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Abstract

Mammalian nasal chemosensation is predominantly mediated by two independent neuronal pathways, the olfactory and
the trigeminal system. Within the early olfactory system, spatiotemporal responses of the olfactory bulb to various odorants
have been mapped in great detail. In contrast, far less is known about the representation of volatile chemical stimuli at an
early stage in the trigeminal system, the trigeminal ganglion (TG), which contains neurons directly projecting to the nasal
cavity. We have established an in vivo preparation that allows high-resolution imaging of neuronal population activity from
a large region of the rat TG using voltage-sensitive dyes (VSDs). Application of different chemical stimuli to the nasal cavity
elicited distinct, stimulus-category specific, spatiotemporal activation patterns that comprised activated as well as
suppressed areas. Thus, our results provide the first direct insights into the spatial representation of nasal chemosensory
information within the trigeminal ganglion imaged at high temporal resolution.
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Introduction

The trigeminal nerve receives polymodal input from diverse

tissues (e.g. cornea, facial skin, vibrissa pad, oral and nasal

membranes) and mediates various sub-modalities of somatic

sensation: temperature sense, proprioception, discriminative

touch, nociception and chemosensation [1]. However, little is

known about how the trigeminal ganglion represents these

different stimuli, or any of its potential internal processing

dynamics (as proposed by [2]), which renders this early stage of

the trigeminal system as fascinating as unexplored.

Thus far, only a recent study addressed the existence of a fine-

grained somatotopic trigeminal organization using extensive electro-

physiological sampling, thereby especially focusing on the localization

of vibrissae-responsive cells within the TG [3]. However, the

representation of volatile substances in the TG has never been

addressed: Vertebrate chemosensation is mainly mediated by the

olfactory and the gustatory system as well as the trigeminal nerve [4].

Although the olfactory system is the main detector of volatile

substances, the trigeminal system also contributes to the overall

gustatory and olfactory sensation since most odorants can be also

detected via the trigeminal nerve as demonstrated in animal studies

[5–9] and human psychophysical examinations [10,11]. Anosmic

patients, only relying on trigeminal function, have lost fine odor

discrimination skills and are just able to roughly discriminate between

different odor categories [12]. Strikingly, the trigeminal system seems

to be extremely selective for certain substances as demonstrated by its

ability of even distinguishing molecular stereoisomers [13,14].

However, since most animal studies recorded from free trigeminal

nerve endings, knowledge about any potential underlying spatial

mapping could not be derived.

The trigeminal ganglia are located at the base of the skull,

ventral to the brain. Possibly for this reason, direct in vivo optical

access, as a way to simultaneously record space-time trigeminal

population activity, has not been attempted so far.

Here we established a decerebration protocol that allows optical

recording of population activity from a large region of the rat TG

simultaneously. A voltage-sensitive dye was used to visualize TG

dynamics at high temporal and spatial resolution, complemented

by multi-unit electrophysiological recordings. In this early study,

we investigate TG responses to a select set of nasally administered

stimuli, including both strong trigeminal agonists (CO2, ethanol)

and olfactory stimuli. Typical trigeminal agonists evoked localized

response patterns that were characteristically modulated over time.
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In contrast, responses to olfactory stimuli were characterized by

their low amplitude and widespread activation, which could hint

at possible intraganglionic communication mechanisms.

Materials and Methods

Animals
Data were acquired from 35 adult male Wistar rats (Charles

River Laboratories WIGA, Germany). All animal experiments were

carried out in accordance with the European Union Community

Council guidelines, approved by the German Animal Care and Use

Committee (application number: AZ 9.93.2.10.32.07.022) in

accordance with the Deutsche Tierschutzgesetz (1 8 Abs. 1

Tierschutzgesetz) and the NIH guidelines.

Surgical Procedure
Anesthesia was induced with Chloralhydrate (i.p., 4% solution in

saline, 400 mg kg21). Lidocaine (1%, s.c.) was applied to all pressure

points and incisions. Immediately before fixation in the stereotactic

device, subjects were reverse-tracheotomized (also known as a double

tracheotomy, as adapted from an earlier study [6]). In this procedure,

two separated tubes were placed into each trachea opening created

by a single incision. Subjects were artificially ventilated through the

lower tracheotomy tube leading to the lungs (50–70 cycles/min, 4–

6 ml tidal volume; UGO BASILE, Italy), while the upper

tracheotomy tube allowed for the control of a smooth, constant

through-passage of the stimulation air stream. Anesthesia was

maintained using isoflurane (1–1,5%). Electrocardiogram and rectal

temperature were continuously monitored (core temperature was

held at 37.5uC). A craniotomy was performed to expose the cerebral

hemispheres, which were then gently aspirated to gain access to the

trigeminal ganglia at the base of the skull (Figure 1A). After

decerebration (which caused unconsciousness) isoflurane was de-

creased to less than 1% (to rule out influences on nociceptive ion

channels). Preparations were stable up to 24 hours. After the

experiments rats were euthanized with an overdose of anesthetic.

In vivo VSD loading of the TG
A micropipette was filled with a standard pipette solution

containing the VSD (RH-1838, Optical Imaging Inc., NY). A

weak manual pressure pulse was used to inject small amounts at

multiple ganglionic locations (total injected volume ,500–

1000 nl). The camera was positioned to secure the best possible

homogeneous illumination across the ganglionic surface.

Stimulus application
Stimulation was performed with a custom made olfactometer

which contained saturated vapor lines (saturator tubes containing

[citral, 1 mM; vanillin, 1 mM; undiluted ethanol; pure CO2 (30%

final concentration)]) and a control line (saturator tube containing

distilled water, 0.4 l/min) that all opened out to a constant clean

air background flow (1 l/min) ending in a single tube. Since

trigeminal ganglion neurons are polymodal (mechano-, thermo-

and chemosensitive) and even their chemosensitivity is not limited

to the nasal cavity [15–17], we took exceptional care in order to

minimize artifacts arising from ectopic and/or mechanical/

thermal stimulation: To ensure nasal trigeminal stimulation, the

odorant delivery tube was positioned such that it was tightly

adjusted to the nostril ipsilateral to the imaged ganglion. To isolate

chemosensory stimulation effects, the flow rate (1.4 l/min) and

temperature (room temperature) of the stimulation airstream was

kept constant throughout the experiment. The use of a constant

airflow (as opposed to an artificial sniffing rhythm) further avoids

possible mechanical activation of the trigeminal ganglion.

Additional steps were taken to minimize artifacts arising from

external, mechanical sources such as heartbeat and the respirator

(which is decoupled from the stimulation airstream due to the

reverse tracheotomy), as outlined in the following subsections.

The stimulus order was pseudo-randomized; inter-stimulus

time: 20 sec (between conditions), 3 min (returning to the same

condition); pre-stimulus time 200 ms+100 ms olfactometer laten-

cy; the stimulus stayed on till the end of the trial.

VSD imaging and electrophysiology
VSD signals were acquired using a fast CCD camera (Dalstar,

Dalsa, Colorado Springs, USA) at 100 Hz (for VSD setup details

see [18]) (recording duration = 5 s). Data acquisition was triggered

by coincident heart beat and respirator phase, thus minimizing

artifacts that could arise from these mechanical events. Their

effects are subsequently removed during data processing by

filtering and divisive normalization to blank conditions (see below).

Post-imaging, we performed targeted electrode penetrations

(tungsten electrodes, 1.0 MV) guided by the vascular pattern

and the imaged activity. The signals were filtered (0.1–0.3 kHz),

digitized (25 kHz) and spike sorted to isolate single units (Multiple

Spike Detector, Alpha-Omega, Israel).

Data analysis
In the pre-processing procedure, each acquired pixel was

divisively normalized to its mean value during the pre-stimulus

period, (i.e. F/F0). The activity of each given condition was then

compared to the mean of two blank conditions and expressed as

relative fluorescence change, where (DF/F = F/F02FB/F0B). Next,

the significance of the measured signal across trials was expressed

in z-score where z =DF/F/!(SEM(F/F0)2+SEM(FB/F0B)2);

SEM = trial-wise standard deviation normalized to the square

root of the number of trials. Due to the long recording duration,

we sought to eliminate any residual respiration artifact using a

frequency filter. In this step, the temporal frequency of respiration-

related artifacts was estimated from raw data by applying Fast

Fourier Transform to the timecourses of single pixels. Next, a

band-stop Butterworth filter (0.5–1.5 Hz) was used to filter out

these regular contributions from the pre-processed signal.

Individual activity patterns evoked by each stimulus (‘‘model’’

patterns) were obtained by initially averaging the main response

interval (2 s–4.8 s after stimulus onset) in individual subjects.

In order to determine response onset latencies the model patterns

were correlated with z-score values, performed on data from smaller

time windows (100 ms). Pearson’s correlation coefficients between

each 100 ms frame to the corresponding ‘‘model’’ patterns were

then studied across animals. The onset latency was defined as a time

point at which the correlation coefficients crossed the threshold of

0.8 (the value chosen by comparative analysis including blank

condition patterns). Unless otherwise stated, results are presented as

mean 6 SEM; n = number of animals.

Virus inoculation and detection procedure
Adapted from [19]. In brief: 5 ml of high titered 56108 PFU/ml)

Pseudorabies virus Bartha strain (PrV-GFP) were inoculated to one

nostril of the rat. Animals were sacrificed at different time points after

infection in order to visualize viral mediated marker protein

expression. An ex in vivo preparation of the base of the skull containing

the two ganglia [20] was used for marker protein detection.

Trigeminal areas displaying infected cells were manually outlined

using high resolution epifluorescence images (Zeiss, Axioskop 2, 2,56,

106, 206 objective) for each infected animal. We then overlaid

outlined areas from different subjects by aligning vascular maps of

each ganglion along its midline and the mandibular branch region.

Imaging Trigeminal Chemosensory Responses
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The overlay was color coded to indicate the number of animals

showing infected areas at identical trigeminal regions.

Results

Visualization of evoked trigeminal dynamics using
voltage-sensitive dye imaging

We recorded evoked optical signals from the trigeminal

ganglion (Figure 1A) in response to volatile chemical stimulation.

In general, high signal-to-noise ratio was typically attained and in

some cases, structured signals could be clearly identified from

single trials. Figure 1B presents such an example of a single trial

optical recording of the trigeminal ganglion (first frame depicts the

vascular map) when ethanol was nasally administered (time 0).

Coordinated responses in the trigeminal ganglion occurred

repeatedly during which a distinct activation pattern was observed.

The phasic pattern was jointly expressed by local regions of

activation (red areas) as well as suppression of the trigeminal

Figure 1. Spatiotemporal dynamics of trigeminal responses in a single trial. (A) Schematic view demonstrating TG location at the base of
the skull (after decerebration). Bottom: Illustration of the skull-base anatomy (modified from [44]). TG is marked in orange. Top: TG vascular image;
scale bar = 1 mm; dotted black line = animal midline; man, mandibular branch; on, optic nerve; oph-max, ophthalmomaxillary branch. (B) Timecourse
of VSD activity in the TG following nasal application of ethanol. 0 ms denotes stimulus onset. Each frame represents 10 ms of recording extracted
from the original timecourse at regular time points (frames of interest are represented in higher temporal resolution). Coordinated activation of the
trigeminal ganglion occurred in brief repeated pulses of variable duration and at variable intervals. White bar = 1 mm.
doi:10.1371/journal.pone.0026158.g001
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ganglion (blue areas). The ability to visualize individual sweeps in

some experiments was an important advantage for characterizing

the temporal dynamics of the response to ethanol, because these

pulses of activity occur irregularly in time with each stimulus

application (see Figure S1).

For spatial analysis of the evoked activity, we averaged

recordings across trials and time. The evoked patterns were then

expressed in z-score. Such a statistical activation map derived from

a different subject is presented in Figure 2A. Activated areas

include regions in the near-posterior, central to lateral and

anterior ganglion together with suppression in posterior trigeminal

areas. Changing the stimulus application site altered this spatial

layout: when ethanol was applied instead to the oral cavity, a

region in the anterior-medial ganglion became predominantly

activated (asterisk Figure S2), suggesting minimal (if any)

contribution of oral activation to the activation pattern evoked

by nasal application of ethanol.

Evoked activation pattern correlates with afferent neural
sources

We then investigated the possible source of these activations

using pseudorabies viral tracing since activated regions corre-

sponded in general to the ganglionic localization of trigeminal

neurons innervating the nasal cavity – i.e. cells from the

nasopalatine/infraorbital nerve, with their somata located in a

posterior, central to lateral position in the TG, as well as from the

anterior ethmoidal nerve, with their somata located anterome-

dially [21]. 48 h after unilateral nasal inoculation of the virus,

viral-mediated marker protein expression could be detected

exclusively in primary infected cells in the ipsilateral ganglion

(analog to [20]), demonstrating a specific labeling of nasal TG

neurons. Within the ganglion, major clusters of labeled neurons

were found in the near-posterior, central-lateral regions

(Figure 2B, arrows) and in an anterior region on both sides of

the ganglion midline (arrowheads, inserts depict traced neurons in

the respective regions). Their positions coincided with the evoked

activation obtained by VSD imaging, suggesting that they were

mediated by cells that receive nasal input.

Spatial activation depends on the chemosensory
stimulus

Next we compared the activity patterns elicited by different

stimuli belonging to two categories: substances with a well-known

trigeminal component (ethanol and CO2) and olfactory stimuli

(citral and vanillin). Figure 3A shows an example of typical time-

averaged statistical activation maps. These were derived from a

single animal (same subject as in Figure 2B) to which all stimuli

were presented (see Figure 3B for a summary across different

subjects). The location of activated regions by ethanol has been

described in the previous section. In the CO2 condition, evoked

activity was found in the near-posterior, central-lateral regions of

the ganglion, together with suppression in broad areas of the

posterior and anterior ganglion. The activation pattern was largely

similar to the activation pattern evoked by ethanol stimulation,

with the exception of lower activation amplitude, particularly in

the anterior ganglion. In contrast, olfactory stimuli evoked only

moderate levels of activation uniformly across the ganglion with no

focal spots of activity or suppressed regions (Figure 3A, columns 3

and 4).

To generalize the evoked activity patterns across animals, we

overlaid activity maps derived from each subject and condition.

These statistical maps were first subjected to a threshold (either z = 2

or z = 1) and then aligned to a common reference point (i.e. the

ganglion midline and the mandibular branch region; black

horizontal and purple vertical line in Figure 3B respectively)

derived from the vascular map. Each overlay is color coded

according to whether regions were activated (red) or suppressed

(blue), and the intensity reflects the number of subjects with

commonly activated or suppressed regions. Activity patterns were

highly reproducible across subjects, particularly for CO2 and

ethanol. Arrows point to the common activation in the near-

posterior, central-lateral trigeminal area (CO2 and ethanol

condition) whereas arrowheads point to the anterior activity,

elicited by ethanol but not CO2 stimulation. In citral and vanillin

conditions, all subjects attained at least z-score z = 1, with the

majority reaching significance threshold (z = 2; citral: 4 animals of 6;

vanillin: 3 animals out of 5). Although undiluted stimuli are often

used in human trigeminal psychophysical work [10], and previous

studies have pointed to similar trigeminal thresholds in rodents [13]

and humans [14], we additionally tested a reduced (50%) ethanol

concentration and saturated (20 mM) citral solution for possible

concentration effects on the activation patterns. We observed no

major effects on the spatial activation pattern (Figure S3), although

as expected, maximal signal amplitude (DF/F) and response latency

(see next section) were altered in accordance with the direction of

dosage changes (undiluted ethanol 15.66102362.961023 n = 5 vs.

50% ethanol 10.26102361.161023 n = 4) (20 mM citral

8.86102361.361023 n = 3 vs. 1 mM citral 5.16102360.461023).

Figure 2. In vivo VSD recording of the rat TG. (A) Trigeminal VSD
activation pattern elicited by nasal ethanol application (z-score map,
mean over 2,8 s). Arrow and arrowhead point to activated areas in the
near-posterior, central-lateral and anterior trigeminal region, respec-
tively; scale bar, 1 mm; P, posterior; L, lateral (B) Correlation of activity
patterns to the location of nasal trigeminal neurons: Major clusters of
nasal trigeminal neurons could be identified in the near-posterior,
central-lateral region as well as in an anterior region on both sides
relative to the midline of the ganglion (color code = number of animals
showing infected cells at identical trigeminal regions). Arrows point to
commonly activated area in CO2 and ethanol conditions; arrowheads to
unique ethanol activity in VSD measurements (compare Figure 3A).
Black trace = schematic TG outline; scale bar, 1 mm; Inserts: Represen-
tative fluorescence images showing traced nasal trigeminal neurons;
scale bar, 20 mm.
doi:10.1371/journal.pone.0026158.g002
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Differences in the temporal activity structure
In order to characterize the evoked dynamics around responsive

regions, activity was sampled across regions of interests guided by

the layout of the evoked spatial patterns (see colored spots 1/2/3

in Figure 3A). Figure 3C shows the corresponding local time

courses of activity (DF/F) at each of these regions (see Figure S4
for the relationship of each local timecourse to the ‘‘blank’’ (no

stimulus) condition). Clear stimulation-dependent modulations

were observed only in the ethanol condition, mainly in activated

(Figure 3C, spot 1 and 2) but also in suppressed regions (spot 3).

While ethanol evoked temporally irregular pulses of activation,

evoked temporal modulations by CO2 as observed in single trials

(Fig. 4A), were more regular in average traces (Fig. 3C, second

column). Finally, citral and vanillin elicited uniform activation at

all three regions without clear temporal modulations (Figure 3C,

last two columns).

Since activation patterns evoked by different conditions varied

greatly in terms of their spatial extent and homogeneity, we

applied a pattern-onset latency measurement in order to enable

comparison over the entire ganglion for all conditions (for details

see Materials and Methods). While the response latency at

individual spots can be much shorter (Fig. 3C), pattern-onset

latencies were generally long: response onset following stimulation

with strong trigeminal agonists were observed after 1500 ms6

290 ms; n = 6 (CO2) and 2000 ms6210 ms; n = 10 (ethanol)

[2900 ms6700 ms; n = 2 (50% ethanol)] and after 1300 ms6

290 ms, n = 4 (citral) [800 ms6200 ms, n = 2 (20 mM citral)] and

1800 ms6530 ms; n = 4 (vanillin) for the olfactory stimuli.

Relation between VSD activity and electrophysiological
recordings

To further support the population data reported by VSD

imaging, we additionally performed extracellular spike recordings.

We inserted electrodes that targeted the near-posterior, central-

lateral trigeminal regions (Figure 4B, inset) where strong

trigeminal agonists evoked the highest activity amplitudes.

It is observed that the temporal structure of spikes and VSD

signals are similar. In the case of ethanol, both are characterized

by short bursts or pulses of activity (Figure 4A, lower left). CO2

elicited single spikes that were occasionally clustered over brief

time periods (Figure 4A, lower right). Further, higher spike counts

in each burst corresponded with higher evoked dye amplitudes in

ethanol vs. CO2 (DF/F) (ethanol 15.66102362.961023 n = 5;

CO2 5.56102360.461023; p = 0.01, paired t-test). Even though

the population activity reported by VSD imaging and single unit

activity recorded by electrophysiology differ with respect to their

Figure 3. In vivo VSD imaging of chemosensory-stimulation evoked activity patterns in the rat TG. (A) Representative z-score maps (of a
2000–4800 ms-average) illustrating chemosensory-stimulation evoked TG activity pattern derived from an individual experiment. Citral and vanillin
evoked low-amplitude activity across nearly the entire TG; scale bar = 1 mm. P, posterior; L, lateral. (B) Activity map comparison across animals
demonstrates pattern stability and reproducibility. Overlay color code indicates number of animals showing activation (red) or suppression (blue) at
the same trigeminal region (regions that are activated in some animals but suppressed in others offset each other.). The results are presented with
two thresholds (z = 62 (upper row) and 61 (lower row)) due to a small scatter of activity patterns observed across animals. Contours in the CO2

condition (z.1) outline activated regions of individual animals; scale bar, 1 mm. Number in brackets indicates total number of animals for each
condition. Arrows point to the common activation in the near-posterior, central-lateral trigeminal area (CO2 and ethanol condition). Arrowheads point
to the anterior activity, elicited by ethanol but not CO2 stimulation (C) Local time course (DF/F) of activity from the highlighted regions in (A) (red
trace = local time course from spot 1; green trace = spot 2; blue trace = spot 3, light colored areas = SD across single trials, n = 5 trials). See Figure S4
for the relationship of each local timecourse to the ‘‘blank’’ (no stimulus) condition. Dotted red line = stimulus onset (300 ms after recording started;
stimulus stayed on till the end of the trial). Bottom black trace plots respiration cycle. Vertical red lines indicate response onset latencies.
doi:10.1371/journal.pone.0026158.g003
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underlying signal sources, their close correlation is expected from

previous studies [18,22–24] and provides support that the

obtained VSD signals from the trigeminal ganglion were indeed

of neuronal origin.

Transient suppression of spontaneous activity
Interestingly, the strong trigeminal agonists also evoked

prominent suppression (as compared to baseline) of the dye signal

around near-posterior medial parts of the TG (blue areas

Figure 3A/B). Electrode penetrations within these areas revealed

rhythmic spontaneous spike activity (Figure 5, blue) uncorrelated

with neither heartbeat nor artificial respiration (switching off the

respirator cycles for 30 s did not affect the activity). This

spontaneous spiking activity was selectively suppressed when the

strong trigeminal agonists were applied (Figure 5A/B; black bars)

with a mean stimulus induced spike rate reduction of

55.2%612.9, n = 5. No reduction of spontaneous activity at the

same area was observed after citral application (Figure 5C).

Discussion

This study provides the first optical visualization of spatiotem-

poral activity patterns in the TG. To this end we established an in

vivo preparation that allows mapping of neuronal activity from the

rat TG using high resolution VSD imaging. So far, in vivo

trigeminal activity studies have been restricted to electrical

recordings [3] with limited spatial sampling per subject. Hence,

one of the main advantages of our approach is the ability to

simultaneously observe neuronal activity across nearly the entire

TG; an area about 7 mm long and 4 mm wide.

Spatial and temporal characteristics of activity patterns
The main trigeminal activity spots observed for the strong

trigeminal agonists tested were in accordance with nasal trigeminal

projections. This observation was further supported by viral

tracing experiments which revealed a large overlap between

activated regions observed in the VSD signal and the ganglionic

localization of nasal trigeminal neurons.

Why could the tested strong trigeminal agonists then lead to

different activation patterns? It is well accepted that subpopula-

tions of trigeminal neurons express different sets of receptor

proteins (reviewed in [25]). Trigeminal detection mechanisms for

ethanol and CO2 are thought to be fundamentally distinct: ethanol

affects a long list of voltage- and ligand-gated channels including

TRPV1 [26], whereas CO2 stimulates free nerve endings through

tissue acidification [27,28]. TRPV1 is activated by extracellular

protons [29,30], and was therefore thought to mediate responses

to CO2. However, Wang et al., 2010 demonstrated that TRPA1,

and not TRPV1 is activated by CO2. The differences in activity

patterns observed for application of the strong trigeminal agonists

are most likely the result of receptor differences within the

population of nasal trigeminal neurons. Taken together, while

general regions activated by the strong trigeminal agonists seem to

be predefined by the somatotopic trigeminal organization, the

detailed spatial characteristics of the stimulus-specific activation

pattern is likely defined by the individual neuronal receptor/

enzyme expression pattern.

Temporally the multiphasic modulations evoked by ethanol are

surprising, given that the olfactometer delivers a continuous air

flow. External sources of artifacts (e.g. whisker movements, flow-,

temperature- fluctuations in the continuous air stream) have been

systematically minimized. Additionally, the observed lack of

temporal modulations evoked by citral and vanillin and the

irregular temporal modulations both within and across single trials

for ethanol and CO2 (cf. Figure 4 and Figure S1), argue against

a mechanical respiration artifact (the start of each imaging trial

was coupled to the regular artificial respiration). Instead it is more

likely that these multiphasic responses were generated intrinsically

by trigeminal neurons. Neurons of the brainstem innervated by

trigeminal ganglion neurons have been similarly shown to fire

spike bursts spontaneously, as well as at the onset of depolarizing

and offset of hyperpolarizing current pulses [31]. It thus seems

reasonable to suggest that spatiotemporal activity pattern differ-

ences are stimulus-specific and may therefore (as proposed by [31])

serve to encode sensory information in the trigeminal system. In

the case of the olfactory system it has already been shown that the

precise spatiotemporal arrangement of activity patterns across

glomerular structures reflects a fundamental strategy to encode

odorant identities [32–34].

Another interesting aspect of the observed evoked activity was

the relatively long latency of the evoked spatial pattern, e.g.

15006290 ms (n = 6, CO2). However, long latencies were already

observed in whole-nerve electrophysiological recordings from the

rat ethmoid nerve branch [6]. In addition, although direct

Figure 4. Local VSD activity correlates with suprathreshold electrical activity. (A) Single VSD trials obtained from the marked regions in the
insert (left ethanol; right CO2). (B) Raster plots displaying single unit, single trial spiking activity obtained for the marked electrode penetration sites.
Note that raster plots (B) and single trial VSD activity pattern (A) display similar patterns and latencies. Color scale =DF/F; red line = stimulus onset.
doi:10.1371/journal.pone.0026158.g004
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comparisons between human psychophysics and animal physio-

logical studies are difficult, an earlier report [35] asking human

subjects to track nasal irritation intensity during the continuous

presentation of CO2 (at a similar concentration used here) also

found long delays between stimulus onset and the first non-zero

rating (1.63 s; range = 1,34–1,98 s). Additionally, the large vari-

ability of onset times in our experiments is in agreement with large

individual differences in trigeminal detection times previously

reported [35]. Although a direct comparison to our study is

difficult, these studies do exemplify a long trigeminal response

latency comparable to our findings.

So far applied mainly in the neocortex, VSD signals are known

to closely correlate with membrane potential changes while single

action potentials are not directly visualized [18,36]. Nonetheless,

there is accumulated evidence that high levels of fluorescent

changes signal high probability of spike occurrence [18,23,36,37].

Indeed, regions that were strongly activated in our VSD

recordings showed multiunit spiking activity with a similar

stimulus-dependent time structure.

In contrast to ethanol (and to a lesser extent, CO2), evoked

activity by the olfactory stimuli tested here did not feature

prominent temporal or spatial modulations. Although in recent

years potential molecular receptors for vanillin and citral have

been identified, vanillin activates TRPV3 (at high concentrations,

10 mM; [38]) and citral affects TRPV1, TRPV3, TRPM8, and

TRPA1 [39], the spectrum of target receptors does not explain the

observed homogeneous and broad activation layouts; which also

included areas where viral tracing did not reveal any nasal

trigeminal neurons (Figure 2B). Therefore, our finding for

olfactory stimuli is puzzling and certainly needs further exploration

in future studies. However, these results were consistently observed

across all experiments (see Figure 3, 3rd and 4th columns, middle

row). Thus, the obtained broad activation patterns might indeed

reflect a widespread activation of minor amplitude (local VSD

amplitudes (DF/F) for citral and vanillin were weaker compared

to the other stimuli (citral 5.16102360.461023; Vanillin

4.56102360.361023 n = 4), involving only few, sparsely-located

firing cells. Correspondingly, electrophysiological recordings did

not find clear stimulus modulated spikes in response to citral and

vanillin: spiking neurons were only rarely detected and if so, spike

release was irregular and highly variable across trials. Taken

together this may suggest sparse spiking based on close to

threshold activation of the TG rather than a simultaneous strong

suprathreshold drive of large populations of neurons.

An intriguing speculation is that ectopic trigeminal activation

may involve intraganglionic communication mechanisms which

would enable chemosensory information processing already at the

level of the ganglion. In this regard, TG neurons have been shown

recently to directly communicate with satellite glia cells using gap-

junctions [2], which are thought to facilitate not just neuron-glia

but also glia-glia and neuron-neuron communication. A first

attempt to follow-up on these considerations using specific blockers

indicated an unlikely involvement of gap-junctions in response to

mild trigeminal stimulation (not shown). However, other potential

mechanisms of intraganglionic communication, e.g. via GABA,

ATP or glutamate or a general involvement of glia cells (reviewed

in [40]) can still not be excluded.

Suppression of ganglionic activity
Investigating spiking activity within suppressed posterior areas

in VSD recordings revealed spontaneous rhythmic activity. This

ongoing activity was localized given that no such spontaneous

firing was found in nearby posterior central regions of the ganglion

(Figure 4B). The presence of such striking rhythmic activity is

certainly intriguing. A possible source of such spontaneous

trigeminal activity could be the antidromic transmission [41] of

rhythmic spontaneous brainstem activity (pre-Bötzinger region) to

cranial nerves, which have been shown to be able to display a

Figure 5. Suppression of ganglionic activity. Raster plots and corresponding Peri-Stimulus-Time-Histogram of spike responses to ethanol (A)
CO2 (B) or citral (C) application (insert: electrode penetration site) (4 trials; bin factor 100 ms); blue = spontaneous activity; black = stimulus evoked
activity; note the rhythmic spontaneous activity found in this region. This spontaneous spiking activity is suppressed by CO2 and ethanol application.
Recovery from suppression is observed after several seconds. Spontaneous activity is not influenced by citral. Recording duration = 20 s; red
lines = stimulus on- and offset.
doi:10.1371/journal.pone.0026158.g005
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rhythm similar to that produced by respiration centers [42,43].

The specific mechanism that underlies how this spontaneous

activity becomes suppressed by stimulation with strong agonists,

however, is a detailed topic that is a focus of our future studies.

Summary
The stimulus-category specific activation patterns described here

may indicate the neuronal basis for the well-known trigeminally

mediated detection and discrimination abilities of odorous volatiles

in humans [12]. In animal models, limited spatial sampling in

trigeminal subbranch electrophysiology [6] and interrupted trigem-

inal connectivity in in vitro systems may have so far precluded the

characterization of spatially-organized, stimulus-specific and com-

plex responses (involving suppression and broad activation) as

demonstrated here using VSD imaging.

Here, we have explored the spatial and temporal characteristics

of activity across trigeminal ganglia upon nasal administration of

chemical substances in vivo and observed clear differences between

strong trigeminal agonists and olfactory stimuli. Further investiga-

tions of trigeminal representations to an expanded array of chemical

stimuli may clarify if suppressive responses are indeed specific for

strong (and maybe classified as painful) trigeminal stimuli.

Finally, given that the trigeminal ganglion is not stimulated only

by chemosensory input, but indeed receives polymodal input from

diverse tissues distributed across large areas of the head (e.g.

cornea, facial skin, vibrissa pad, oral and nasal membranes) and

can transduce very different sensations, it may be expected that the

described preparation should be useful in a broad range of

neuroscience-subfields, like barrel field and migraine research.

Supporting Information

Figure S1 Series of single trials from a single subject
during nasal ethanol stimulation. As in Figure 1, each

frame represents 10 ms of activity extracted from the original

timecourse at regular intervals, while frames of interest are

represented in higher temporal resolution. Each row contains

successive frames taken from individual trials. Each frame is color-

scaled to the max and min of individual trials to more clearly

demonstrate the temporal jitter of evoked activity patterns by

ethanol.

(TIF)

Figure S2 Activation pattern are stimulus site depen-
dent. Trigeminal VSD activation pattern elicited by nasal (top) or

oral (bottom) ethanol application (time-averaged z-score maps,

n = 5 trials each). Activity pattern changes with application site: the

asterisk points to the broad region dominantly activated by oral

compared to nasal ethanol application; color scale = z-score values;

green lines = activated areas (z-score .1); gray lines = suppressed

areas (z-score ,21); scale bar, 1 mm. P, posterior; L, lateral.

(TIF)

Figure S3 Trigeminal activation pattern show stimulus
specificity. Trigeminal VSD activation pattern elicited by 50%

ethanol (top) or 20 mM citral (bottom) application (time-averaged z-

score maps, n = 10 trials 20 mM citral, n = 3 trials 50% ethanol).

Activation pattern of the modified stimulus concentrations (reduc-

tion for ethanol; increase for citral) are similar to the pattern elicited

by used standard concentrations (Figure 3). Color scale = z-score

values; green lines = activated areas (z-score .1); gray lines = sup-

pressed areas (z-score ,21); scale bar, 1 mm. P, posterior; L, lateral.

(TIF)

Figure S4 Local time courses of stimulus- and no-
exposure (‘‘blank’’) conditions. Local time course (DF/F,

time in seconds) of activity from the highlighted regions in

Figure 3A. This plot demonstrates the relationship between

individual local time courses plotted in Figure 3C and their

corresponding blank condition (spots of interest are identical to

Figure 3A, red trace = spot 1; green trace = spot 2; blue

trace = spot 3, light colored areas = SD across single trials, n = 5

trials).

(TIF)
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