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ABSTRACT Sheetz and Spudich (1983, Nature (Lond.), 303:31-35) showed that ATP-dependent 
movement of myosin along actin filaments can be measured in vitro using myosin-coated beads and 
oriented actin cables from Nitella. To establish this in vitro movement as a quantitative assay and to 
understand better the basis for the movement, we have defined the factors that affect the myosin- 
bead velocity. Beads coated with skeletal muscle myosin move at a rate of 2-6 tzm/s, depending on 
the myosin preparation. This velocity is independent of myosin concentration on the bead surface 
for concentrations above a critical value (~20 ~g myosin/2.5 x 109 beads of 1 #m in diameter). 
Movement is optimal between pH 6.8 and 7.5, at KCl concentrations <70 mM, at ATP concentrations 
>0.1 mM, and at Mg 2+ concentrations between 2 and 6 mM. From the temperature dependence of 
bead velocity, we calculate activation energies of 90 kJ/mol below 22 °C and 40 kJ/mol above 22 °C. 
Different myosin species move at their own characteristic velocities, and these velocities are 
proportional to their actin-activated ATPase activities. Further, the velocities of beads coated with 
smooth or skeletal muscle myosin correlate well with the known in vivo rates of myosin movement 
along actin filaments in these muscles. This in vitro assay, therefore, provides a rapid, reproducible 
method for quantitating the ATP-dependent movement of myosin molecules on actin. 

Movement of myosin on actin filaments is believed to drive 
many cellular motile processes. According to the model of H. 
E. Huxley (9), myosin converts the energy of ATP into 
mechanical energy through a conformational change while it 
is bound to actin. Furthermore, it is generally believed that 
each myosin molecule acts as an independent force generator 
(8) and that many molecules, when coupled and acting asyn- 
chronously, provide steady movement along polar actin fila- 
ments. Until recently, actual displacement of myosin relative 
to actin had only been quantitated in the muscle sarcomere. 
The development of an in vitro assay, using myosin-coated 
beads to follow the position of the myosin on oriented actin 
cables from Nitella (22), now allows measurement of the rate 
of movement of various types of myosin on actin filaments 
under controlled ionic conditions. 

From our previous calculations (22), we expected that the 
myosin-bead velocity would be similar to the maximum 
velocity of contraction of the muscle from which the myosin 
was derived. Because the actin-activated ATPase activities of 
myosins generally correlate with the respective muscle con- 
traction velocities, we expected a further correspondence be- 
tween bead velocity and actin-activated ATPase activity. In 
this study we show that these correlations do indeed hold. 

The oriented polar actin cables used in the in vitro assay 
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are derived from a dissected Nitella cell. Thus, the actin 
substratum, aside from its high degree of spatial organization 
(10, 11), is not well defined. It was important, therefore, to 
define the limits of salt concentrations and other parameters 
that will support myosin motility along the Nitella substra- 
tum. These limits may reflect in part the limits of stability of 
the Nitella substratum or the actin cables per se, or relate to 
the presence of auxiliary proteins on the actin cables. In fact, 
however, the optimal conditions in our system are consistent 
with the previously described (1, 7, 26) optimal conditions for 
the interaction of purified actin and myosin using actin- 
activated ATPase as an assay, which suggests that the assay is 
not complicated by the possible presence of auxiliary proteins 
on the Nitella substratum. 

The results presented in this paper establish that the Nitella- 
based in vitro motility system is a fast, reliable, and quanti- 
tative assay for the velocity of myosin movement along actin 
filaments. 

MATERIALS AND METHODS 

Materials: Nitella axillaris was cultured (16) from original stocks pro- 
vided by Dr. L. Taiz (University of California, Santa Cruz) and Dr. P. Rich- 
mond (University of the Pacific). In this protocol, 40 ml of chow (a mixture of 
16 parts loam, 5 parts leaf mold, 6 parts fine sand, 4 parts steer manure, and 
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0.02 parts bone meal, by volume), 15 ml of potting soil, and 60 ml H20 were 
sterilized and then diluted in a 6 x 18 in cylindrical tank filled with distilled 
H20. After waiting for 2 d to allow particles time to settle, several terminal 
internodal cells from a stock Nitella culture were added to the tank and it was 
placed under 100 foot-candies of fluorescent (blue-green) illumination. Cultures 
normally took 2--4 wk to mature. 

Skeletal myosin was prepared from rabbit muscle by the method of Kielly 
and Harrington (12), and was stored as a stock solution in 0.6 M KCI, 50 mM 
potassium phosphate, pH 6.5, 0.5 mM dithiothreitol (DTT) a, 0.5 mM EDTA, 
on ice. N-ethylmaleimide (NEM)-inactivated myosin was prepared by reacting 
myosin in storage buffer with excess NEM (1 raM) for 24 h on ice. The reaction 
was stopped by adding 2 mM DTT. In addition, skeletal myosin samples were 
kindly donated by Dr. S. Lowey (Brandeis University) and Dr. R. Cooke 
(University of California, San Francisco). Dictyostelium discoideum myosin 
was prepared as described previously (17) with modifications detailed elsewhere 
(Griffith, L. M., and J. A. Spudich, manuscript in preparation). Turkey gizzard 
myosin, with >95% light chain phosphorylation, was a gift of Dr. J. Sellers 
(National Institutes of Health). 

Myosin-Bead Preparation: In our standard assay, Covaspheres MX 
particles (1 ,m in diameter; 2.5 x 10 ~° beads/ml; Covalent Technology Corp., 
Ann Arbor, MI) were diluted 10-fold with 10 mM potassium phosphate, pH 
7.0, 0.2 mM DTT, and enough of a concentrated stock solution of myosin (5- 
10 mg/ml) to give the desired final protein concentration. In all cases, except 
for the myosin concentration dependence study, 100-200 #g/ml myosin was 
incubated with the beads. The final buffer conditions were 10 mM potassium 
phosphate, pH 7.0, 50 mM KCI, 0.2 mM DTT, and 0.03 mM EDTA. Beads 
were allowed to incubate with myosin on ice for at least 1 h before they were 
assayed for motility. Most often the beads aggregate into distinct groups ~5- 
10 t=m in diameter, but the rates of movement are independent of bead diameter 
between 0.6 and 120 ,m (22, 23). While it was possible to disrupt bead 
aggregates by mild sonication without affecting motility, generally this was not 
done. 

Nite/la Dissection: A Nitella internodal cell (2-4 cm in length and 
~ 1 mm in diameter) was trimmed free of branch cells. The cell was rinsed 
briefly with distilled H20 and placed in 10 ml of dissection buffer (10 mM 
imidazole, pH 7.0, 25 mM KCI, 4 mM MgCI2, 4 mM EGTA, l0 mM sucrose, 
and 1 mM ATP). The dissection was performed at 22°C in 50-ram plastic petri 
dishes on a layer (2-3 mm thick) of Sylgard (Dow Coming Corp., Midland, 
MI). First, a cell was secured at both ends with pins of tungsten wire (length, 
1-3 ram; diameter, 0.003 in) sharpened at one end by electrolysis in 10 M 
NaOH. Next, the cell was opened with a transverse cut using microscissors 
(Moria, MCI9B; from Fine Science Tools Ltd., North Vancouver, B.C., Can- 
ada). The cell was then cut open along its whole length taking care to disturb 
as few chloroplasts as possible in the process. Finally, another transverse cut 
was made at each end of the lengthwise cut, and the central portion was opened 
and pinned fiat. The cytoplasm was largely washed away in the process of 
cutting and pinning the cell substratum to the Sylgard. Occasionally, vesicular 
materials from the Nitella continued to move along the chloroplast rows after 
the cell was cut open, but this material ran off the ends of the pinned substratum 
within a few minutes. 

Standard Assay,: Myosin-coated beads were mixed 1:3 with dissection 
buffer containing 0.2 M sucrose and 1 mM DTT. Samples were then drawn 
into a microcapillary and 0.1-1 t=l was applied to a limited region of the 
dissected Nitella. The assay was performed at 22"C, except in the temperature 
dependence study. In the figures, each data point represents the average of 5- 
15 beads or distinct bead a~dgregates. 

Bead movement was recorded with a video camera mounted on a Zeiss 
photomicroscope and connected to a Panasonic video cassette recorder (Model 
NV-8050). A 40x water-immersion objective lens was used; the magnification 
on the monitor screen was 2,000. Our initial experiments used fluorescein- 
labeled beads to visualize the movement (22). The beads are easily seen, 
however, using bright-field optics, and this simpler method of monitoring the 
beads is now standard. Analysis of movement was performed on replay from 
the video cassette recorder where it was possible to freeze the motion. The 
positions of actively moving beads were traced on a piece of plastic placed on 
the monitor screen; the tape was then advanced and the new positions of the 
beads were recorded. Because the time is also recorded on the tape, the velocities 
of the beads were easily determined. 

RESULTS 

W h e n  Covaspheres  coa ted  wi th  skeletal  myos in  were expelled 
f rom the  microcapi l lary ,  they exhib i ted  B r o w n i a n  m o t i o n  as 

]Abbreviations used in this paper: DTT, dithiothreitol; HMM, 
heavy meromyosin; NEM, N-ethylmaleimide. 
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they sett led o n t o  the  Nitella subs t r a tum.  W i t h i n  1-2 min ,  
m a n y  beads  a n d  bead  aggregates b e c a m e  a t t ached  to the  
ch loroplas t  rows, ceased the i r  B r o w n i a n  mo t ion ,  a n d  began  
to  m o v e  un id i rec t iona l ly  a long  the  rows. As repor ted  earl ier  
(22), the  d i rec t ion  o f  m o v e m e n t  reversed across each o f  the  
two Nitella indi f ferent  zones,  cons i s ten t  wi th  the  reverse in  
polar i ty  o f  ac t in  f i l aments  on  e i ther  side o f  these zones  (11). 
The  d i rec t ion  o f  m o v e m e n t  was f rom the  po in t ed  ends  o f  the  
ac t in  f i l aments  toward  the i r  ba rbed  ends, as descr ibed pre- 
viously (22). Myos in -bead  m o v e m e n t  proceeded  over  long 
dis tances  ( > 1 0 0  # m )  a n d  at  a cons t an t  rate i n d e p e n d e n t  of  
the  size o f  the  bead  aggregate. Over  t ime,  of ten  wi th in  2 0 - 3 0  
m i n  af ter  dissect ion,  bead  m o v e m e n t  b e c a m e  less consis tent :  
it s o m e t i m e s  appea red  as i f  t he  beads  were caught  by a n d  
t hen  b roke  free f rom invisible  restraints ,  a n d  some  beads  
s topped  m o v i n g  al together.  T h e  same  Nitella could  be  used 
for m e a s u r e m e n t s  for ~ 1 h af ter  dissection,  unt i l  few e n o u g h  
beads  were still m o v i n g  s m o o t h l y  a n d  con t inuous ly  for the  
da ta  to be  useful. 

The  rates o f  m o v e m e n t  o f  beads  coa ted  wi th  a fresh myos in  
p repa ra t i on  were highly reproduc ib le  ( s t andard  error  was 
~ 1 0 %  w h e n  10 bead  velocit ies were measured) .  These  rates 
were cons i s ten t  f rom one  N. axillaris cell to  another .  Different  
skeletal  musc le  myos in  prepara t ions ,  however ,  m o v e d  at  con-  
s iderably different  rates, be tween  2 to 6 ~m/s .  F u r t h e r m o r e ,  
we observed  t ha t  over  a pe r iod  o f  weeks, beads  coa ted  wi th  
m y o s i n  f rom the  same  p repa ra t i on  m o v e d  at  progressively 
s lower rates. This  effect was r educed  by the  add i t ion  o f  D T T  
to the  myos in  storage buffer,  suggesting t ha t  ox ida t ion  was 
responsible  for the  ra te  decrease. To  m o r e  direct ly test  the  
r e q u i r e m e n t  for act ive myos in ,  we d e t e r m i n e d  the  effect of  
N E M - i n a c t i v a t e d  m y o s i n  o n  bead  mot i l i ty  w h e n  mixed  wi th  
active myos in .  T h e  presence  o f  N E M - m y o s i n  dramat ica l ly  
s lowed bead  m o v e m e n t .  W h e n  only  20% of  the  myos in  o n  
the  beads  was NEM-inac t iva t ed ,  m o v e m e n t  was slowed by 
50%. Therefore ,  i t  is l ikely t ha t  the  var iabi l i ty  o f  myos in -bead  
velocity found  in beads  coa ted  wi th  myos in  f rom different  
p repa ra t ions  or  f rom a single p repa ra t ion  over  t ime  is due  to 
par t ia l  i nac t iva t ion  o f  the  myos in .  

W i t h  the  bead  c o n c e n t r a t i o n  in ou r  s t anda rd  assay (where 
beads  were d i lu ted  10-fold to a c o n c e n t r a t i o n  o f  2.5 x 109 
b e a d s / m l ;  see Mater ia l s  a n d  Methods) ,  bead  velocity was 
cons t an t  as long  as the  m y o s i n  c o n c e n t r a t i o n  in  the  bead  
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FIGURE 1 The velocity of movement of skeletal muscle myosin- 
coated beads is plotted versus the concentration of myosin in the 
bead incubation mixture for bead concentrations of ([3) 6 x 108 
beads/ml, (O) 2.5 x 109 beads/ml (standard assay), and (A) 1 x 10 l° 
beads/ml. Each point represents the average velocity of five to 
fifteen distinct beads or bead aggregates and standard assay con- 
ditions were used (see Materials and Methods). 



incubation was at least 20/~g/ml. This result was true for 
smooth muscle myosin and Dictyosteliurn myosin (data not 
shown) as well as for skeletal myosin (Fig. 1). Below 20 
#g/ml there was a sharp decrease in bead velocity, and no 
movement at all was observed when beads were incubated 
with <10 pg/ml of myosin in the standard assay. The mini- 
mum concentration of myosin required for movement was 
found to depend on bead concentration (Fig. l). When one- 
fourth the normal amount of beads was used, incubation with 
myosin at 5 pg/ml caused the beads to move. Conversely, 
when four times as many beads were used, the myosin con- 
centration required for movement was 30 #g/ml. 

We tested the relative rates of movement of myosin from 
skeletal muscle, smooth muscle and a nonmuscle cell (Fig. 2). 
The greatest velocity was observed with skeletal muscle 
myosin. The data shown in Fig. 2 derive from skeletal muscle 
myosin preparations that moved from 3 to 6/~m/s. As men- 
tioned above, different preparations moved at different rates, 
but all preparations moved between 2 and 6 pm/s. Phospho- 
rylated gizzard smooth muscle myosin, in contrast, moved at 
only 0.1-0.6 pm/s. Dictyostelium myosin moved at 0.5-1.5 
pm/s. These rates of movement are thus characteristic of the 
type of myosin used. In addition, the rates of movement of 
the different myosins correlate with their relative actin-acti- 
vated ATPase activities (2, 17). 

The high reproducibility of the velocity measurements show 
that this assay is clearly a useful tool for investigating factors 
affecting myosin motility. To find the optimal assay condi- 
tions (defined as giving the maximum velocities) and to define 
boundary conditions outside of which the assay does not 
work, we varied several experimental parameters. As shown 
in Fig. 3, there is a sharp decrease in velocity below pH 6.8; 
above pH 7.5, there is a more gradual decline. From pH 6.8 
to pH 7.5, velocity is relatively constant. Imidazole buffer and 
Tris-HC1 buffer gave the same results. We also investigated 
the effect of the MgCl2 concentration in the dissection buffer 
(Fig. 4). At l mM MgCI2,  n o  movement occurred. This may 
be because ATP, an effective chelator of Mg 2+, was present at 
1 mM as well, and free Mg 2. may be required for movement. 
Bead velocity was maximal at 4 mM MgC12 and then gradually 
declined at concentrations of up to 20 mM, the highest tested. 
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FIGURE 2 Histograms of the number of beads and bead aggregates 
versus bead velocity show the differences in velocity distributions 
for skeletal muscle, Dictyostelium discoideum, and phosphorylated 
gizzard myosin-coated beads. In all three cases 100-200 pg/ml 
myosin were mixed with 2.5 x 109 beads/ml and the standard assay 
was used at 22°C. 

A third dissection buffer parameter we explored was KCI 
concentration. Dissection is usually performed in 25 mM 
KC1, but normal movement occurs in KCl.concentrations as 
low as l0 mM or as high as 70 mM. At K~'l concentrations 
of 70-100 raM, myosin-beads sometimes moved. The varia- 
bility at these KCI concentrations could reflect effects on the 
Nitella substratum that differ somewhat from cell to cell. At 
150 mM KC1 and above no movement was observed. 

Myosin-bead movement on actin cables was also found to 
depend on ATP concentration (Fig. 5). The velocity was half- 
maximal at an ATP concentration of 50 pM. The final 
parameter tested was the temperature at which the assay is 
performed. As Fig. 6 shows, velocity was found to be strongly 
temperature-dependent. When graphed as an Arrhenius plot 
the slope indicates activation energies of 90 kJ/mol from l0 
to 22°C and 40 kJ/mol from 23 to 39°C. 

4.0 

3.0 
E 

~- 2.0 
t- 

O 
" 1.0 LM > 

6.5 7.0 7.5 8.0 8.5 
pH 

FIGURE 3 Bead velocity is plotted versus pH of the dissection 
medium with 10 mM imidazole (O) or Tris-HCI buffer (O) for skeletal 
muscle myosin using the standard assay. 
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FIGURE 4 Bead velocity is plotted versus  MgCI2 concent ra t ion  in 
the dissection buffer for skeletal muscle myosin. 
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FIGURE 6 The logarithm of the velocity is plotted versus the in- 
verse of the temperature for skeletal muscle myosin. Temperature 
was controlled by circulating temperature-regulated water through 
coils surrounding the microscope objective and within the dissec- 
tion chamber. The temperature was measured at the time of the 
experiment by placing a thermocouple adjacent to the Nite//a. 

DISCUSSION 

Myosin-bead movement on Nitella actin provides a quanti- 
tative assay for the fundamental function of the myosin 
molecule. In most cells, the rates of the relevant movements 
are not easily determined by direct microscopic examination. 
This in vitro assay allows the direct visual measurement of 
movement under defined buffer conditions with purified 
myosins. The assay is simple and fast and gives reproducible 
values for myosin velocity. In addition, microgram levels of 
myosin are sufficient to assay its movement. We normally 
deposit ~10 ng of myosin onto the Nitella substratum, but 
even smaller quantities can be reliably assayed. 

Skeletal muscle myosin beads move at a velocity that is 
notably similar to the maximal relative rate of movement of 
myosin and actin in the muscle sarcomere (3, 6, 19). The 
maximal rate of rabbit skeletal muscle contraction at 25°C is 
about five lengths per second which corresponds to a relative 
movement of myosin along actin filaments of ~6 zm/s (3). 
Rabbit skeletal myosin-coated beads in our in vitro assay 
move at 2-6 zm/s at 22°C. Furthermore, smooth muscle 
myosin-beads move at one-tenth that velocity, in keeping 
with the I 0-fold slower rate of contraction of smooth muscle 
(5, 21). These results suggest that the assay is a reliable 
measure of the maximal rate of cellular movements that are 
actin- and myosin-based. 

The major weakness of the assay is that the Nitella substra- 
tum is not biochemically defined. There could be trace 
amounts of Nitella enzymes or proteins that modify the 
myosin and affect its motility. However, we have no results 
to date to suggest that this complication is a serious one. The 
cytoplasmic contents of the Nitella cell are diluted 2,000- 
4,000-fold in the dissection buffer, which significantly reduces 
the probability of enzymatic modification during the course 
of the assay. Another weakness of the assay is that Nitella 
actin could differ in important ways from other actins. For 
example, Nothnagel et al. (20) suggest that Nitella actin does 
not bind DNase I. However, others (Vale, R., A. G. Szent- 
Gy6rgyi, and M. P. Sheetz, manuscript submitted for publi- 
cation) have been able to confer calcium dependence on 
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skeletal myosin movement by adding the tropomyosin-tro- 
ponin complex from rabbit skeletal muscle to the Nitella actin 
cables. This result indicates that the Nitella actin does not 
differ significantly from other actins, in keeping with the 
known highly conserved nature of this protein throughout 
evolution (13, 27). We have recently shown that highly puri- 
fied reconstituted, oriented actin filaments support movement 
of myosin-coated beads (24). The development of this totally 
defined assay will eliminate these two major concerns about 
the Nitella-based assay system. 

A third problem with the assay is that the nature of the 
myosin on the bead surface is not well defined, and further 
studies arc underway to clarify what configuration is required 
to support movement. Since the assay is carded out in 25 
mM KCI, some thick filament formation, even at low myosin 
concentrations, probably occurs. We have not ruled out the 
possibility that some form of aggregation such as that found 
in thick filaments may be necessary. Movement of the 
myosin-coated beads is quantitatively similar to the bead 
movement reported earlier (22) using heavy meromyosin 
(HMM) preparations. However, in experiments using HMM 
preparations, only a small number of beads were moving at 
any one time; they moved shorter distances; and it took much 
longer to observe a given number of moving beads than in 
experiments using myosin. We wish to emphasize that al- 
though our initial observations of bead movement used HMM 
preparations, those preparations were not purified free from 
all traces of myosin. As reported (22), we estimated from SDS 
acrylamide gels that myosin represented ~ 1% of the protein 
in the preparations used. Numerous experiments have sug- 
gested that it is unlikely that this level of contamination could 
account for the movement that we have seen repeatedly with 
HMM preparations made as described in the Sheetz and 
Spudich report (22). However, all experiments to obtain 
movement with highly purified HMM have failed, for reasons 
that are not yet apparent. Thus, the critical question as to 
whether HMM free of any trace of myosin can move must 
await further experimentation. 

There are good correlations between the velocity of muscle 
shortening and of actin-activated myosin ATPase activity (2). 
With regard to ATP concentration dependence, however, the 
half-maximal velocity of muscle shortening under zero load 
occurs at ~200 zM ATP (4), whereas the half-maximal value 
for actin-activated HMM ATPasc in vitro occurs at 6 zM 
(18). In the case of the ATPase measurement, each myosin is 
expected to behave independently, so that a half-maximal 
rate of hydrolysis should be a reflection of 50% of the myosin 
ATP-binding sites being filled. On the other hand, in the case 
of the measurement of the velocity of shortening, the myosin 
molecules are not behaving independently. A small percentage 
of the molecules lacking ATP in their active sites would be 
expected to result in very strong actin-myosin interactions 
(rigor bonds), which should exert a substantial drag on the 
relative movement of thick and thin filaments. Thus, consid- 
erably more than 50% saturation of the ATP-binding sites 
may be required for half-maximal velocity of shortening. Our 
myosin-bead assay would be expected to mimic muscle short- 
ening in this regard. The value we obtained for half-maximal 
velocity of movement of skeletal myosin-coated beads was 50 
#M ATP, which, like the value for muscle shortening, is 
considerably higher than the ATP concentration required for 
half-maximal ATPase activity. 

With regard to temperature dependence, the activation 



energy measured for the velocity of  shortening of intact 
muscle fibers is 60 kJ/mol myosin (25) and that measured for 
the actin-activated HMM ATPase is 120 kJ/mol (18). Inter- 
estingly, the temperature dependence of the myosin-bead 
velocity proved to be biphasic. This biphasic nature of  the 
Arrhenius plot may be revealing an important property of  the 
myosin molecule. Levy et al. (14, 15) showed nearly identical 
temperature dependence for actin-activated myosin ATPase 
activity under certain conditions. They calculated energies of  
activation of  50 kJ/mol >16"C and 104 kJ/mol <16"C, 
whereas our values for myosin movement in vitro are 40 kJ/ 
mol and 90 kJ/mol with an inflection point at -22"C. Levy 
et al. (14, 15) interpreted the biphasic character of their 
Arrhenius plots to reflect a reversible flexibility of  the confor- 
mational state of  the S1 heads of  the myosin molecule. 
Strikingly, a very similar biphasic Arrhenius plot was obtained 
for the rate of  decay of  tension in muscle fibers by Stein et al. 
(25). They reported energies of  activation of  70 kJ/mol >20"C 
and 117 kJ/mol <20"C. They interpreted the biphasic nature 
of  the temperature dependence as reflecting a rate limiting 
step in the sequestering of calcium ion by the sarcoplasmic 
reticulum. It seems likely from the studies of  Levy et al. (14, 
15) that this phenomenon is an important property of the 
myosin molecule itself, and this conclusion is supported by 
our findings, where calcium ion sequestration is not an issue. 

From these studies it is evident that the rapid movement 
of myosin past actin in the sarcomere, as well as presumably 
in nonmuscle cells such as Dictyostelium, can be reproduced 
in vitro with myosin-coated beads and Nitella actin cables, 
and easily measured by means of  light microscopy. The rate 
of  bead movement depends on the source of  myosin, and 
correlates with the in vivo rates of  muscle contraction as well 
as with the corresponding actin-activated ATPase activities. 
As defined here, the Nitella assay allows a quantitative way 
to study the effects of  various biochemical conditions or 
modifications of  the myosin molecule on the ability of  myosin 
to convert chemical energy into movement. 
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