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Channel based generating function 
approach to the stochastic 
Hodgkin-Huxley neuronal system
Anqi Ling1,2, Yandong Huang3, Jianwei Shuai3 & Yueheng Lan1,2

Internal and external fluctuations, such as channel noise and synaptic noise, contribute to the 
generation of spontaneous action potentials in neurons. Many different Langevin approaches have been 
proposed to speed up the computation but with waning accuracy especially at small channel numbers. 
We apply a generating function approach to the master equation for the ion channel dynamics and 
further propose two accelerating algorithms, with an accuracy close to the Gillespie algorithm but with 
much higher efficiency, opening the door for expedited simulation of noisy action potential propagating 
along axons or other types of noisy signal transduction.

Hodgkin and Huxley first proposed a classical way to deterministically characterize neuronal dynamics based 
on a quantitative analysis of experimental results1. The phenomenological Hodgkin-Huxley equations treat the 
neuron membrane as a capacitor with a set of continuous parallel channels for the passage of ions, and the per-
meability of the neuronal membrane determines ion-specific currents. Each ion channel has four subunits, being 
independent and each either open or closed. The conductance is determined by the fraction of ion channels in 
an open state in which all subunits are open. With further indepth investigation, stochasticity is found to play an 
important role in neuronal dynamics2–4 and the cooperative behaviors in biological neuronal networks, such as 
pattern formation5, synchronization6–8 and coherence9–11 which are of great importance to the understanding of 
generation and functioning of several neural diseases5. Individual voltage- or ligand-gated ion channel randomly 
alternates between open and closed states which turns out to be a major source of noise in neuronal activity, the 
so-called channel noise12,13, and contributes to the generation of spontaneous action potentials14,15, variability in 
spike timing16, firing coherence10, and the regularity of spontaneous spiking activity11. The nonlinear amplifica-
tion of synaptic signal makes up another source of noise, which also greatly influences the membrane potential 
fluctuations17–20.

Channel noise has been identified to be essential to neuronal dynamics and coding, and has been extensively 
studied in recent years in a variety of neural systems, like the auditory nerve by cochlear implants21, and in cere-
bellar granule cells22. It turns out that channel noise has measurable effects under normal conditions, which not 
only makes a big difference to the initiation and propagation of action potentials, such as firing irregularity23,24, 
spiking threshold and firing rate25,26, but also enhances sub-threshold signal above certain magnitude27.

As mentioned above, ion channels are subject to random changes among a number of possible channel con-
formations. The stochastic kinetics of ion channels could be defined as a Markov chain, with discrete phase space 
states where each state in the chain represents a particular configuration of the ion channel. The random tran-
sition of an ion channel from one state to another just depends on its current state in the Markov assumption, 
which can be exactly simulated by the Gillespie algorithm28. This algorithm tracks the number of channels in 
each state at each time point on one trajectory, and many trajectories are computed for well converged statistics. 
It is both accurate and simple to use but computationally demanding especially in the large channel number limit 
and hard to analyze mathematically which may be essential for an indepth understanding of neuronal dynamics.

One commonly used alternative is the Langevin approach which treats channel noise as a Gaussian one, first 
proposed by Fox and Lu29,30. However, in comparison with the exact Gillespie algorithm, the original Langevin 
approaches could not accurately capture the stochastic channel dynamics. One computes subunit fractions with 
noise in which the subunits of K+ and Na+ channels are identical (Identical LA)29,30. An improvement was put for-
ward through rescaling the noise intensity with an empirical factor by Huang et al. (Rescaled LA)31. Another one 
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adds noise to the channel fractions (Fox-Lu channel based LA)29. Nevertheless, the channel fractions obtained 
from the corresponding numerical computation may be out of the biologically meaningful interval [0, 1], espe-
cially at small channel numbers. The Cholesky decomposition was used to treat the stochastic terms (Orio LA)32, 
known as channel-based Langevin approach with unbounded state fractions. To bound the channel state frac-
tions within [0, 1], a reflection boundary condition was supplied33. A more accurate version was later proposed 
by Huang et al., who designed a restoration scheme to put the changes of state fractions back to the SDEs after a 
truncation (Truncated-Restored LA)34. It has been pointed out that the bounded Truncated-Restored Langevin 
approach and the unbounded Orio Langevin approach exhibit equally good, and also the best approximations to 
the exact Markov dynamics among these Langevin approaches35. However, as reviewed by Huang et al., despite 
for small channel numbers, currently proposed Langevin approaches cannot accurately replicate the statistical 
properties of the Markov HH model even at large channel numbers, calling for a better approach to the stochastic 
HH dynamics35.

Nevertheless, a Markov chain is completely described by a master equation, a group of ordinary differential 
equations for the probabilities of discrete states36. There are many approximate approaches developed for solving 
master equations in a variety of biochemical networks, for instance, the noisy signal transduction network37–39. 
Lan et al. demonstrated the equivalence of the field theoretic formulation to the generating function approach 
which is based on mapping an enormous set of master equations (ODEs) into one single partial differential equa-
tion (PDE)40, and has been applied in a plethora of cases41. In the current work, we design a new hybrid scheme 
for the computation of noisy neuron dynamics based on the generating function formulation, and in addition 
propose two accelerating algorithms for improved efficiency. Our method produces statistics of stochastic action 
potential that agree well with exact ones in different situations no matter if the channel number is small or large, 
the input current is constant or noisy. It is computationally efficient compared to the Gillespie algorithm and 
many variants of Langevin approach. When the channel number is small, it produces results that match those 
from Gillespie computation while all Langevin approaches fail or are not accurate. The current approach balances 
well accuracy and efficiency and opens the door for large-scale computation in stochastic axonal dynamics.

Results
Implementation with generating function. As discussed in the Methods section, the propagation of 
the action potential along an axon is described by a stochastic version of the HH equation, which could be trans-
formed to a PDE for the generating function of the channel system. As the transition rates of the K+ channel state 
depends on V, the expression below is an analytic approximate solution of the generating function equation
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which would become exact if the time dependence of V has been known. (n0, n1, n2, n3, n4) denotes one possible 
distribution of the K+ channels with the probability P(n0, n1, n2, n3, n4). Here mi is the number of channels in the 
ith channel state at t =  t0 and the probability fij satisfies the equation

=
d
dt

Af f, (2)K

where AK is the transition matrix of the K+ channel states.
A similar expression can be written down for the Na+ channel
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Here nj is the number of Na+ channels in the jth state at t =  t0 and pij satisfies the equation

=
d
dt

Ap p, (4)Na

where ANa is the transition matrix of the Na+ channel states, and p7j is the probability that during the evolution 
time the jth Na+ channel state makes a transition to the 7th channel state, i.e., the open state.

The mean value and standard deviation of the number of open K+ and Na+ channels are computed from the 
generating function:
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Since N K
o, N Na

o are random variables, the voltage V is also random. But, we could speculate that the distribu-
tion of V would be narrow during a small time interval if starting with a definite value. However, with time evo-
lution the distribution of the random variable V becomes wider and wider. If σV which is the standard deviation 
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of V is larger than a given width, then we should sample a new set of numbers {mK}, {mNa} to describe the K+ and 
Na+ channel states according to the probability distribution given by the generating function, and reinitialize f 
and p. In this way, V could be always approximated by the local 〈V〉  at any time.

In the Methods section, a linear noise approximation is used to estimate σV. A new sampling is made when-
ever σV >  (DV)T, where (DV)T is a chosen membrane voltage threshold. Specifically, sampling of K+ and Na+ states 
according to the multi-nomial distribution, based on the probabilities given by f and p, may be decomposed into 
successive binomial ones. Take the sampling of K+ states for example. First, we could sample the number mi4  
of which the ith channel state makes a transition to the 4th, i.e., the open state, with the transition  
probability f4i. After this has been done, Ψ i becomes ′ + ′ + ′ + ′ −x x f x f x f x f( )m
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Similarly, one by one we could get the transition numbers from the ith to the 0, 1, 2, 3th channel state respec-
tively. After all samplings are done, Ψ i will be x x x x xm m m m m
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4 . The sampling of Na+ states could be done in a similar way.

Besides that, the sampling of membrane voltage may be needed. The assumption that V behaves according to a 
random normal distribution with mean 〈V〉  and standard deviation σV seems reasonable. Nevertheless, according 
to our experience, it is comparatively convenient to fix the width of the distribution as taking dV =  0.1 mV in the 
sampling of V.

As a summary, we arrive at the following procedure:

(1) Initialize the number of each K+ and Na+ channel state {mK}, {mNa} at time t, and set f and p the identity 
matrix.

(2) Solve the ODEs for f, p, 〈 V〉 , and σV.
(3) Integrate to time t′  until the inequality σV ≤  (DV)T breaks, sample a new set of channel numbers in each K+ 

and Na+ channel state with the probabilities computed from the generating function, and sample a new V 
based on the normal distribution N(〈 V〉 , σV). Take σV to be 0 and reinitialize f and p.

(4) Check if t ≥  T. Yes, stop computation. No, go back to (2).

Though the above scheme is precise and can fully capture the dynamics of the system, it involves many ODEs 
and during the evolution many channel numbers will be sampled, so that the calculation is cumbersome. We 
propose two approximations to accelerate the algorithm under the premise of accuracy. Accelerating algorithm 
1 is designed to reduce samplings of channel numbers. In accelerating algorithm 2, even the number of ODEs is 
much reduced.

Accelerating algorithm 1. As V just depends on the number of open ion channels, we need only to sample 
the open channel numbers with the known transition probability of each state to the open state when the voltage 
width limit is reached at step (3) above. Take the K+ channel as an example. After we sample open channel num-
bers as discussed above, the generating function turns to
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Accelerating algorithm 2. If the channel number is large enough, a reasonable approximation to binomial 
distribution is given by a normal distribution. And as we know, if X and Y are independent random variables that 
are normally distributed, then their sum is also normally distributed, with its mean being the sum of the two 
means, and its variance being the sum of the two variances. So, if all the channel numbers are large, we can take 
the generating function as (x0  f0 +  x1  f1 +  x2  f2 +  x3  f3 +  x4  f4)m, where m is the total number of K+ channel. In  
this case, as above, we can just sample the number in the open channel state when the voltage width limit is  
reached at above step (3), and the generating function turns out to be ′ + ′ + ′ + ′′ − ′x x f x f x f x f( )

m m m
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after the sampling. As time goes by, after the next sampling the generating function becomes 
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Same as accelerating algorithm 1, the latter two terms have similar probability flow, and can be merged into one 
multi-nomial form.

Similar procedure could be applied to the Na+ channel.
Accelerating algorithms 1 and 2 need only to sample the open ion channels, while the full generating function 

approach updates all. What’s more important is that the number of variables of the ODEs for f and p is much 
reduced in algorithm 2 which further reduces the computation time compared to algorithm 1. Hence, we would 
use the accelerating algorithm 2 to effectively reduce computation load.
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Here we compare statistics of observables obtained from the generating function approaches with those 
obtained from the Gillespie algorithm and five Langevin approaches (Identical LA, Rescaled LA, Fox-Lu channel 
based LA, Orio LA, Truncated-Restored LA ). The number of Na+ channels maintains three times that of K+ 
channels in the simulation. Data are saved at every 0.01 ms.

Open Channel statistics. When the membrane voltage is fixed at a preset level, we measure the electric 
current and check how the neuron reacts to changes with different membrane potentials42. Here we compute the 
means and standard deviations of the open fraction of sodium and potassium channels under voltage clamp to 
study the dependence on membrane-patch voltage V. They were calculated over 100000 realizations using the 
Gillespie algorithm and Langevin approaches, each simulation was run for a total of 100 ms. The numbers of open 
sodium and potassium channels are collected at the final time point.

Figure 1 shows that as membrane voltage increases, the mean open fraction of the K+ channel increases and 
saturates at 1, while that of the Na+ channel increases first and then decreases, maximizing at V ~ −30 mV. As 
mentioned above, the opening and closing rates for “activation” subunits and “inactivation” subunits respond 
oppositely to the change in membrane voltage. As membrane voltage increases, the transition to the open state 
becomes fast with four identical n subunits in any K+ channel. But the activation of three m subunits and one h 
subunit works heterogeneously to jointly determine the channel state of Na+ channel, so that the transition rate 
does not monotonically increase.

We see from Fig. 1 that the mean fractions of open channels calculated from the four Langevin approaches 
are quite similar to the results obtained from the exact Gillspie algorithm. The Truncated-Restored LA repli-
cates the standard deviation, whereas, the standard deviation of potassium currents is overestimated by the two 
subunit-based LAs, and the standard deviation of sodium currents is underestimated by the two subunit-based 
LAs and the Truncated-Restored LA, while overestimated by Orio LA. Obvious deviations from the exact ones 
are found in the two subunit-based LAs.

The results obtained by the generating function approach and by the Gillespie calculation match very well with 
each other not only for the mean fractions of open channels but also for their deviations. Indeed, under voltage 
clamp, the generating function result is exact. All subunits in the K+ channel are identical by assumption, we can 
show that the generating function will be a multi-nomial (x0  f0 +  x1  f1 +  x2  f2 +  x3  f3 +  x4  f4)N, if starting from a 
particular state, where N is the total number of K+ channels. Hence, the mean value and the standard deviation of 
open K+ channels are given by eq. (5). The stationary probability distribution is derived from

=
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Figure 1. The means and standard deviations of the fraction of open channels with fixed membrane voltage. 
Results for the K+ channel (A,B) and for the Na+ channel (C,D). The total number N of the K+ channel is 180, 
and of the Na+ channel M =  540. The current I is set to 0 uA/cm2.
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which gives the mean and standard deviation of the open K+ channel as = fN
N 4
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It can be concluded that the mean fractions of open channels are independent of the total channel numbers, 

and the standard deviations are proportional to ( )N
1 1/2

 or ( )M
1 1/2

, while these quantities depend on the voltage V 
implicitly.

Spike statistics with no current input. Neuronal signaling study involves measuring and characterizing 
how stimulus signal propagates, indicated by the neuron action potentials or spikes. Particularly, the statistical 
study of action potentials is vital to describe and analyze neuronal firing. For example the lengths of interspike 
intervals (ISIs) often vary randomly but encode important information43.

An action potential is triggered once the voltage is beyond a threshold VT for the deterministic HH neuron, 
giving a spike. Here VT =  − 60 mV is considered. The spike amplitude H is defined as the difference from the peak 
voltage to the threshold in membrane potential. Considering the absorption of action potentials in the stochastic 
channel dynamics, a fully developed spike is identified only when the voltage goes up to at least − 30 mV after 
going beyond the threshold VT, and shoots back downward below the resting level. That is, the spike has a min-
imal amplitude H0 to be 30 mV. The interspike interval T is defined as the time interval between two successive 
spike peaks.

Figure 2 shows the statistical properties of the first 10000 successive spikes for N ranging from 10–5000, in 
which the input current I is 0. These simulations show that the rates and amplitudes of spiking activity obtained 
in the accelerating algorithm 2 and the Gillespie algorithm match well. Spiking events become increasingly rare 
as channel number increases, because the membrane dynamics tends to converge to its deterministic limit grad-
ually in which large voltage fluctuations become increasingly rare while spiking events are mainly driven by large 
channel noise, and spike amplitude tends to decrease.

We can see from Fig. 2A that the spiking rates obtained from the accelerating algorithm 2 and from the 
Gillespie algorithm match well at both small and large channel numbers. The threshold for the voltage fluctuation 
controls the spike frequency and should be carefully chosen in the generating function scheme. The mean ISIs 
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Figure 2. Comparison of the means and the standard deviations of first 10000 interspike intervals and 
spike amplitudes as a function of the total number of potassium channels, where I = 0 uA/cm2. 
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from the Rescaled LA tend to be much shorter than those from the Gillespie algorithm, while in the Identical LA 
they tend to be longer when channel number N >  40 and much longer at big channel numbers. A possible source 
for these differences between the two subunit-based Langevin approaches is that the noise term added to the 
subunit fractions should not be of the uncorrelated, zero mean Gaussian type. The results produced by the two 
channel-based Langevin approaches are in good quantitative agreement with those by the Gillespie algorithm. 
Nevertheless, there are still some discrepancies at small channel numbers, and the Orio LA breaks down at chan-
nel number less than 40. In general, other than the Identical subunit LA, the mean amplitudes calculated from 
these methods are bigger than that from the Gillespie algorithm, while the discrepancies are minimal between the 
results from accelerating algorithm 2 and the Gillespie algorithm.

Interspike interval statistics with noisy current input. We study the spiking response to synaptic noise 
and discuss the statistics of the interspike intervals under a range of current conditions. The noisy current I is of 
the simple form I0 +  I1ξ 44 here, where ξ is a Guassian white noise with zero mean and unit variance. I0 refers to the 
DC level. Due to the additive white noise term I1ξ which represents the combined effect of a continuous barrage 
synaptic noisy inputs that neurons in cortical and other neural systems receive, the action potentials may become 
more fluctuating44.

Figure 3 plots the means and standard deviations (left and right columns, respectively) of ISIs with different 
noisy current levels for the Langevin approaches, Gillespie algorithm and accelerating algorithm 2 with small 
potassium channel number N =  18. As a fact, at such a small channel number, the Orio LA breaks down. As the 
DC level is increased, spiking events become more frequent as shown in Fig. 3A where there is no synaptic noise 
input and the channel noise reduces its impact on spike timing. Likewise, under a constant DC input, spiking rate 
increases with the increase of the intensity of the synaptic noise as Fig. 3C suggests. We see that the means and 
the standard deviations of ISI given by the Gillespie algorithm and accelerating algorithm 2 for different current 
inputs agree extremely well. Nevertheless there are still some discrepancies between the Langevin approaches and 
the Gillespie algorithm.

Figure 4 shows results under two different synaptic noisy current levels with large potassium channel number 
N =  1800, for which the Identical subunit LA breaks down. There are observable discrepancies between these 
LA approaches at low DC level without input noise as shown in Fig. 4A, in which channel noise still accounts for 
major effect on the regular firing, just like Fig. 2 suggests. As I1 increases just by 1 uA/cm2, the mean ISI is much 
reduced, which is particularly evident at low DC level. The agreement between the accelerating algorithm 2 and 
the Gillespie calculation is still very good. In general, noisy stimuli help reduce the mean ISI and have a significant 
effect on spike firing especially for large channel number at low DC level.

Membrane Voltage statistics. The membrane voltage statistics are calculated from an ensemble of voltage 
paths. Figure 5 shows the probability distribution for the membrane voltage at time t =  0.6 ms computed from 
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Figure 3. (A,B) Comparison of the means and standard deviations of the first 10000 interspike intervals as 
a function of I0 for I1 =  0 uA/cm2. (C,D) Comparison of the means and standard deviations of the first 10000 
interspike intervals as a function of I1 for I0 =  3 uA/cm2. Here the total number N of K+ is set to 18.
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10000 runs of the Gillespie algorithm, of the three channel-based Langevin approaches, and of three generating 
function approaches with the same initial fractions of channel states. Fox-Lu channel based LA is less accurate 
and slower than Orio LA and Truncated-Restored LA, thus we did not show its computation results in previous 
discussion.

The results show that our generating function approach captures the distribution function very well when 
compared with the Gillespie algorithm at two different channel numbers. We can see from Fig. 5A that the mem-
brane voltage distribution ranging from − 70–42 mV is close to a Gaussian centered around V =  27 mV, whereas 
Langevin approaches give nonzero probability only when membrane voltage is larger than − 12 mV. While in 
Fig. 5B the distribution has two peaks around − 68 mV and + 27 mV, which Langevin approaches fail to reveal. 
Because the initial numbers of open K+ and Na+ channels are not zero, and the initial fractions of the open K+ 
and Na+ channels are the same in Fig. 5A,B, there is supposed to be a spike for any voltage path near t =  0.6 ms as 
shown in Fig. 5C, where the membrane voltage is more likely bigger than a minimal spike value. However, what’s 
interesting is that as the number of K+ channels decreases to 15, the bistable state appears as shown in Fig. 5B, 
where another peak locates near V =  − 68 mV while the high peak is considerably lower than that in Fig. 5A. 
From Fig. 5D, we can see that the membrane potential may fail to rise to a value larger than − 30 mV and quickly 
fall to the resting level. This observation suggests that the strong channel noise at small channel numbers may 
sometimes undermine rather than promote spike firing.

Computation efficiency. Finally, the computational time of these approaches is summarized in Fig. 6A for 
the case with no input current. Simulations with Matlab were run on a 3.07 GHz quad core Intel Core i7 processor.

Figure 6A shows that generating function approaches are considerably faster than the Gillespie algorithm, par-
ticularly for larger channel numbers. The consumed time grows linearly with the number of ion channels in the 
Gillespie algorithm, depending on the average time between reactions, which can be very small for large channel 
numbers, while in the generating function approach the computing time remains more or less constant. Channel 
numbers are irrelevant to the efficiency of the Langevin approach. The two subunit-based Langevin approaches 
take the same least time compared to others, and the Truncated-Restored LA spends more time mainly for the 
calculation of root square of the diffusion matrices than the Orio LA. In total, accelerating algorithms 1, 2 are 
faster than the channel-based LAs, and the generating function approach is faster than the Truncated-Restored 
LA.

Although the threshold of the membrane voltage width we take empirically monotonically decreases as shown 
in Fig. 6B, which is consistent with the fact that as channel number increases, channel noise tends to have less 
and less effect on spike firing. To guarantee the accuracy enough samplings have to be taken, which leads to an 
extremely slow increase of the computation time in the generating function approach with the total channel 
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Figure 4. Comparison of the means and standard deviations of the first 10000 interspike intervals as a 
function of I0. (A,B) Results for I1 =  0 uA/cm2. (C,D) Results for I1 =  1 uA/cm2. Here the total number N of K+ is 
set to 1800.
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number N. When N is no more than 100, the channel noise seems to be dominating and we choose not to sample 
membrane voltage.

Discussion
In this work, we applied the generating function approach to the study of stochastic dynamics of the HH model 
which is a typical Markovian system, accounting for channel shot noise embedded in the evolution of the discrete 
ion channel states. We designed a numerical scheme to efficiently solve for the generating function, taking into 
account the channel noise and voltage fluctuations. At the smooth evolution step, due to the peakedness of the 
membrane voltage distribution at short times, the random voltage is replaced by its mean and hence the channel 
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first 100 voltage paths using Gillespie algorithm. (A,C) The total K+ channel number N is 60, and results are 
given with the initial condition {mK} =  {20, 16, 12, 8, 4}, {mNa} =  {40, 32, 28, 24, 20, 16, 12, 8} by the generating 
function approach, accelerating algorithm 1 and the Gillespie algorithm, while {mK} =  {56, 4}, {mNa} =  {258, 8}  
by accelerating algorithm 2, and with the initial fractions of K+ channel {5, 4, 3, 2, 1}/15, of Na+ channel {10, 
8, 7, 6, 5, 4, 3, 2}/45 by the three channel based Langevin approaches. (B,D) The total K+ channel number 
N is 15, and results are given with the initial condition {mK} =  {5, 4, 3, 2, 1}, {mNa} =  {10, 8, 7, 6, 5, 4, 3, 2} by 
the generating function approach, accelerating algorithm 1 and the Gillespie algorithm, while {mK} =  {14, 1}, 
{mNa} =  {43, 2} by accelerating algorithm 2, and with the initial fractions of K+ channel {5, 4, 3, 2, 1}/15, of Na+ 
channel {10, 8, 7, 6, 5, 4, 3, 2}/45 by the three channel based Langevin approaches.
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state distribution is approximated by a product of multinomial distributions. However, samplings for ion channel 
states and voltage are needed when a preset width limit of the voltage distribution is reached, which can be esti-
mated with the linear noise approximation. Furthermore, the procedure of how to sample channel numbers from 
the generating function is explained in detail. In order to make the computation more efficient, we also proposed 
two accelerating algorithms in which only the number of the open ion channels are sampled since the time evo-
lution of the voltage only depends on this number. The accelerating algorithm 2 further reduces the number of 
equations by employing a multinomial distribution to approximate the channel states.

Results are compared for different approaches: the generating function, the Gillespie algorithm and the 
Langevin approaches. We calculated the stationary statistics of the fraction of open channels under voltage 
clamp. The generating function in this case can be solved exactly for the stationary distribution, and thus the 
exact expression for the mean and standard deviation of the two open channel states are obtained, whereas 
most Langevin approaches either overestimate or underestimate the conductance fluctuations except the 
Truncated-Restored LA. Meanwhile, we studied statistics of action potential spikes at different channel numbers 
in response to constant and noisy current inputs. Compared to the Gillespie simulation with cumbersome com-
putation, our approach produces result directly in an efficient way. Through our analysis of the statistics of the 
membrane voltage, it seems that the results from accelerating algorithm 2 match well with those obtained with 
the Gillespie algorithm, but with much higher efficiency.

It is interesting that with the initial distribution of the ion channel state set up properly, bistable state appears 
at a particular time when the total channel number is small, which the Langevin approaches fail to reveal. Overall, 
our simulation results show that the generating function approach provide statistically accurate approximation 
to the neuronal spiking dynamics for any channel number, while Langevin approaches even break down in some 
cases.

Finally, we compare the computing time with different numbers of K+ channels ranging from 10 to 3000, and 
pointed out that the accelerating algorithms take much less time than the exact Gillespie algorithm, and are also 
faster than channel-based Langevin approaches. With an empirical selection of the threshold for the membrane 
voltage width, the new scheme has an accuracy comparable to the Gillespie computation.

Overall, the results from these simulations suggest that the generating function approach is an accurate and 
fast approximation for discrete-state Markov chain models. In spite of the complexity and nonlinearity of the 
noisy action potential propagating along an axon, we expect a good performance of the current technique in the 
study of the neuronal dynamics. An extension of the current technique to the investigation of noisy signal trans-
duction on other types of networks should also be possible.

Methods
The discrete HH model. According to the HH model which regards the cell membrane as a capacitor, the 
membrane potential V is governed by

= − + +
dV
dt

I I I IC ( ) (10)Na K L

where C =  1 uF/cm2 is the membrane capacitance, and I is the membrane current. INa, IK, IL are the currents of the 
sodium, potassium, and leakage channels, respectively, and given by

= −

= −

= −

I g V E
I g V E
I g V E
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( ),
( ), (11)

Na Na Na
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where ENa =  50 mV, EK =  − 77 mV, EL =  − 54.3 mV are the reversal potentials of the sodium, potassium, and leak-
age channels, respectively; gL =  0.3 ms/cm2, gNa, gK are their conductances.

As well known, there are four identical and independent n subunits for each K+ channel and three identical 
and independent m subunits and one h subunit for each Na+ channel. Here a single subunit can be in one of the 
two configurations, open (O) or closed (C) at time t. They convert to each other in a random way more explicitly,

β
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where αi, βi are voltage-dependent opening and closing rates, and i denotes different types of subunits.
Only when these subunits are all open in a channel, is the channel open. Generally, one defines the conduct-

ance based on the fraction of open channels. The K+ conductance is =g g fK K K, where fK is the fraction of K+ 
channels that are open, and g K  is the maximal conductance of potassium channels. With the knowledge of open 
channel number N K

o among the total number NK for K+ channels, fK is given by N
N

K
o

K
, where =g ms cm120 /K

2, 
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2. Similar expressions hold for Na+ channels. In the discrete description of channels, the voltage 
equation becomes
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For the K+ channel the four n subunits define a transition diagram of five channel states, while for Na+ channel 
the three m subunits and one h subunit define a transition diagram of eight channel states. The associated Markov 
kinetic scheme is depicted in Fig. 7.

Here the voltage-dependent transition rates read1

α β

α β

α β

=
. +

− − +
= . − +

=
. +

− − +
= − +

= . − + =
+ − +

.

V
V

V

V
V

V

V
V

0 01( 55)
1 exp[ ( 55)/10]

, 0 125 exp[ ( 65)/80] ,

0 1( 40)
1 exp[ ( 40)/10]

, 4 exp[ ( 65)/18] ,

0 07 exp[ ( 65)/20] , 1
1 exp[ ( 35)/10] (14)

n n

m m

h h

For subunits m and n, the opening rates increase and the closing rates decrease as the membrane voltage 
increases, while the opposite is true for subunit h.

Individual trajectories of this discrete-state Markov process can be generated exactly using the Gillespie algo-
rithm28, in which the waiting time between transitions is sampled from an exponential distribution and the chan-
nel number in each state is updated once a specific transition is selected. However the transition rates depend 
on the membrane voltage, and therefore change over time. If the time between the transition from one state to 
another is far less than the characteristic voltage variation time, the voltage can be assumed to be fixed during 
transitions.

A Markov process can be described with master equation, which directly evolves probability distribution in 
the state space of a system based on specific interstate transition rates. The usually large set of master equations 
could be recast into a QFT form in which the probability evolution is governed by a wave equation while the field 
theoretic formulation is equivalent to a generating function approach40.

For example, for an elementary reaction such as A B, we denote by P(m, n) the probability of having m A’s 
and n B’s, the master equation is

= − + + + −

+ − + + − +−

dP
dt

m n k mP m n m P m n

k nP m n n P m n

( , ) [ ( , ) ( 1) ( 1, 1)]

[ ( , ) ( 1) ( 1, 1)] (15)

where k and k− are the forward and backward reaction rates. If the total number of A, B is large, there would be 
many equations, each for a particular (m, n) state. However, they can be transformed into one single PDE for the 
generating function Ψ (x, y, t) =  ∑ m,nP(m, n, t)xmyn,

∂Ψ
∂
= −

∂Ψ
∂
+ −

∂Ψ
∂
.−t

k y x
x

k x y
y

( ) ( )
(16)

The exact analytic solution can be obtained using the method of characteristics. A solution of generating 
function eq. (16) reads

Ψ = + +x y t x f t y f t x f t y f t( , , ) ( ( ) ( )) ( ( ) ( )) (17)
m n

11 21 12 22
0 0

where m0 and n0 are initial numbers of A and B. x and y are just symbolic variables of A and B, and fij satisfies the 
equation

A B

Figure 7. The transition diagram for the K+ channel (A) and for the Na+ channel (B). The numbers in these 
nodes stand for the numbers of open subunits. (A) The number marked with circle is the state in which all four 
subunits are open. (B) A sodium channel is open only when it is in state (3, 1), in which represents the three m 
subunits and one h subunit are all open.
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and the initial condition f(0) =  1, being an identity matrix.

Linear noise approximation. All the computation and analysis are based on eq. (4) about the stochastic 
membrane voltage dynamics with the channel based description, and we could substitute the local 〈V〉  for V till 
the width of voltage distribution meets the threshold. Linear noise approximation may be used to compute the 
width of membrane voltage distribution. Firstly, we assume that

ξ ξ= + = +N N N N,K
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as in the linear noise approximation36, with the Gaussian white noise specified by
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