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Abstract: Developing efficient catalysts to produce clean fuel by using solar energy has long been the
goal to mitigate the issue of traditional fossil fuel scarcity. In this work, we design a heterostructure
photocatalyst by employing two green components, Ni(OH)2 and ZnIn2S4, for efficient photocatalytic H2

evolution under the illumination of visible light. After optimization, the obtained photocatalyst exhibits
an H2 evolution rate at 0.52 mL h−1 (5 mg) (i.e., 4640 µmol h−1 g−1) under visible light illumination.
Further investigations reveal that such superior activity is originated from the efficient charge separation
due to the two-dimensional (2D) structure of ZnIn2S4 and existing high-quality heterojunction.

Keywords: photocatalytic hydrogen evolution; charge transfer; heterostructure

1. Introduction

Efficient utilization of solar energy for generating benign hydrogen fuel from water has
long been viewed as an ideal tactic for solving issues of energy dilemma and environmental
pollution. Although dramatic progress has been achieved in related research areas [1,2],
it is still challenging to obtain catalysts that could meet requirements of wide absorption
range, high activity, good stability, and low cost. As of now, to boost the photocatalytic
activity of the catalyst, tremendous efforts have been paid to the elaborate design of visible-
light-driven photocatalysts, such as noble-metal free metals, carbides, sulfides, phosphides,
and their modified compounds [3–6]. Among these studies, zinc indium sulfide (ZnIn2S4)
has obtained tremendous interest owing to its merits of proper bandgap (2.3–2.7 eV), low
toxicity, and cost-effectiveness [7]. However, a ZnIn2S4-derived photocatalyst usually
exhibits moderate activity for hydrogen photogeneration, which is supposed to be due to
its fast photogenerated carrier recombination drawback. To address this, various strategies
have been employed to prolong the lifetime of carriers of ZnIn2S4 for enhancing its activity,
including loading noble-metal nanocrystals, doping other elements, morphology control,
and construction of a heterojunction [8,9]. For example, Li et al. prepared Pt/ZnIn2S4
composites through a hydrothermal method combined with a light-induced deposition
tactic. A significant increase in the photocatalytic hydrogen evolution performance of the
composite was observed as expected by using ethanolamine as an electron donor [10].
Yao et al. synthesized oxygen-doping ZnIn2S4 ultrathin nanosheets via a hydrothermal
method [11]. Results showed that the obtained oxygen-doped ZnIn2S4 nanosheets exhibit
much enhanced photocatalytic activity under the illumination of visible light, in which they
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postulated that the increased performance is possibly attributed to the effective separation
of photogenerated charge carriers on the surface of the catalyst. Similarly, Yu et al. reported
a ZnIn2S4@CuInS2 microflower core-shell p-n heterojunction by a hydrothermal method,
which could efficiently increase the charge separation efficiency and, therefore, boost the
activity of photocatalytic hydrogen production [12]. Zhu et al. employed RGO as an
electron acceptor and cocatalyst to modify a ZnIn2S4 sheet, and the relevant hydrogen pho-
togeneration performance of the prepared RGO/ZnIn2S4 nanocomposite was significantly
improved [13].

In addition, previous investigations indicate that various nickel-containing species,
including NiO, Ni(OH)2, and Ni3B, could act as the cocatalyst for the efficient reaction
of photocatalytic hydrogen production [14–16]. Among them, the heterojunction, such as
Ni(OH)2/TiO2, Ni(OH)2/C3N4, and Ni(OH)2/CdS, could obviously increase its photocat-
alytic activity under visible light illumination, which was supposed to be attributed to the
inhibition of the recombination of photogenerated carriers [17–19]. Despite the progress, a
randomly designed heterojunction structure has greatly restricted the separation efficiency
of photogenerated carriers. Therefore, it is of great importance to develop an effective strat-
egy, which could significantly mitigate the low-charge separation efficiency. To reach this
goal, a tactic of forming high-quality 2D/2D heterostructures, such as Ni2P/ZnIn2S4 and
MoS2/ZnIn2S4, is proposed, which would greatly decrease the charge migration distance,
and therefore, the corresponding probability of charge recombination could be largely inhib-
ited [20,21]. This unique structure is composed of two different materials with a 2D layered
structure; usually, one is as a light absorber, while the other is as a cocatalyst. Benefitting
from the elaborate structural design, it possesses the merits of short diffusion distance,
large interface contact area, and rich active sites, which are postulated to efficiently promote
the charge separation and transfer property at the interface of the heterojunction and there-
fore further improve the relevant catalytic activity. Recently, preliminary attempts were
made based on this concept, where the composite comprises Ni(OH)2 and ZnIn2S4; [22,23]
however, a further insightful investigation is still highly needed.

In this paper, the 2D ZnIn2S4 nanoflakes modified by thin Ni(OH)2 nanosheets were
simply prepared by employing a two-step solvothermal method. Our results demonstrate
that obtained composite exhibits enhanced the performance for hydrogen photogeneration
under the illumination of visible light under optimal conditions. Further, the plausible
underlying mechanism is proposed accordingly.

2. Experimental Section
2.1. Synthesis of Ni(OH)2 Nanosheets

The synthesis was according to previous work [24]. Typically, 1 mmol Ni(NO3)2·6H2O
was added into a beaker containing 20 mL ethanol under vigorous stirring. After ~10 min,
2 mL oleylamine in 10 mL ethanol was quickly added to the above solution. The obtained
homogeneous solution was stirred for further 30 min and then transferred into a 50 mL
Teflon-lined autoclave. The autoclave was then kept at 180 ◦C for 15 h, and after that, it was
cooled to room temperature. The resulting green product was collected by centrifugation
and washed repeatedly with cyclohexane, deionized (DI) water, and ethanol three times.
Finally, the obtained product was put in a vacuum furnace at 60 ◦C for 6 h for further use.

2.2. Synthesis of ZnIn2S4/Ni(OH)2 2D/2D Composite

Typically, a certain amount of Ni(OH)2 nanosheets was dispersed into 40 mL DI water
with subsequent sonicating for 10 min to form a stable suspension. Then, the suspension
was transferred to 100 mL of the flask containing 10 mL glycerin and magnetically stirred
for 30 min. Subsequently, 272 mg of ZnCl2, 1172 mg of InCl3·4H2O, and 602 mg of
thioacetamide (TAA) were added into the above flask and stirred for further 20 min. The
resulting mixture was heated at 80 ◦C for 2 h in an oil bath with continuous stirring. The
product was subjected to the centrifugation and washing (with ethanol) step three times
to remove any unreacted reagents and side products and then dried at 60 ◦C for 6 h for
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further use. Depending on the weight content of Ni(OH)2, which was evaluated by the
inductively coupled plasma optical emission spectrometer (ICP-OES), the as-synthesized
sample was denoted as x wt% Ni(OH)2/ZnIn2S4, and the detailed results can be found
in Table S1. Pure ZnIn2S4 was also prepared as a control with a similar procedure except
without introducing Ni(OH)2 nanosheets during the synthesis.

2.3. Characterization

The crystal structure of all samples was accomplished on an X-ray diffractometer
(Rigaku D/Max 2550, Wilmington, MA, USA, Rigaku Co., Ltd.) with a Cu Kα radiation
(λ = 0.154056 nm). The morphology, elemental composition, and energy dispersive X-ray
(EDX) analysis of the as-prepared samples were characterized by FE-SEM (JSM-7610F)
and TEM (Fei Tecnai G2 F20 S-TWIN). XPS spectra were recorded on an ESCALAB MKII
photoelectron spectrometer with Al Ka X-ray radiation. UV–VIS diffuse reflectance spectra
were determined on a Shimadzu UV-2600 spectrophotometer with BaSO4 as a reference.
The Brunauer–Emmett–Teller (BET) surface area of the samples was measured by a Mi-
cromeritics ASAP 2020 instrument, and before the measurements, all the samples were
subjected to the heating treatment under 120 ◦C and vacuum condition for 6 h (note: the
heating treatment did not alert the crystal structure of the samples, Figure S1). Steady-state
photoluminescence (PL) spectra and time-resolved transient PL decay spectra of the sam-
ples were carried out on an FLS-1000 fluorescence spectrophotometer. For steady-state PL
measurements, the excitation wavelength is set to 480 nm, while for the transient PL decay
spectra, the excitation and emission wavelength are set to 450 and 550 nm, respectively.
The photocurrent was evaluated using the photoelectrochemical (PEC) cell with three
electrodes at several on–off irradiation cycles. Electrochemical impedance spectroscopy
(EIS) experiments were tested on a potentiostat (0.2 V) in the Na2SO4 (0.5 M) solution,
with an Ag/AgCl reference electrode. Photoelectrodes used for the relevant measurements
were employed FTO (fluorine-doped tin oxide) glass sheets (1.0 × 4.0 cm)as the conductive
substrate, and the details of the preparation of electrode are as follows: First, the FTO
electrode was successively cleaned with DI water, ethanol, and acetone by sonication,
15 min for each step. Then, a piece of tape was employed to cover the electrode, which
left the exposed area fixed at 1.0 × 1.0 cm for further sample deposition. Next, 1.0 mg
of relevant sample was dispersed into 0.5 mL of ethanol and subjected to sonication for
15 min. After that, 10 µL of the corresponding solution was taken and dropped onto the
electrode for further measurements after it was dried under ambient conditions. ICP-OES
of the samples was measured by a Thermo Scientific iCAP 6300.

2.4. Photocatalytic Reaction Measurements and Calculation

The photocatalytic hydrogen evolution reaction was carried out in a gas-tight glass
flask (50 mL). Typically, 5 mg of the photocatalyst was dispersed into 15 mL DI water
containing triethanolamine (TEOA) (20 vol%) as electron donors. Before the reaction, the
system was evacuated and then filled with nitrogen for 5 and 30 min, respectively, to ensure
the thorough elimination of residual oxygen in the system. A 300 W xenon lamp coupled
with a filter (>420 nm) was used as the light source. The amount of hydrogen evolution
was sampled (200 µL) from the headspace of the flask by a gas-tight syringe (Bonaduz,
Switzerland, Hamilton) and immediately detected by gas chromatography (GC-2014c,
Suzhou, China, Shimadzu) at given time intervals.

3. Results and Discussion

The crystal structure of different samples was obtained from XRD measurements. As
shown in Figure 1, pure Ni(OH)2 exhibits the characteristic diffraction peaks at 2θ = 11.7◦,
24.7◦, 33.1◦, 35.2◦, 42.5◦, and 59.3◦, which are indexed to the (001), (002), (110), (111), (103),
and (300) crystal planes of the hexagonal crystal structure of α-Ni(OH)2 (JCPDS card no.
22-0444) [25]. Interestingly, for composite samples, only peaks of ZnIn2S4 corresponding to
21.2◦ (006), 27.6◦ (102), 30.5◦ (104), 47.2◦ (110), 52.4◦ (116), and 55.8◦ (022) for planes of a
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hexagonal crystal structure (JCPDS No. 65-2023) were observed, while no peak of Ni(OH)2
could be detected, which is postulated to be ascribed to the low content of Ni(OH)2 existing
in the samples [26].
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Figure 1. The XRD patterns of ZnIn2S4, Ni(OH)2, and Ni(OH)2/ZnIn2S4 composites with different
contents of Ni(OH)2 (0.10 wt%, 0.22 wt%, 0.37 wt%, and 0.74 wt%).

Then, the structural information of the obtained samples was acquired by SEM and
TEM measurements. As an introduced material, Ni(OH)2 exhibits the 2D nanoflake mor-
phology with the in-plane size from 200 to 500 nm and the thickness at ~20 nm (Figure S2).
Further coating of ZnIn2S4 As for the Ni(OH)2/ZnIn2S4 composite, taking the 0.37 wt% one,
for example, SEM image reveals that it exhibits the 2D nanoflower-like morphology with a
hierarchical structure consisting of plenty of ultrathin nanosheets (Figure 2a). However, it
should be noted that such morphology is well in line with that of pure ZnIn2S4, probably
owing to the low introducing content of Ni(OH)2.
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Our results clearly demonstrate that the introduction of Ni(OH)2 nanoflake during
the synthesis does not significantly alert the formation dynamic of ZnIn2S4 nanosheets.
Next, TEM and HRTEM measurements were applied to get further detailed structural
information of 0.37 wt% Ni(OH)2/ZnIn2S4 composite. As indicated (Figure 2b), a clear
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ultra-thin-layered nanostructure was observed for Ni(OH)2/ZnIn2S4 composite, which is in
line with SEM results (Figure 2a). Further HRTEM investigation (Figure 2c) unambiguously
shows the interfacial region of ZnIn2S4 and Ni(OH)2, and as indicated, the lattice fringes
with spacing at 0.27 and 0.32 nm could be ascribed to (110) plane of hexagonal Ni(OH)2 and
(102) plane of hexagonal ZnIn2S4, respectively [27–29]. No selected area electron diffrac-
tion (SEAD) signal of Ni(OH)2 was observed for 0.37 wt% Ni(OH)2/ZnIn2S4 composite
compared with that of Ni(OH)2 (Figure S3), which is assumed to be due to the low amount
of Ni(OH)2 in the composite. HAADF-STEM (Figure 2d) and the corresponding elemental
mapping results (Figure 2e–h) revealed the homogeneous distribution of Zn, In, S, and Ni
elements throughout the sample, strongly verifying the successful synthesis of the designed
structure. EDX measurement (Figure S4) further verifies the existence of Ni, though its
content is low.

To confirm the chemical state of different elements of the as-prepared samples, XPS
measurements were further carried out. Figure 3a represents the XPS survey spectra
of ZnIn2S4 and 0.37 wt% Ni(OH)2/ZnIn2S4 composite, which confirms the existence of
the designated elements only except for Ni. Furthermore, as shown in Figure 3b, Zn 2p
XPS spectra of ZnIn2S4 and Ni(OH)2/ZnIn2S4 composite exhibit two peaks at 1044.2 and
1021.1 eV, which correspond to Zn 2p1/2 and Zn 2p3/2 of ZnIn2S4, respectively, evidencing
the existence of Zn2+ in the sample [30,31]. Peaks (Figure 3c) at 452.2 and 444.5 eV can be
indexed to In 3d3/2 and In 3d5/2, confirming that element In in the sample is in the form
of a trivalent cation [32]. In addition, the binding energies of S 2p peak (Figure 3d) were
split into two peaks 2p1/2 at 162.4 and 2p3/2 at 161.1 eV, which was proved to be the S2−

typical characteristic in metal sulfides [33]. However, it should be mentioned here that no
signal of Ni 2p was detected, which is considered to be due to the extremely low amount of
Ni(OH)2 in the sample.
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BET measurements were then applied to evaluate the surface area of different samples.
As indicated (Figure 3e and Table S2), with the increase in Ni(OH)2 in the composite, the
surface area is gradually increased from 0.51 m2/g (ZnIn2S4) to 124.65 m2/g (0.74 wt%
Ni(OH)2/ZnIn2S4), while the pore size seems not to follow that rule. In addition, all
the samples exhibit type IV (Brunauer–Deming–Deming–Teller classification), and the
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shape of the three hysteresis loops is type H3, assumed to be related to the aggregation of
particles [16,34].

The absorbance properties of the as-obtained samples were then investigated by
UV–VIS diffuse reflection spectroscopy. As shown (Figure 3f), the absorption of Ni(OH)2
consists of two wide absorption bands at 390–500 nm and 600–800 nm, corresponding to the
d-d transition of Ni [19,35]. On the other hand, for the composite samples, the absorption
characteristic does not show an obvious difference with varying Ni(OH)2 content in our
case (Figure S5). In addition, new weak absorbance in the range of 600 to 800 nm, when
compared with that of ZnIn2S4, further confirms the existence of Ni(OH)2.

The H2 photogeneration performance of different samples was evaluated by using
TEOA as a sacrificial reagent under visible light illumination (>420 nm). Figure 4a shows
the photocatalytic H2 evolution versus illumination time of different samples. The results
show that Ni(OH)2 does not give any photocatalytic activity, while pure ZnIn2S4 only
exhibits a pretty low activity (0.13 mL h−1), which is assumed to be related to the fast
recombination rate of charge carriers. Exceptionally, the 0.37 wt% Ni(OH)2/ZnIn2S4
composite exhibits much higher activity for H2 photogeneration, where obvious bubbles
were observed after the reaction (Figure S6); however, the physical mixed control sample
with the same content only shows moderate activity, which is only slightly higher than
that of pure ZnIn2S4. Our results clearly demonstrate the importance of our strategy
for obtaining the composite to achieve high performance of photocatalytic H2 evolution.
Further optimizing the amount of Ni(OH)2 introduced in the composite reveals that content
at 0.37 wt% gives the best performance of 0.52 mL h−1 (5 mg) (i.e., 4640 µmol h−1 g−1

(Figure 4b)), which is comparable with the recent benchmarking results (Table S3). The
long-term stability test of 0.37 wt% Ni(OH)2/ZnIn2S4 (Figure 4c) indicates good stability
even after four cycles of photocatalytic reaction.
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Figure 4. (a) H2 evolution curves versus illumination time of visible light (λ > 420 nm) of ZnIn2S4,
Ni(OH)2, 0.37 wt%-Ni(OH)2/ZnIn2S4, and 0.37 wt%-Ni(OH)2/ZnIn2S4 (mixed). (b) H2 evolution
rate of ZnIn2S4, Ni(OH)2, and Ni(OH)2/ZnIn2S4 with different amounts of Ni(OH)2 involved. The
data were obtained from three individual experiments. (c) H2 evolution stability test of 0.37 wt%
Ni(OH)2/ZnIn2S4 under the illumination of visible light (λ > 420 nm).

To elaborate on the underlying mechanism of this interesting activity enhancement, PL
emission and lifetime spectra, time-resolved photocurrent, and electrochemical technique
were employed. As indicated (Figure 5a), ZnIn2S4 exhibits a strong broadband PL emission
in the range of 500–700 nm [36], while the obvious decrease in the PL intensity of samples
after introducing Ni(OH)2 is observed, and the corresponding degree is increased with
the increase in the introduced amount of Ni(OH)2, which is assumed to be attributed to
the efficient photogenerated charge transfer from ZnIn2S4 to Ni(OH)2, thus decreasing
the probability of emission relaxation of carriers in ZnIn2S4. The process is expected to be
beneficial to the charge separation in the composite, correlating with the enhancement of
the photocatalytic activity of the catalyst [37,38]. In addition, time-resolved photocurrent
spectra (Figure 5b) indicate that all the composite samples exhibit higher response than
pure ZnIn2S4 or Ni(OH)2, which strongly signifies the critical role of Ni(OH)2 for efficient
charge separation.
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Figure 5. PL spectra (a) and transient photocurrent responses (b) of pure ZnIn2S4, Ni(OH)2, and
Ni(OH)2/ZnIn2S4 composite samples with different amounts of Ni(OH)2 involved. EIS (c) of dif-
ferent samples. PL lifetime decay curves (d) of ZnIn2S4 (red) and 0.37 wt% Ni(OH)2/ZnIn2S4

(blue), respectively.

The charge transfer property of different samples was further evaluated by electro-
chemical impedance spectroscopy (EIS). As indicated (Figure 5c), the smallest Nyquist
plot demonstrates its fast charge transfer property of 0.37 wt% Ni(OH)2/ZnIn2S4 com-
posite [39]. Further PL lifetime results (Figure 5d and Table S4) of ZnIn2S4 and 0.37 wt%
Ni(OH)2/ZnIn2S4 indicate that after the incorporation of the tiny amount of Ni(OH)2
into ZnIn2S4, the relevant average lifetime (τave(PL)) is decreased from 1.68 to 1.42 ns,
unambiguously revealing the charge accelerating role of Ni(OH)2.

All of the above results intensely evidence that the boosting of the performance of the
composite catalyst is highly possible, originated from the relatively high surface area and
efficient charge carrier separation through the formation of the designed heterogeneous
structure. Besides, it has been widely recognized that Ni(OH)2 could act as the co-catalyst
to accept the photoinduced electrons and further complete a subsequent proton reduction
reaction during the photocatalytic hydrogen evolution process [40–42]. Therefore, based
on all of these results, a probable mechanism for the Ni(OH)2/ZnIn2S4 composite to
boost the photocatalytic hydrogen evolution activity was proposed (Scheme 1). Under the
illumination of visible light, the electron is excited from the valence band of ZnIn2S4 into
the conduction band, followed by the subsequent quick transfer into Ni(OH)2 to contribute
to the proton reduction reaction. Since the position of the minimum conduction band of
ZnIn2S4 is −1.35 V, which is more negative than the reduction potential of H+/H2 [43], the
electron generated in ZnIn2S4 possesses the adequate ability to drive the proton reduction
reaction. Meanwhile, the left hole would be consumed by TEOA, accompanied by the
formation of the relevant oxidation products. Owing to the existence of Ni(OH)2, the
electron photoinduced in ZnIn2S4 is effectively inhibited, which results in the significant
enhancement of the photocatalytic activity of the relevant composite.
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4. Conclusions

In this work, we designed and prepared a Ni(OH)2-modified 2D ZnIn2S4 heteroge-
neous photocatalyst to achieve the high performance of photocatalytic H2 evolution under
visible light illumination. Benefiting its unique structure, under optimal conditions, the
obtained sample exhibits superior activity for H2 photogeneration. Furthermore, the plau-
sible underlying mechanism is also proposed after the detailed investigations. It is hoped
that our tactic and obtained information could provide useful information for the future
design of a high-performance photocatalyst.
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