicated a good methodological quality of the included studies (Foley *et*

al., 2003). Besides, six of those studies were ranked as the highest level of evidence (class I) and all other studies were ranked as class II by the classification system of ESO (European Stroke Organisation (ESO) Executive Committee, ESO Writing Committee, 2008). The rating of PEDro scale and level of evidence for each study were presented in Table 1.

Participants in the included studies

The 14 studies extracted in this review included a total of 266 patients with stroke. The stroke duration ranged from 16 days to 152.5 months which comprised patients from acute to chronic stage of recovery. The major cause of stroke was an ischemic type including 199 patients and 47 patients were the hemorrhagic type. One of the studies (n = 20) did not provide the information about the type of stroke patients (Cha *et al.*, 2014). Overall, a total of 248 patients were allocated in the final meta-analysis. The characteristics of participants for each study were illustrated in Table 2.

Parameters of transcranial direct current stimulation in the included studies

The mode of tDCS application was determined by arrangement of the position and polarity of the electrodes over ipsilesional or/and contralesional side of brain. In the included studies, nine studies used anodal tDCS and one study used cathodal tDCS, while three studies used dual-hemispheric stimulation by putting anode on ipsilesional and cathode on contralesional side of brain. The placement of electrode in anodal mode was to place the anode overlying the motor cortex of the leg area which centered on a short distance lateral to Cz or on C3/C4. The reference electrode was put on the contralateral supraorbital region near Fp1/Fp2 in most of the studies.

Among the included studies, nine used a current intensity of 2 mA, three used 1.5 mA, and two used 1 mA for treatment. As for the size of electrode, most of the trials used a 35 cm² sponge electrode as an active electrode (Paulus *et al.*, 2012). The current density of tDCS applications ranged from 0.029 to 0.08 mA/cm² while 0.057 mA/ cm² was the most commonly used current density. Eight of the included studies did not provide the fade-in and fade-out settings of the tDCS. Other studies faded in and faded out the current gradually from 5 to 30 seconds. The parameters of tDCS application were listed in Table 3.

Treatment programs along with transcranial direct current stimulation

In addition to active and sham tDCS, there were six studies providing additional treatment with tDCS related to ambulation training (Table 2). Among them, three studies used robot-assisted gait training as rehabilitation programs (Geroin *et al.*, 2011; Leon *et al.*, 2017; Seo *et al.*, 2017). One study used robotic gait orthosis (RGO) for locomotion training (Danzl *et al.*, 2013) and the other

The PRISMA flowchart of the searching process.

studies used either task-related training (Park *et al.*, 2015) or body weight-supported treadmill training (Manji *et al.*, 2018) to treat gait disturbance after stroke. Besides, four studies provided tDCS simultaneously during the treatment program (Geroin *et al.*, 2011; Park *et al.*, 2015; Leon *et al.*, 2017; Manji *et al.*, 2018) while two studies applied tDCS before interventions (Danzl *et al.*, 2013; Seo *et al.*, 2017).

Adverse events

Among 14 studies, two studies reported some of the adverse events associated with tDCS (Leon *et al.*, 2017; Klomjai *et al.*, 2018). Among them, with patients in both studies reported transitory itching and tingling during

tDCS. In addition, one subject experienced mild headache after tDCS and resolved without any treatment within 24 h (Klomjai *et al.*, 2018). Furthermore, one patient was excluded due to mild headache during and after stimulation (Leon *et al.*, 2017). According to the Common Terminology Criteria for Adverse Events, the above results suggested tDCS may cause mild to moderate adverse events (grades 1 and 2) which involved mild symptoms with or without medical treatment (Antal *et al.*, 2017). However, the reports of adverse events were inconsistent in the included studies. Five of them reported no adverse effect associated with tDCS (Geroin *et al.*, 2011; Danzl *et al.*, 2013; Tahtis *et al.*, 2014; Saeys *et al.*, 2015; Utarapichat and Kitisomprayoonkul, 2018) while seven

Table 1 PEDro scale for quality assessment and level of evidence by the European Stroke Organization in the included studies

Study	1	2	3	4	5	6	7	8	9	10	11	Total	Quality	LoE
Geroin et al. (2011)												6	Good	Class I
Danzl et al. (2013)	\checkmark			\checkmark	\checkmark		\checkmark			\checkmark		5	Fair	Class II
Cha et al. (2014)											\checkmark	5	Fair	Class II
Fusco et al. (2014)				\checkmark	\checkmark						\checkmark	6	Good	Class II
Tahtis et al. (2014)				\checkmark	\checkmark						\checkmark	8	Good	Class I
Chang et al. (2015)	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	9	Excellent	Class I
Park et al. (2015)											\checkmark	5	Fair	Class II
Saevs et al. (2015)			\checkmark	\checkmark	\checkmark	\checkmark					\checkmark	9	Excellent	Class I
van Asseldonk and Boonstra (2016)					\checkmark	\checkmark					\checkmark	6	Good	Class II
Leon et al. (2017)					\checkmark	\checkmark					\checkmark	6	Good	Class II
Seo et al. (2017)					\checkmark	\checkmark	\checkmark				\checkmark	9	Excellent	Class I
Klomjai et al. (2018)	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark				\checkmark	8	Good	Class I
Manji et al. (2018)	\checkmark	\checkmark		\checkmark	\checkmark						\checkmark	7	Good	Class II
Utarapichat and Kitisomprayoonkul (2018)	\checkmark	\checkmark			\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	6	Good	Class II

ESO, European Stroke Organization; LoE, level of evidence; PEDro scale, Physiotherapy Evidence Database scale.

studies did not provide such information (Cha et al., 2014; Fusco et al., 2014; Chang et al., 2015; Park et al., 2015; van Asseldonk and Boonstra, 2016; Seo et al., 2017; Manji et al., 2018).

Quantitative data synthesis

Among all of the meta-analysis, the only marginal heterogeneity was found on the effect of dual-hemispheric tDCS on Tinetti test in subgroup analysis ($I^2 = 52.065\%$). Therefore, only that effect was analyzed by the random effect model and the rest of analyses adopted the fixed effect model.

In the analyses of the primary outcomes, active tDCS did not improve walking speed [n = 7; SMD: 0.189, 95% confidence interval (CI) –0.135 to 0.513, P = 0.252] and 6MWT (n = 3; SMD: 0.209, 95% CI –0.338 to 0.756, P = 0.453) better than the sham tDCS (Fig. 2).

In the analyses of the secondary outcomes, significant and beneficial effects of active tDCS were found on FAC (n = 5; SMD = 0.542, 95% CI 0.142–0.942, P = 0.008), RMI (n = 3; SMD = 0.699, 95% CI 0.180–1.219, P = 0.008), and TUG (n = 5; SMD = 0.676, 95% CI 0.293–1.058, P = 0.001). However, the effects on Tinetti test (n = 3; SMD = 0.441, 95% CI –0.022 to 0.904, P = 0.062) and BBS (n = 2; SMD = 0.408, 95% CI –0.184 to 0.999, P = 0.177) were both insignificant but in favor of the active tDCS than the sham tDCS (Fig. 2).

When the effects of tDCS were further analyzed according to the mode of application, significant effects of anodal tDCS on FAC (n = 4; SMD = 0.611, 95% CI 0.186–1.036, P = 0.005) and dual-hemispheric tDCS on TUG (n = 2; SMD = 1.090, 95% CI 0.507–1.672, P = 0.000) were extracted from subgroup analyses (Fig. 2).

Discussion

In this study, we evaluated the effects of tDCS on the recovery of ambulation ability in patients with stroke. Metaanalysis on studies with proper design and methodological quality revealed positive effects of active tDCS in half of the outcomes measuring walking ability (3/6). Essentially, FAC, RMI, and TUG improved significantly following active tDCS (effect sizes: 0.542–0.687). However, tDCS had non-significant effects on walking speed, walking endurance (6MWT), and Tinetti test. Yet, all these effects were in favor of the active tDCS rather than sham tDCS. Similarly, active tDCS could not effectively improve BBS. Furthermore, subgroup analyses revealed that, anodal tDCS had significant effect on FAC (n = 4; effect size = 0.611) while dual-hemispheric tDCS improved TUG (n = 2; effect size = 1.090) significantly (Fig. 2f).

Results of this meta-analysis provide up-to-date evidence that tDCS has the beneficial effects to restore walking ability and functional mobility following stroke. After stroke, decreased excitability of the motor cortex owing to lesion of the affected brain or unbalanced transcallosal inhibition or both have been documented for decades (McDonnell and Stinear, 2017). Thus, tDCS was expected to balance the excitability between two hemispheres after brain lesion (Fregni and Pascual-Leone, 2007; Gomez Palacio Schjetnan et al., 2013). The study has revealed that unilateral anodal tDCS applied on the leg area of the primary motor cortex of the affected hemisphere during walking could increase excitability of the motor cortex while simultaneously decrease excitability of the unaffected side (Jayaram and Stinear, 2009). It is feasible to stimulate the leg area of the primary motor cortex which is located in the edge of the hemisphere and the mesial surface in the median longitudinal fissure (Penfield and Boldrey, 1937). In addition, meta-analysis showed that tDCS improved muscle strength of lower limb in stroke (Li et al., 2018) and increased the activity of motor cortex involved in learning (Madhavan and Shah, 2012). Thus, tDCS was expected to be able to improve the walking ability following stroke.

Compared to the most recent meta-analysis on the effects of tDCS on walking after stroke (Li *et al.*, 2018) which allocated 10 studies (n = 194) published between 2011 and 2016 into analysis, four of these studies were excluded from our analysis owing to that the effect of

						Intensity		Duration		Current density	
Study ID	UNI/DUAL	Ξ	Ч	Anode	Cathode	(mA)	Size (cm ²)	(min)	Session	(mA/cm ²)	Fade-in/fade-out
Geroin <i>et al.</i> (2011)	NN	۷	I	(leg area) ^a	CSR ^a	1.5	35	7	10	0.043	NA
Danzl et al. (2013)	INN	۲	I	Motor area (leg area) ^a	CSR^{a}	2	A:25/C:35	20	12	0.08/0.057	Fade in and out over first 75 seconds (sham tDCS)
Cha et al. (2014)	INN	۲	I	PMC (C3 or C4)	Forehead ^a	-	35	20	20	0.029	NA
Fusco et al. (2014)	INN	I	O	Noncephalic side ^b	PMC (C3' or C4')	1.5	35	10	10	0.043	Gradually increased and progressively reduced
Tahtis et al. (2014)	DUAL	۲	C	Bilateral MC over 5 mm lateral	ll to Cz (leg area)	2	25	15	-	0.08	Fade in less than 30 seconds (sham tDCS)
Chang et al. (2015)	INN	۲	I	TA area of the PG^a	CSR ^a	2	A:7.07 C:28.26	10	10	0.283/0.071	NA
Park et al. (2015)	INN	۲	I	Cz area of the left PL	Right upper orbit ^a	2	I	15	12	I	NA
Saeys et al. (2015)	DUAL	۲	C	MC (C3 or C4)		1.5	35	20	16	0.043	Fade in for 5 seconds/Fade out last 5 seconds
											(both groups)
van Asseldonk and	INN	∢	I	Hotspot of TA by TMS ^a	CSR^{a}	2	35	10	-	0.057	Fade in for 30 seconds (sham tDCS)
Boonstra (2016)	DUAL	۲	C	Hotspot of TA shifted laterally	1 cm ^a	2	35	10	-	0.057	
Leon et al. (2017)	INN	∢	I	Leg: vertex (Cz)	CSR^{a}	2	35	20	20	0.057	NA
Seo et al. (2017)	INN	۲	I	Lateral to Cz	CSR^{a}	2	35	20	10	0.057	NA
Klomjai <i>et al.</i> (2018)	DUAL	۲	C	Bilateral PMC placed 5 mm la	tteral from vertex (Cz)	2	35	20	-	0.057	NA
Manji <i>et al.</i> (2018)	INN	∢	I	3.5 cm anterior to Cz (SMA)	Inion ^a	-	25	20	7	0.04	NA
Utarapichat and	INN	۲	I	1 cm posterior and lateral to C	Cz CSR ^a	2	10	10	-	0.2	Fade in for 10 seconds/fade out for 10 seconds
Kitisomprayoonkul (2018)											(both groups)
A appropriate C. C. C.	200+ lebod+	I C		lecional hamischere. CSB cont	tralataral suprachital rad		+ one heric +		eilaeional h	OW on the second	motor cortex: NA not evailable: DG precentral overies
PL. parietal lobe: PMC	נוחסממו ושכיל. D. primary m	otor cr	contra:	alesional nemispriere; COR, cont SMA. supplementary motor area	rralateral supraorbital reg a: TA. tibialis anterior: TM	IION; DUAL, di IS. transcrania	al magnetic stimu	וחט: UNI ulation: UNI	silesional ne. . uni-hemisc	emispriere; ivi U, bheric tDCS.	motor cortex; INA, not available; P.G. precentral gyrus;
^a No description accor	ding to 10/2	0 sys	em.				D				
^b Noncephalic side is l	ocated abov	e the	right s	houlder, contralateral to the elec	ctric circuit of the heart.						
abi exc the isp <i>al.</i> , exp	bu ana stra	exe	ot siz	ing In un isp kn firs wh	nif (6N be and 200 im	abi tip alo	ity. ses im	tak	tha of (P(Th tes	tD 202 model according model according model according accordin accordin according ac

Table 3 Treatment protocol of transcranial direct current stimulation

tDCS might be confounded by tsDCS (Picelli et al., 2015), outcomes did not measure walking ability or mobility (Khedr et al., 2013; Montenegro et al., 2016) and lack of precise data for analysis (Danzl et al., 2013). In contrast, current analysis included five additional studies published between 2017 and 2018 and provided the most up-to-date synthesis of the evidence (12 studies, n = 248). Besides, instead of pooling all related measures (TUG, Tinetti test, and FAC) into a common category of mobility (Li et al., 2018), the current study extracted and examined the effects of each mobility measurements. Essentially, analyses revealed that the effect size for Tinetti test (SMD = 0.441), walking speed (SMD = 0.195), and walking endurance (SMD = 0.209) were all relatively small and non-significant (Cohen, 1988).

The reason accounting for the small effect size on Tinetti test may be that the scale reflects more on balance ability than gait or walking performance. Tinetti test comprises of a balance subscale (POMA-B) and a gait subscale (POMA-G). The balance score of Tinetti test (16/28) takes more weight than the gait score (12/28) (Canbek *et* al., 2013). Therefore, Tinetti test may reflect a patient's balance ability better than patient's gait or walking ability. Furthermore, according to the previous meta-analyses and our result, tDCS seemed to be less effective on improving balance function after stroke (Li et al., 2018; Kang et al., 2020). Therefore, we speculated that balance ability which depends on the integrated actions of multiple systems may be difficult to be improved by tDCS alone. The same rationale might account for the non-significant findings on gait speed and walking endurance (6MWT) as well. Balance ability as measured by BBS has been identified as the strongest predictor for both 10 m and 6 minutes walking in stroke patients (Patterson et al., 2007). Therefore, when the tDCS could not effectively improve balance ability, the capability to improve walking speed and walking endurance may also be limited.

In subgroup analyses, we found positive effects of the unilateral anodal tDCS on FAC (trials = 4) and dual-hemispheric tDCS on TUG (trials = 2). To the best of our knowledge, these positive effects were revealed for the first time in the literature. From the analysis on FAC, when the effect of cathodal tDCS was removed, the effect of anodal tDCS remained significant with larger effect size (Fig. 2c). Notably, dual-hemispheric tDCS not only exerted a larger effect size than unilateral anodal tDCS but also was the only significant finding in the subgroup analyses on TUG (Fig. 2f). Previous study has demonstrated that dual-hemispheric tDCS could increase excitability in the ipsilesional hemisphere, reduce cortical excitability in the contralesional hemisphere and reduce the transcallosal inhibition from the contralesional hemisphere simultaneously in stroke patients (Bolognini et al., 2011). Therefore, dual-hemispheric tDCS has been expected to improve gait or motor performance of lower

Study ID	Study design	Total, N (tDCS/ Sham)	Age (tDCS/Sham)	Stroke duration (tDCS/Sham)	Stroke type, tDCS(I/H)	Stroke type, sham(I/H)	Affected hemisphere (tDCS/Sham)	Additional treatment	Adverse effect	Follow up
Geroin <i>et al.</i> (2011)	RCT	20 (10/10)	63.6 ± 6.7/63.3 ± 6.4	25.7 ± 6.0/26.7 ± 5.1 (m/o)	10/0	10/0	I	RAGT	No harm	After 2 weeks
Danzl et al. (2013)	RCT	8 (4/4)	64.8 土 14.9/70.8 土 11.1	4.8 ± 4.5/3.2 ± 2.7 (m/o)	2/2	4/0	4L/4L	RGO	No harm	After one month
Cha et al. (2014)	RCT	20 (10/10)	59.8 ± 11.4/57.8 ± 9.9	13.8 ± 4.6/14.5 ± 3.6 (m/o)	I	I	4R 6L/5R 5L	I	I	I
Fusco <i>et al.</i> (2014)	RCT	11 (5/6)	56.4 ± 17.2/60.0 ± 8.1	19.01 ± 8.0 (days)	11/0		3R 2L/2R 4L	I	I	After 10 days (1 month
Tahtis <i>et al.</i> (2014)	RCT	14 (7/7)	67.3 土 11.8/56.4 土 12.3	19.7 ± 5.2/25.3 ± 10.9 (days)	2/0	2/0	4R 3L/4R 3L	I	No harm	
Chang et al. (2015)	RCT	24 (12/12)	59.9 ± 10.2/65.8 ± 10.6	16.0 ± 6.2/16.6 ± 5.2 (days)	12/0	12/0	6R 6L/7R 5L	I	I	1
Park et al. (2015)	RCT	16 (8/8)	59.0 ± 6.0/57.7 ± 10.0	23.8 ± 16.2/22.5 ± 14.5 (m/o)	4/4	5/3	3R 5L/4R 4L	TRT	I	I
Saeys et al. (2015)	RCT cross-over design	31 (16/15)	62.00 ± 9.61/64.53 ± 7.23	45.5 ± 21.8/38.4 ± 15.1 (days)	26/5		14R 17L	I	No harm	1
van Asseldonk and	RCT cross-over design	10	58.0 ± 11.7	44.7 ± 37.7 (m/o)	8/2		4R 6L	I	I	After 15 and 45 mins
Boonstra (2016)										
Leon et al. (2017)	Active-control	32 (9/23)	49 土 9/49 土 11	53 ± 25/64 ± 33 (days)	6/3	13/10	33.3%R/52.2%R	RAGT	+3	I
Seo et al. (2017)	RCT	21 (11/10)	62.9 ± 8.9/61.1 ± 8.9	152.5 ± 122.8 / 75.5 ± 83.4	7/3	9/2	8R 2L/5R 6L	RAGT	I	After 4 weeks
				(m/o)						
Klomjai <i>et al.</i> (2018)	RCT cross-over design	19 (10/9)	57.2 ± 2.8	3.2 ± 0.4 (m/o)	19/0		7R 12L	I	+	I
Manji <i>et al.</i> (2018)	RCT cross-over design	30 (15/15)	62.2 ± 10.1/63.7 ± 11.0	134.5 ± 55.7 /149.7 ± 24.2	9/6	8/7	I	BWSTT	I	I
				(days)						
Utarapichat and Kitisomprayoonkul	RCT cross-over design	10 (5/5)	57.1 土 12.2	34.1 ± 18.9 (m/o)	10/0		5R 5L	I	No harm	I
(2018)										
									•	

Table 2 Characteristics of included studies

-, not reported; +¹, Mild headache after tDCS; +², Mild headache during and after tDCS, slight itching; BWSTT, body weight-supported treadmill; H, hemorrhage; I, ischemic; L, left; m/o, month after onset; mins, minutes; R, right; RAGT, robot-assisted gait training; RCT, randomized controlled trial; RGO, robotic gait orthosis; TRT, task-related training.

Study name Statistics for each study Index Immedia Immit Immit <td< th=""><th>July Low Low Low Low Low Low Low Low Low Low</th></td<>	July Low
Nove Std diff Lower Upper Zvalue p-Value node Geroin et al., 2015 0.069 0.721 0.880 0.155 0.847 node Chang et al., 2015 0.180 0.721 0.800 0.721 0.800 0.721 0.800 0.927 0.784 0.795 0.602 0.951 node Leon et al., 2017 0.223 0.597 1.123 0.600 5.548 0.795 0.602 0.951 node Leon et al., 2014 0.388 -0.334 1.111 1.053 0.292 node Manji et al., 2014 0.441 0.760 1.642 0.719 0.472 athode Pusco et al., 2014 0.441 -0.760 1.642 0.719 0.472 verail 0.189 -0.135 0.513 1.145 0.252 ubgroup Ieterogeneity of cathode: Q=0.000; <i>P</i> =0%; <i>p</i> =1.000 Dotal Ieterogeneity of anode: Q=0.637; <i>P</i> =0%; <i>p</i> =1.000 Dotal Ieterogeneity of anode: Q=0.115; <i>P</i> =0%; <i>p</i> =0.735 Immit Immit	Std diff in means and 95% Cl Sham tDCS Active tDCS Std diff in means and 95% Cl Sham tDCS Active tDCS
In means Immet 2-value P-value node Geroin et al., 2011 0.069 0.807 0.946 0.155 0.877 node Chang et al., 2015 0.080 0.721 0.880 0.196 0.845 node Park et al., 2015 0.138 0.844 1.119 0.275 0.784 node Leon et al., 2017 0.263 0.597 1.123 0.600 0.548 node Manji et al., 2018 0.388 -0.334 1.111 1.053 0.292 node Manji et al., 2014 0.441 0.760 1.642 0.719 0.472 athode Fusco et al., 2014 0.441 0.760 1.642 0.719 0.472 verall 0.189 0.135 0.513 1.145 0.252 ubgroup Ieterogeneity of anode: Q=0.000; <i>P=0%; p=0.992</i> est of or overall effect: Z=1.145; <i>p=0.252</i> 0.861 1.123 0.542 0.583 node Geroin et al., 2011 0.243 0.656 1.123 0.542 0.5	Stad diff in means and 95% Cl Sham tDCS Active tDCS
node Genome et al., 2011 Output of 2000 Output of 2010 Output of 20	Std diff in means and 95% Cl Sham tDCS Active tDCS
Note Classify et al., 2015 0.0180 0.0441 0.000 0.7121 0.000 0.784 node Leon et al., 2017 0.024 0.746 0.795 0.062 0.951 node Seo et al., 2017 0.283 0.597 1.123 0.600 0.548 node Manji et al., 2018 0.388 0.334 1.111 1.053 0.292 node Manji et al., 2014 0.441 0.760 1.642 0.719 0.472 verail 0.189 0.135 0.513 1.145 0.252 ubgroup Leterogeneity of cathode: Q=0.637; <i>P=0%</i> ; <i>p=0.986</i> 1.422 0.719 0.472 verail 0.189 0.135 0.513 1.145 0.252 ubgroup Statistics for each study Statistics for each study Statistics for each study Statistics for each study iode Study name Statistics for each study 0.438 0.707 1.703 0.810 0.418 indee Geroin et al., 2011 0.448 0.707	Sham tDCS Active tDCS Std diff in means and 95% Cl Juncols Active tDCS Sham tDCS Active tDCS
Note Parketal, 2015 0.100 0.000 0.100 0.000 0.100 0.000	Sham tDCS Active tDCS Std diff in means and 95% CI Image: Close of the top of top of the top of the top of top
See of al., 2017 0.263 0.597 1.12 0.600 0.648 node Manji et al., 2017 0.263 0.597 1.12 0.600 0.548 node Manji et al., 2018 0.388 0.334 1.111 1.063 0.292 node 0.169 0.169 0.167 0.505 0.987 0.323 athode 0.411 0.760 1.642 0.719 0.472 verail 0.189 0.135 0.513 1.145 0.252 ubgroup eterogeneity of anode: Q=0.000; <i>P=0%; p=0.986</i> eterogeneity of cathode: Q=0.000; <i>P=0%; p=1.000</i> otal itetrogeneity: Q=0.819; <i>P=0%; p=0.992</i> est for overall effect: Z=1.145; <i>p=0.252</i> b) Stud liff Lower Upper in means in means inmit imit Z iode Geroin et al., 2011 0.243 -0.636 1.123 0.542 0.588 node 0.418 athode 0.449 0.668 athode 0.418 40.429 0.668 athode 0.448 0.707 1.703	Sham tDCS Active tDCS Std diff in means and 95% Cl Image: Cl Sham tDCS Active tDCS
Statistics for each study St	Sham tDCS Active tDCS Std diff in means and 95% Cl Job 0.00 1.00 2.00 Sham tDCS Active tDCS Std diff in means and 95% Cl Job 0.00 1.00 2.00 Sham tDCS Active tDCS Active tDCS Active tDCS Sham tDCS Active tDCS Active tDCS Active tDCS Sham tDCS Active tDCS Active tDCS Active tDCS
node 0.169 0.167 0.505 0.987 0.323 athode Fusco et al., 2014 0.441 -0.760 1.642 0.719 0.472 athode 0.441 -0.760 1.642 0.719 0.472 verall 0.189 -0.135 0.513 1.145 0.252 ubgroup eterogeneity of anode: Q=0.637; <i>P</i> =0%; <i>p</i> =0.996 feterogeneity: Q=0.819; <i>P</i> =0%; <i>p</i> =0.992 feterogeneity: Q=0.819; <i>P</i> =0%; <i>p</i> =0.992 feterogeneity: Q=0.819; <i>P</i> =0%; <i>p</i> =0.252 b) Study name Statistics for each study fmmeans fimit fimit Z-Value p-Value node Geroin et al., 2011 0.243 -0.636 1.123 0.542 0.588 node Geroin et al., 2011 0.243 -0.636 1.703 0.810 0.418 athode 0.134 -0.707 1.703 0.810 0.418 verall 0.209 -0.338 0.756 0.750 0.453 ubgroup eterogeneity of anode: Q=0.000; <i>P</i> =0%; <i>p</i> =1.000 feterogeneity of anode: Q=0.000; <i>P</i> =	LOG 1.00 0.00 1.00 2.00 Sham tDCS Active tDCS Std diff in means and 95% Cl Sham tDCS Active tDCS Sham tDCS Active tDCS Sham tDCS Active tDCS Sham tDCS Active tDCS
athode Fusco et al., 2014 0.441 -0.760 1.642 0.719 0.472 athode 0.441 -0.760 1.642 0.719 0.472 verall 0.189 -0.135 0.513 1.145 0.252 verall 0.189 -0.135 0.513 1.145 0.252 verall 0.637; <i>P</i> =0%; <i>p</i> =0.992 5 0.472 0.472 teterogeneity of cathode: Q=0.000; <i>P</i> =0%; <i>p</i> =1.000 5 0.513 1.145 0.252 b) Study name Statistics for each study 5 0.600 0.134 tode Stud diff Lower Upper in means 0.610 0.418 0.418 node Geroin et al., 2011 0.423 -0.636 1.123 0.542 0.588 node See et al., 2011 0.449 -0.707 1.703 0.810 0.418 athode 0.134 -0.479 0.775 0.750 0.453 ubgroup eterogeneity of ande: Q=-0.000; <i>P</i> =0%; <i>p</i> =0.735 eterogeneity of ande: Q=-0.000; <i>P</i> =0%	.2.00 .1.00 0.00 1.00 2.00 Sham tDCS Active tDCS Stid diff in means and 95% CI .2.00 .1.00 0.00 1.00 2.00 .2.00 .1.00 0.00 1.00 2.00 .2.00 .1.00 0.00 1.00 2.00 Sham tDCS Active tDCS Sham tDCS Active tDCS
athode 0.441 0.760 1.642 0.719 0.472 verail 0.189 0.135 0.513 1.145 0.252 ubgroup 0.189 0.135 0.513 1.145 0.252 ubgroup 0.600; <i>P</i> =0%; <i>p</i> =0.986 0.135 0.513 1.145 0.252 ubgroup 0.600; <i>P</i> =0%; <i>p</i> =0.992 0.513 1.145 0.252 2 b) Study name Statistics for each study 0.606 0.134 0.472 0.588 0.071 0.943 node Geroin et al., 2011 0.243 0.636 1.123 0.542 0.588 node Seo et al., 2017 0.031 0.825 0.887 0.071 0.943 node Seo et al., 2011 0.449 0.707 1.703 0.810 0.418 athode 0.498 0.707 1.703 0.810 0.418 ubgroup eterogeneity of anode: Q=0.115; <i>P</i> =0%; <i>p</i> =1.000 0.438 0.756 0.750 0.453 ubgroup	2.00 -1.00 0.00 1.00 2.00 Sham tDCS Active tDCS Std diff in means and 95% Cl Cl Sham tDCS Active tDCS Sham tDCS Active tDCS Sham tDCS Active tDCS
0.189 0.135 0.131 1.145 0.252 ubgroup leterogeneity of anode: Q=0.637; <i>P</i> =0%; <i>p</i> =0.986 leterogeneity of cathode: Q=0.000; <i>P</i> =0%; <i>p</i> =1.000 otal leterogeneity: Q=0.819; <i>P</i> =0%; <i>p</i> =0.992 est for overall effect: Z=1.145; <i>p</i> =0.252 Cover Upper in means Std diff Cover Upper in means 0.432 0.588 0.071 0.943 0.418	-2.00 -1.00 0.00 1.00 2.00 Sham tDCS Active tDCS Std diff in means and 95% Cl -2.00 -1.00 0.00 1.00 2.00 Sham tDCS Active tDCS
ubgroup leterogeneity of anode: Q=0.637; <i>i</i> ² =0%; <i>p</i> =0.986 leterogeneity of cathode: Q=0.0637; <i>i</i> ² =0%; <i>p</i> =1.000 otal leterogeneity: Q=0.819; <i>i</i> ² =0%; <i>p</i> =0.992 est for overall effect: Z=1.145; <i>p</i> =0.252 6MWVT b) 6MWVT roup by tode Study name Statistics for each study in means Very per in means node Geroin et al., 2011 0.243 -0.636 1.123 0.542 0.588 node Geroin et al., 2011 0.243 -0.636 1.23 0.542 0.588 node See et al., 2011 0.243 -0.636 1.703 0.810 0.418 athode 0.134 -0.479 0.748 0.429 0.688 athode Fusco et al., 2014 0.486 -0.707 1.703 0.810 0.418 verall 0.209 -0.338 0.756 0.750 0.453 0.453 ubgroup eterogeneity of anode: Q=0.000; <i>f</i> =0%; <i>p</i> =1.000 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 5	-2.00 -1.00 0.00 1.00 2.00 Sham tDCS Active tDCS Std diff in means and 95% Cl -2.00 -1.00 0.00 1.00 2.00 Sham tDCS Active tDCS
Statistics for each study 0.817 0.703 0.817 0.817 0.817 0.817 0.817 0.817 0.817 0.817 0.817 0.992 0.805 0.992 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0	Sham tDCS Active tDCS Std diff in means and 95% Cl 1.00 1.00 2.00 1.00 1.00 0.00 Sham tDCS Active tDCS
leterogeneity of cathode: Q=0.000; P=0%; p=1.000 colspan="2">colspan="2">colspan="2">colspan="2">colspan="2">colspan="2">colspan="2">colspan="2"colspan="2">colspan="2"colspan="2"colspan="2">colspan="2"colspan="2"colspan="2">colspan="2"colspan="2"colspan="2"colspan="2">colspan="2"colspan="2"colspan="2"colspan="2"colspan="2">colspan="2"colspan="2"colspan="2"colspan="2">colspan="2"colspan="2"colspan="2"colspan="2">colspan="2"colspan="2"colspan="2">colspan="2"colspan="2"colspan="2">colspan="2"colspan="2"colspan="2">colspan="2"colspan="2"colspan="2"colspan="2"colspan="2">colspan="2"colspan="2"colspan="2"colspan="2">colspan="2"colspan="2"colspan="2"colspan="2"colspan="2"colspan="2"colspan="2">colspan="2"colspan=""2"colspan="2"c	Sham tDCS Active tDCS Std diff in means and 95% Cl 0.00 1.00 2.00 Sham tDCS Active tDCS
Otal Statistics for each study ist diff Lower Upper in means limit limit Z-Value node Geni et al., 2011 0.43 0.636 1.123 0.542 0.588 node Geroin et al., 2011 0.434 -0.636 1.123 0.542 0.588 node Seo et al., 2017 0.031 -0.825 0.867 0.071 0.943 node Seo et al., 2017 0.031 -0.825 0.867 0.711 0.443 node 0.134 -0.479 0.748 0.429 0.668 athode 0.498 -0.707 1.703 0.810 0.418 ubgroup eterogeneity of anode: Q=0.000; <i>P</i> =0%; p=10.735 eterogeneity of anode: Q=0.000; <i>P</i> =0%; p=10.000 stat eterogeneity: Q=0.392; <i>P</i> =0%; p=0.822 eterogeneity: Q=0.392; <i>P</i> =0.822 eterogeneity: Q=0.392; <i>P</i> =0%; p=0.453 Eta C) FAC Stat diff Lower Upper in means imm di mit Zuit	Stid diff in means and 95% Cl Sham tDCS Active tDCS Stid diff in means and 95% Cl
Statistics for each study for overall effect: Z=1.145; p=0.252 b) GMW/T roup by tode Study name in means Statistics for each study iode Std diff Lower Upper in means node Geroin et al., 2011 0.243 -0.636 1.123 0.542 0.588 node Geroin et al., 2011 0.243 -0.636 1.703 0.810 0.418 athode 0.134 -0.479 0.748 0.429 0.688 athode 0.498 -0.707 1.703 0.810 0.418 athode 0.209 -0.338 0.756 0.750 0.453 verall 0.200, P=0.052 p=0.735	Std diff in means and 95% Cl Line of the sense of the se
b) GRWUT b b b b b b b b b b	Std diff in means and 95% Cl Sham tDCS Active tDCS Std diff in means and 95% Cl
D) Difference iroup by loade Study name stid diff Lower Upper in means inde Geroin et al., 2011 0.243 -0.636 1.123 0.542 0.588 node Geroin et al., 2011 0.243 -0.636 1.123 0.542 0.588 node See et al., 2017 0.031 -0.825 0.887 0.071 0.943 node See et al., 2014 0.498 -0.707 1.703 0.810 0.418 athode 0.498 -0.707 1.703 0.810 0.418 werall 0.498 -0.707 1.703 0.810 0.418 werall 0.209 -0.338 0.756 0.750 0.453 ubgroup eterogeneity of anode: Q=0.115; <i>P</i> =0%; p=0.735 eterogeneity of cathode: Q=-0.000; <i>P</i> =0%; p=1.000 pate	Std diff in means and 95% Cl 1.00 0.00 1.00 2.00 Sham tDCS Active tDCS Std diff in means and 95% Cl
Intervention Study name Statistics for each study inde Std diff Lower Upper inmeans limit limit ZValue p-Value node Geroin et al., 2011 0.243 -0.636 1.123 0.542 0.588 node See et al., 2017 0.031 -0.825 0.887 0.071 0.943 andode Node -0.134 -0.479 0.748 0.429 0.668 athode Fusco et al., 2014 0.498 -0.707 1.703 0.810 0.418 werall 0.209 -0.338 0.756 0.750 0.453 ubgroup eterogeneity of anode: Q=0.015; /P=0%; p=0.735 eterogeneity of cathode: Q=0.000; /P=0%; p=1.000 otal eterogeneity of cathode: Q=0.000; /P=0%; p=0.822 std for overall effect: Z=0.750; p=0.453 EAC C) FAC Std diff Lower Upper index Std diff Lower Upper inmeans limit Limit Z-Value	Std diff in means and 95% Cl 2.00 1.00 0.00 1.00 2.00 Sham tDCS Active tDCS Std diff in means and 95% Cl
Std diff Lower Upper in means Z-Value p-Value node Geroin et al., 2011 0.243 -0.686 1.123 0.542 0.588 node Seo et al., 2017 0.031 -0.825 0.867 0.071 0.943 node 0.134 -0.479 0.748 0.429 0.668 athode 0.498 -0.707 1.703 0.810 0.418 werall 0.209 -0.338 0.756 0.750 0.453 ubgroup tetrogeneity of anode: Q=0.115; <i>P</i> =0%; <i>p</i> =0.735 stot diff sto	2.00 1.00 0.00 1.00 2.00 Sham tDCS Active tDCS
node Geroin et al., 2011 0.243 -0.636 1.123 0.542 0.588 node Seo et al., 2017 0.031 -0.825 0.887 0.071 0.943 node 0.134 -0.479 0.748 0.429 0.668 athode 0.134 -0.479 0.748 0.429 0.668 athode 0.498 -0.707 1.703 0.810 0.418 werall 0.209 -0.338 0.756 0.750 0.453 ubgroup teterogeneity of anode: Q=0.115; <i>P</i> =0%; <i>p</i> =0.735 stot stot stot teterogeneity of cathode: Q=0.000; <i>P</i> =0%; <i>p</i> =10.000 stol stot stot stot tetrogeneity: Q=0.392; <i>P</i> =0%; <i>p</i> =0.453 C) FAC stot stot <td< td=""><td>2.00 1.00 0.00 1.00 2.00 Sham tDCS Active tDCS</td></td<>	2.00 1.00 0.00 1.00 2.00 Sham tDCS Active tDCS
Action of the dat, 2011 0.243 0.0000 1.123 0.042 0.380 node See et al., 2017 0.013 -0.825 0.887 0.071 0.943 node 0.134 -0.479 0.748 0.429 0.668 athode Fusco et al., 2014 0.498 -0.707 1.703 0.810 0.418 werall 0.209 -0.338 0.756 0.750 0.453 0.453 ubgroup tecrogeneity of anode: Q=0.115; <i>P</i> =0%; <i>p</i> =0.735 -2.00 -2.00 -2.00 teta det of anode: Q=0.000; <i>P</i> =0%; <i>p</i> =1.000 -2.01 -2.01 -2.01 -2.01 statistics for each study -2.02 -0.353 -2.01 -2.01 -2.01 ct and percentily of anode: Q=0.750; <i>p</i> =0.453 -2.01 -2.01 -2.01 -2.01 statistics for each study -2.01 -2.01 -2.01 -2.01 -2.01 ct and percentil effect: 2=0.750; <i>p</i> =0.453 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01	2.00 1.00 0.00 1.00 2.00 Sham tDCS Active tDCS
Note Set et al., 2017 0.031 -0.825 0.0367 0.074 0.4943 node 0.034 -0.479 0.748 0.429 0.668 athode Fusco et al., 2014 0.498 -0.707 1.703 0.810 0.418 athode 0.498 -0.707 1.703 0.810 0.418 werall 0.209 -0.338 0.756 0.750 0.453 ubgroup teterogeneity of anode: Q=0.015; <i>i²=0%</i> ; <i>p=0.735</i> retorgeneity of cathode: Q=0.000; <i>i²=0%</i> ; <i>p=1.000</i> ctathode: Q=0.392; <i>i²=0%</i> ; <i>p=0.822</i> sto for overall effect: Z=0.750; <i>p=0.453</i> C) FAC Sto diff Lower Upper In means Iimt Iimt Z-Value	2.00 1.00 0.00 1.00 2.00 Sham tDCS Active tDCS
noce 0.134 -0.479 0.748 0.429 0.668 athode Fusco et al., 2014 0.498 -0.707 1.703 0.810 0.418 athode 0.498 -0.707 1.703 0.810 0.418 werall 0.209 -0.338 0.756 0.750 0.453 ubgroup eterogeneity of anode: Q=0.115; <i>i</i> =0%; <i>p</i> =0.735 eterogeneity of cathode: Q=0.00; <i>i</i> =0%; <i>p</i> =1.000 otal eterogeneity: Q=0.392; <i>i</i> =0%; <i>p</i> =0.822 estor overall effect: Z=0.750; <i>p</i> =0.453 FAC C) FAC Statistics for each study in means imted iff Lower Upper line were Upper stat diff Lower Upper	2.00 1.00 0.00 1.00 2.00 Sham tDCS Active tDCS
athode Fusco et al., 2014 0.498 -0.707 1.703 0.810 0.418 athode 0.498 -0.707 1.703 0.810 0.418 werall 0.209 -0.338 0.756 0.750 0.453 ubgroup eterogeneity of anode: Q=0.115; <i>i²=0%</i> ; <i>p</i> =0.735 -2.00 -2.00 eterogeneity of cathode: Q=0.000; <i>i²=0%</i> ; <i>p</i> =1.000 otal -2.00 eterogeneity: Q=0.392; <i>i²=0%</i> ; <i>p</i> =0.453 C) FAC	2.00 1.00 0.00 1.00 2.00 Sham tDCS Active tDCS
athode 0.498 -0.707 1.703 0.810 0.418 verall 0.209 -0.338 0.756 0.750 0.453 ubgroup eterogeneity of anode: Q=0.115; <i>i²=0%</i> ; <i>p=0.735</i> -2.00 teterogeneity of cathode: Q=0.000; <i>i²=0%</i> ; <i>p=1.000</i> otal leterogeneity: Q=0.392; <i>i²=0%</i> ; <i>p=0.822</i> est for overall effect: Z=0.750; <i>p=0.453</i> C) FAC Group by node Study name in means Statistics for each study in means	2.00 -1.00 0.00 1.00 2.00 Sham tDCS Active tDCS
werall 0.209 -0.338 0.756 0.750 0.453 ubgroup -2.00 -2.00 -2.00 -2.00 leterogeneity of anode: Q=0.115; /²=0%; p=0.735 -2.00 -2.00 -2.00 teterogeneity of cathode: Q=0.000; /²=0%; p=1.000 -2.00 -2.00 -2.00 -2.00 teterogeneity: Q=0.392; /²=0%; p=0.822 sst of rowerall effect: Z=0.750; p=0.453 -2.00	
ubgroup 2.00 reterogeneity of anode: Q=0.115; p²=0%; p=0.735 2.00 ieterogeneity of cathode: Q=0.000; p²=0%; p=1.000 2.00 otal 2.00 ieterogeneity: Q=0.392; p²=0.822 2.00 est of overall effect: Z=0.750; p=0.453 FAC C) FAC Statistics for each study Std diff node Std diff Lower Upper in means limit limit Z-Value p-Value	2.00 1.00 0.00 1.00 2.00 Sham tDCS Active tDCS <u>Std diff in means and 95% C1</u>
C) FAC Group by Study name Statistics for each study Std diff Lower Upper in means limit limit Z-Value p-Value	Std diff in means and 95% CI
Group by Study name Statistics for each study node Std diff Lower Upper in means limit limit Z-Value p-Value	Std diff in means and 95% CI
mode Std diff Lower Upper in means limit limit Z-Value p-Value	
Anode Chang et al., 2015 0.707 -0.118 1.532 1.680 0.093	
Anode Geroin et al., 2011 0.975 0.048 1.902 2.062 0.039	
Anode Leon et al., 2017 0.023 -0.748 0.794 0.058 0.953	
Anode Seo et al., 2017 0.958 0.054 1.862 2.078 0.038	
Anode 0.611 0.186 1.036 2.819 0.005	
Latinoue Fuscolet al., 2014 0.000 -1.187 1.187 0.000 1.000	
Overall 0.542 0.142 0.942 2.654 0.008	
Subgroup	
-2.0 Heterogeneity of anode: Q=3,449; / ² =13,013%: <i>n</i> =0.327	-2.00 -1.00 0.00 1.00 2.00
Heterogeneity of cathode: $Q=0.000; l^2=0%; p=1.000$	
Total	snam toos Active toos
Heterogeneity: Q=4.351; / ² =8.069%; p=0.361	
Test for overall effect: Z=2.654; p=0.008	
d)*	
u inetti test	
Model Group by Study name Statistics for each study	Std diff in means and 95%, Cl
Model Group by mode Study name Statistics for each study Std diff Lower Upper in means limit limit ZValue p-Value	Std diff in means and 95%. Cl
Model Group by mode Study name Statistics for each study Std diff Lower Upper In means limit limit Lower Value Anode Mani et al., 2018 0.176 -0.541 0.883 0.482 0.630 I	Std diff in means and 95% CI
Model mode Study name Statistics for each study Std diff Lower Upper lin means Anode Manji et al. 2018 0.176 -0.541 0.883 0.482 0.630 Fixed Anode 0.176 -0.541 0.583 0.482 0.630	Std diff in means and 95%_Cl
Model mode Study name Statistics for each study Std diff Lower Upper lim means Anode Manji et al., 2018 0.176 -0.541 0.883 0.482 0.630 Fixed Anode 0.176 -0.541 0.883 0.482 0.630 andom Anode 0.176 -1.011 1.364 0.291 0.771	Std diff in means and 95% Cl
Mode Study name mode Statistics for each study Std diff Lower Uppar Anode Manji etal., 2018 0.176 -0.541 0.893 0.482 0.630 Fixed Anode 0.176 -0.541 0.893 0.482 0.630 Jandom Anode 0.176 -0.541 0.283 0.482 0.630 Jandom Saeys et al., 2015 0.946 0.2041 0.271 0.291 0.771	Std diff in means and 95% CI
Model mode Study name Statistics for each study Std diff Lower Upper lin means Lower Upper limit Zvalue -Value Anode Manji et al. 2018 0.176 -0.541 0.883 0.482 0.630 Fixed Anode 0.176 -0.541 0.883 0.482 0.630 Dual Saeys et al. 2015 0.046 2.024 1.689 2.497 0.013 Dual Tarhits et al. 2014 0.000 -1.048 0.000 1.000	Std diff in means and 95% Cl
Model mode Study name Statistics for each study Std diff Lower Upper In means limit Lower Anode Manij et al. 2018 0.76 -0.541 0.893 0.482 0.630 Pixed Anode 0.176 -0.541 0.893 0.482 0.630 bandom Anode 0.176 -0.541 0.893 0.482 0.630 bandom Anode 0.176 -0.111 1.364 0.291 0.771 Dual Saeys et al., 2015 0.946 0.204 1.689 2.497 0.013 Fixed Dual Tahtis et al., 2014 0.003 0.024 1.285 2.037 0.042	Std diff in means and 95% CI
Model mode Study name Statistics for each study Std diff Lower Upper limit ZValue >Value Anode 0.77 -0.541 0.883 0.482 0.630 Fixed Anode 0.176 -0.541 0.883 0.482 0.630 minodm Anode 0.176 -0.511 1.689 2.497 0.013 Dual Sanys et al., 2015 0.048 0.204 1.689 2.497 0.013 Dual Table et al., 2014 0.040 -0.481 1.489 2.497 0.013 Dual Table et al., 2014 0.481 0.481 1.493 2.497 0.013 Fixed Dual 5.69 0.424 1.253 2.037 0.042 Fixed Dual 6.540 0.367 1.464 1.174 0.241	Std diff in means and 95% CI
Model mode Study name Statistics for each study Std diff Lower Upper linme Imit Zvalue Anode Manji et al. 2018 0.176 -0.541 0.883 0.482 0.630 Fixed Anode 0.176 -0.541 0.883 0.482 0.630 Fixed Anode 0.176 -0.541 0.883 0.482 0.630 Dada Sanys et al. 2015 0.402 0.630 0.482 0.630 Dual Tahtis et al., 2014 0.000 -1.011 1.344 0.291 0.771 Dual Tahtis et al., 2014 0.000 -1.048 1.048 0.000 1.000 Fixed Dual 0.549 -0.367 1.464 1.042 0.421 Fixed Overail 0.441 -0.022 0.904 1.867 0.622 Landorn 0.414 -0.424 -0.424 1.474 0.424	Stid diff in means and 95% Cl
Model mode Study name Statistics for each study Std diff Lower Upper linnte Anode Marije tal. 2018 0.176 -0.541 0.893 0.482 0.630 Node 0.176 -0.541 0.893 0.482 0.630 Nandom Anode 0.176 -0.541 0.893 0.482 0.630 Dual Saeys et al., 2015 0.946 0.204 1.689 2.497 0.013 Dual Tahtis et al., 2014 0.000 -1.048 1.948 0.000 1.000 Fixed Dual Tahtis et al., 2014 0.630 0.024 1.268 2.037 0.042 Iandom Dual 0.548 -0.367 1.464 1.174 0.241 Fixed Ourrail 0.441 -0.022 0.904 1.687 0.662 andom Overail 0.441 -0.22 0.904 1.687 0.662	Std diff in means and 95% Cl
Model mode Group by mode Study name Statistics for each study Std diff Lower Upper In means limit Lower Upper Anode Manij et al. 2018 0.176 -0.541 0.883 0.482 0.630 Stadom Anode 0.176 -0.541 0.883 0.482 0.630 Stadom Anode 0.176 -0.111 1.364 0.291 0.771 Dual Saeys et al., 2015 0.946 0.204 1.689 2.497 0.013 Fixed Dual Tahtis et al., 2014 0.004 1.048 1.484 1.174 0.241 Fixed Dual 0.451 0.222 1.904 1.187 0.62 Iandom Overail 0.410 -0.316 1.135 1.107 0.268 Ubgroup verail 0.410 0.316 1.355 1.107 0.268	Std diff in means and 95% Cl

Fig. 2 (continued)

(e)					RN	11					
Group by	Study name	Stati	stics for	each stu	dy			Std diff in	means an	id 95% Cl	
mode		Std diff	Lower	Upper limit 7	7-Value r	-Value					
Anode (Geroin et al 2011	1 320	0.353	2 288	2 675	0.007	1	1	1 -		Т
Anode	00101110101., 2011	1.320	0.353	2.288	2.675	0.007					
Cathode F	Fusco et al 2014	0.000	-1 187	1 187	0.000	1 000		I —	_		
Cathode	10000 01 01., 2014	0.000	-1 187	1 187	0.000	1.000					
Dual 5	Saevs et al. 2015	0.612	-0 109	1.333	1 665	0.096					
Dual	54695 614., 2010	0.612	-0 109	1.333	1.665	0.096					
Overall		0.699	0.180	1 219	2 637	0.008					
Subgroup Heterogeneity Heterogeneity	of anode: Q=0.0 of cathode: Q=0 of dual: Q=0.00	000; /²=0%; 0.000; /²=0% 0; /²=0%; p	<i>p</i> =1.000 %; <i>p</i> =1.00 =1.000) 00			-3.00	-1.50 Sham tDCS	0.00	1.50 Active tDCS	3.00
Total Heterogeneity:	Q=2.973; / ² =32	.734%; <i>p</i> =0	.226								
(f)	effect: 2=2.637	; <i>p</i> =0.008			τι	IG					
(')											
Group by Strong	Study name	Sta	tistics for	r each st	udy			Std diff	in means a	and 95% CI	
inoue		Std diff in mean	f Lowe is limit	r Upper limit	Z-Value	p-Value					
Anode I	Manji et al., 2018	0.42	-0.29	5 1.153	3 1.162	0.245			-+-		
Anode I	Utarapichat et al., 2	018 0.18	32 -0.69	7 1.060	0.405	0.685				— I	
Anode		0.32	-0.23	0 0.888	3 1.155	5 0.248					
Cathode I	Fusco et al., 2014	0.51	7 -0.68	9 1.724	1 0.840	0.401			-+-		
Cathode		0.51	7 -0.68	9 1.724	4 0.840	0.401					
Dual	Tahtis et al., 2014	1.21	2 0.07	2 2.35	1 2.084	1 0.037					
Dual I	Klomjai et al., 2018	5 1.04	0.36	8 1.724	1 3.025	0.002			- I '		
Duai		1.05	0.00 0.00	1.074	2 3.000	0.000					
Subgroup		0.07	0 0.29	5 1.050	5 3.402	2 0.001			1		
Heterogeneity Heterogeneity	of anode: Q=0. of cathode: Q=	182; /²=0%; 0.000; /²=0	; p=0.67 %; p=1.0	D 100			-3.00	-1.50	0.00	1.50	3.00
Heterogeneity Total	of dual: Q=0.06	50; I ² =0%; p	=0.807					Sham tDCS		Active tDCS	
Heterogeneity:	: Q=3.725; / ² =0%	%; <i>p</i> =0.444									
iest for overall	enect: Z=3.46Z	., μ=0.001			DF						
(g)#					B	32					
Study name	Statistics for each study							Std diff in	means a	nd 95% Cl	
	Std diff	Lower s limit	Upper limit	Z-Val	lue p-V	/alue					
Chang et al. 2	2015 0.56	1 -0.255	1.37	7 1.3	348 C).178	Ι	1			_
Cas at -1 00	17 0.00	0 0 600	1.00	7 04	10 0	599					
Seo et al., 20'	0.23	8 -0.622	1.09	<i>i</i> 0.5	04Z (0.000					
Total	0.40	8 -0.184	0.99	9 1.3	351 ().177	I				
Heterogeneity Test for overa	y: Q=0.286; <i>l</i> ² ll effect: Z=1.3	=0%;	593 L77				-1.50	-0.75	0.00	0.75	1.50
								Sham tDCS		Active tDCS	

Forest plots for primary and secondary outcomes with subgroup analyses of mode application (a) gait speed, (b) six-minute walking test, (c) functional ambulation category, (d) Tinetti test, (e) Rivermead Mobility Index, (f) timed up and go test, (g) Berg Balance Scale. CI, confidence interval; Std diff in means, standard difference in means. *Anode tDCS used the fixed-effect model while dual-hemispheric tDCS used the random effect model. #Data without subgroup analysis.

extremity in stroke patients better than unilateral tDCS (van Asseldonk and Boonstra, 2016). From our review and subgroup analyses, four studies have examined the effects of dual-hemispheric tDCS on gait-related

outcomes after stroke. However, due to unavailable of research data (van Asseldonk and Boonstra, 2016) and limited outcomes adopted by studies, only the effects on TUG and Tinetti test could be extracted. In contrast, dual-hemispheric tDCS not only significantly improved TUG but also exerted larger effect size (SMD = 1.090) than anodal tDCS. It is of interest to know that Klomjai et al. (2018) did not find a significant effect of dual-hemispheric-tDCS on TUG (P = 0.883). However, with statistical synthesis of two studies, the effect of dual-hemispheric tDCS on TUG became evident (Tahtis et al., 2014; Klomjai et al., 2018). In addition, a strong negative association had been identified between TUG score and the maximal torque generated by gastrocnemius (r= -0.86) in people with chronic stroke (Ng and Hui-Chan, 2005). Thus, when tDCS was found to effectively improve muscle strength of lower limb in stroke patients (Li et al., 2018), performance of TUG may be enhanced by tDCS as well. Based on these findings, current results support in part that dual-hemispheric tDCS may have its unique contribution in promoting walking ability in stroke patients. Finally, in the included studies, only Fusco et al. (2014) have examined the effect of cathodal tDCS on gait and walking-related performances after stroke. Therefore, none of effects could be extracted for cathodal tDCS from our analysis.

This systematic review and meta-analysis provides up-to-date evidences on the effects of tDCS. However, the results should be interpreted with caution under following limitations. First, studies published in languages other than English and Chinese were not included. Second, two of the included studies did not provide the data for quantitative evidence synthesis. Third, to extract the effects for each outcome related to walking ability and different modes of tDCS, the subgroup analyses were limited by the small trial number. Fourth, some of the included studies explored the immediate effects of tDCS with only one session of treatment (Tahtis et al., 2014; van Asseldonk and Boonstra, 2016; Klomjai et al., 2018; Utarapichat and Kitisomprayoonkul, 2018), effects revealed by current study may be contributed by single as well as multiple sessions of tDCS. Finally, the publication bias should be considered as a positive result and future research should be more representative.

Conclusion

In conclusion, this meta-analysis suggests that tDCS improves walking ability with an exception of walking speed and endurance in patients with stroke. Both anodal and dual-hemispheric tDCS exert positive effects on promoting walking-related performances after stroke. However, difficulty in improving balance performance by tDCS may limit the effects of tDCS on walking speed and/or walking endurance.

Acknowledgements

The authors would like to thank the hard work of all the authors contributing to this study and sincerely thank Alexis Lin and Jacob Lin for proofreading the manuscript of this article.

Conflicts of interest

There are no conflicts of interest.

References

- Antal A, Alekseichuk I, Bikson M, Brockmöller J, Brunoni AR, Chen R, et al. (2017). Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. *Clin Neurophysiol* **128**:1774–1809.
- Bastani A, Jaberzadeh S (2012). Does anodal transcranial direct current stimulation enhance excitability of the motor cortex and motor function in healthy individuals and subjects with stroke: a systematic review and meta-analysis. *Clin Neurophysiol* 123:644–657.
- Bolognini N, Vallar G, Casati C, Latif LA, El-Nazer R, Williams J, et al. (2011). Neurophysiological and behavioral effects of tDCS combined with constraint-induced movement therapy in poststroke patients. *Neurorehabil Neural Repair* 25:819–829.
- Canbek J, Fulk G, Nof L, Echternach J (2013). Test-retest reliability and construct validity of the Tinetti performance-oriented mobility assessment in people with stroke. J Neurol Phys Ther 37:14–19.
- Cha HK, Ji SG, Kim MK, Chang JS (2014). Effect of transcranial direct current stimulation of function in patients with stroke. J Phys Ther Sci 26:363–365.
- Chang MC, Kim DY, Park DH (2015). Enhancement of Cortical Excitability and Lower Limb Motor Function in Patients With Stroke by Transcranial Direct Current Stimulation. *Brain Stimul* 8:561–566.
- Charvet LE, Kasschau M, Datta A, Knotkova H, Stevens MC, Alonzo A, et al. (2015). Remotely-supervised transcranial direct current stimulation (tDCS) for clinical trials: guidelines for technology and protocols. *Front Syst Neurosci* **9**:26.
- Chhatbar PY, Ramakrishnan V, Kautz S, George MS, Adams RJ, Feng W (2016). Transcranial Direct Current Stimulation Post-Stroke Upper Extremity Motor Recovery Studies Exhibit a Dose-Response Relationship. *Brain Stimul* 9:16–26.
- Cohen J (1988). Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Erlbaum.
- Danzl MM, Chelette KC, Lee K, Lykins D, Sawaki L (2013). Brain stimulation paired with novel locomotor training with robotic gait orthosis in chronic stroke: a feasibility study. *Neurorehabilitation* **33**:67–76.
- Elbourne DR, Altman DG, Higgins JP, Curtin F, Worthington HV, Vail A (2002). Meta-analyses involving cross-over trials: methodological issues. *Int J Epidemiol* **31**:140–149.
- Elsner B, Kugler J, Pohl M, Mehrholz J (2016). Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. *Cochrane Database Syst Rev* 3:CD009645.
- Eng JJ, Tang PF (2007). Gait training strategies to optimize walking ability in people with stroke: a synthesis of the evidence. *Expert Rev Neurother* **7**:1417–1436.
- European Stroke Organisation (ESO) Executive Committee, ESO Writing Committee (2008). Guidelines for management of ischaemic stroke and transient ischaemic attack 2008. Cerebrovasc Dis 25:457–507.
- Filmer HL, Dux PE, Mattingley JB (2014). Applications of transcranial direct current stimulation for understanding brain function. *Trends Neurosci* 37:742–753.
- Foley NC, Teasell RW, Bhogal SK, Doherty T, Speechley MR (2003). The efficacy of stroke rehabilitation: a qualitative review. *Top Stroke Rehabil* 10:1–18.
- Fregni F, Pascual-Leone A (2007). Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. *Nat Clin Pract Neurol* 3:383–393.
- Fusco A, Assenza F, Iosa M, Izzo S, Altavilla R, Paolucci S, Vernieri F (2014). The ineffective role of cathodal tDCS in enhancing the functional motor outcomes in early phase of stroke rehabilitation: an experimental trial. *Biomed Res Int* 2014:547290.
- Geroin C, Picelli A, Munari D, Waldner A, Tomelleri C, Smania N (2011). Combined transcranial direct current stimulation and robot-assisted gait training in patients with chronic stroke: a preliminary comparison. *Clin Rehabil* 25:537–548.
- Gomez Palacio Schjetnan A, Faraji J, Metz GA, Tatsuno M, Luczak A (2013). Transcranial direct current stimulation in stroke rehabilitation: a review of recent advancements. *Stroke Res Treat* **2013**:170256.
- Higgins JP, Green S (2011). Cochrane handbook for systematic reviews of interventions. Version 5.1.0 [Online]. Available at: http://handbook-5-1.cochrane. org/ [Accessed:15 April 2019]
- Higgins JP, Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. *Stat Med* **21**:1539–1558.
- Jayaram G, Stinear JW (2009). The effects of transcranial stimulation on paretic lower limb motor excitability during walking. J Clin Neurophysiol 26:272–279.

- Kang N, Summers JJ, Cauraugh JH (2016). Transcranial direct current stimulation facilitates motor learning post-stroke: a systematic review and meta-analysis. *J Neurol Neurosurg Psychiatry* 87:345–355.
- Khedr EM, Shawky OA, El-Hammady DH, Rothwell JC, Darwish ES, Mostafa OM, Tohamy AM (2013). Effect of anodal versus cathodal transcranial direct current stimulation on stroke rehabilitation: a pilot randomized controlled trial. *Neurorehabil Neural Repair* 27:592–601.
- Klomjai W, Aneksan B, Pheungphrarattanatrai A, Chantanachai T, Choowong N, Bunleukhet S, et al. (2018). Effect of single-session dual-tDCS before physical therapy on lower-limb performance in sub-acute stroke patients: a randomized sham-controlled crossover study. Ann Phys Rehabil Med 61:286–291.
- Leon D, Cortes M, Elder J, Kumru H, Laxe S, Edwards DJ, et al. (2017). tDCS does not enhance the effects of robot-assisted gait training in patients with subacute stroke. Restor Neurol Neurosci 35:377–384.
- Li Y, Fan J, Yang J, He C, Li S (2018). Effects of transcranial direct current stimulation on walking ability after stroke: a systematic review and meta-analysis. *Restor Neurol Neurosci* 36:59–71.
- Lindenberg R, Renga V, Zhu LL, Nair D, Schlaug G (2010). Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. *Neurology* 75:2176–2184.
- Madhavan S, Shah B (2012). Enhancing motor skill learning with transcranial direct current stimulation - a concise review with applications to stroke. *Front Psychiatry* 3:66.
- Mahmoudi H, Borhani Haghighi A, Petramfar P, Jahanshahi S, Salehi Z, Fregni F (2011). Transcranial direct current stimulation: electrode montage in stroke. *Disabil Rehabil* 33:1383–1388.
- Manji A, Amimoto K, Matsuda T, Wada Y, Inaba A, Ko S (2018). Effects of transcranial direct current stimulation over the supplementary motor area body weight-supported treadmill gait training in hemiparetic patients after stroke. *Neurosci Lett* 662:302–305.
- McDonnell MN, Stinear CM (2017). TMS measures of motor cortex function after stroke: A meta-analysis. *Brain Stimul* 10:721–734.
- Moher D, Liberati A, Tetzlaff J, Altman, DG; PRISMA Group (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Plos Med* 6:e1000097.
- Montenegro RA, Midgley A, Massaferri R, Bernardes W, Okano AH, Farinatti P (2016). Bihemispheric motor cortex transcranial direct current stimulation improves force steadiness in post-stroke hemiparetic patients: a randomized crossover controlled trial. *Front Hum Neurosci* 10:426.
- Moseley AM, Herbert RD, Sherrington C, Maher CG (2002). Evidence for physiotherapy practice: a survey of the Physiotherapy Evidence Database (PEDro). *Aust J Physiother* **48**:43–49.
- Ng SS, Hui-Chan CW (2005). The timed up & go test: its reliability and association with lower-limb impairments and locomotor capacities in people with chronic stroke. *Arch Phys Med Rehabil* **86**:1641–1647.
- Nitsche MA, Paulus W (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527 (Pt 3):633–639.

- Park SD, Kim JY, Song HS (2015). Effect of application of transcranial direct current stimulation during task-related training on gait ability of patients with stroke. J Phys Ther Sci 27:623–625.
- Patterson SL, Forrester LW, Rodgers MM, Ryan AS, Ivey FM, Sorkin JD, Macko RF (2007). Determinants of walking function after stroke: differences by deficit severity. Arch Phys Med Rehabil 88:115–119.
- Paulus W, Antal A, Nitsche MA (2012). Chapter 4. Physiological basis and methodological aspects of transcranial electric stimulation (tDCS, tACS and tRNS). In: *Transcranial brain stimulation*. Florida: CRC Press. pp. 93–111.
- Penfield W, Boldrey E (1937). Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. *Brain* 60:389–443.
- Picelli A, Chemello E, Castellazzi P, Roncari L, Waldner A, Saltuari L, Smania N (2015). Combined effects of transcranial direct current stimulation (tDCS) and transcutaneous spinal direct current stimulation (tsDCS) on robot-assisted gait training in patients with chronic stroke: a pilot, double blind, randomized controlled trial. *Restor Neurol Neurosci* 33:357–368.
- Plot Digitizer (2015). Plot Digitizer. http://plotdigitizer.sourceforge.net/. [Accessed 20 October 2019].
- Rajsic S, Gothe H, Borba HH, Sroczynski G, Vujicic J, Toell T, Siebert U (2019). Economic burden of stroke: a systematic review on post-stroke care. Eur J Health Econ 20:107–134.
- Rosenthal R (1991). *Meta-Analytic Procedures for Social Research*. Newbury Park: Sage Publications.
- Saeys W, Vereeck L, Lafosse C, Truijen S, Wuyts FL, Van De Heyning P (2015). Transcranial direct current stimulation in the recovery of postural control after stroke: a pilot study. *Disabil Rehabil* 37:1857–1863.
- Salter K, Jutai JW, Teasell R, Foley NC, Bitensky J, Bayley M (2005). Issues for selection of outcome measures in stroke rehabilitation: ICF activity. *Disabil Rehabil* 27:315–340.
- Seo HG, Lee WH, Lee SH, Yi Y, Kim KD, Oh BM (2017). Robotic-assisted gait training combined with transcranial direct current stimulation in chronic stroke patients: a pilot double-blind, randomized controlled trial. *Restor Neurol Neurosci* 35:527–536.
- Tahtis V, Kaski D, Seemungal BM (2014). The effect of single session bi-cephalic transcranial direct current stimulation on gait performance in sub-acute stroke: A pilot study. *Restor Neurol Neurosci* 32:527–532.
- Tedesco Triccas L, Burridge JH, Hughes AM, Pickering RM, Desikan M, Rothwell JC, Verheyden G (2016). Multiple sessions of transcranial direct current stimulation and upper extremity rehabilitation in stroke: a review and meta-analysis. *Clin Neurophysiol* **127**:946–955.
- Utarapichat S, Kitisomprayoonkul W (2018). Effects of transcranial direct current stimulation on motor activity of lower limb muscles in chronic stroke. J Med Assoc Thai 101:131–136.
- van Asseldonk EH, Boonstra TA (2016). Transcranial Direct Current Stimulation of the Leg Motor Cortex Enhances Coordinated Motor Output During Walking With a Large Inter-Individual Variability. *Brain Stimul* **9**:182–190.
- Winstein CJ, Stein J, Arena R, Bates B, Cherney LR, Cramer SC, et al.; American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, Council on Clinical Cardiology, and Council on Quality of Care and Outcomes Research (2016). Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 47:e98–e169.