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Abstract: Pituitary adenylate cyclase-activating polypeptide (PACAP) is a broadly expressed neu-
ropeptide which has diverse effects in both the peripheral and central nervous systems. While its
neuroprotective effects have been shown in a variety of disease models, both animal and human
data support the role of PACAP in migraine generation. Both PACAP and its truncated derivative
PACAP(6-38) increased calcium influx in rat trigeminal ganglia (TG) primary sensory neurons in
most experimental settings. PACAP(6-38), however, has been described as an antagonist for PACAP
type I (known as PAC1), and Vasoactive Intestinal Polypeptide Receptor 2 (also known as VPAC2)
receptors. Here, we aimed to compare the signaling pathways induced by the two peptides using
transcriptomic analysis. Rat trigeminal ganglion cell cultures were incubated with 1 µM PACAP-38
or PACAP(6-38). Six hours later RNA was isolated, next-generation RNA sequencing was performed
and transcriptomic changes were analyzed to identify differentially expressed genes. Functional anal-
ysis was performed for gene annotation using the Gene Ontology (GO), Kyoto Encyclopedia of Genes
and Genomes (KEGG), and Reactome databases. We found 200 common differentially expressed (DE)
genes for these two neuropeptides. Both PACAP-38 and PACAP(6-38) treatments caused significant
downregulation of NADH: ubiquinone oxidoreductase subunit B6 and upregulation of transient
receptor potential cation channel, subfamily M, member 8. The common signaling pathways induced
by both peptides indicate that they act on the same target, suggesting that PACAP activates trigeminal
primary sensory neurons via a mechanism independent of the identified and cloned PAC1/VPAC2
receptor, either via another target structure or a different splice variant of PAC1/VPAC2 receptors.
Identification of the target could help to understand key mechanisms of migraine.

Keywords: pituitary adenylated cyclase-activating polypeptide (PACAP); trigeminal ganglion; tran-
scriptomics; intracellular calcium; mitochondrial electron transport chain

1. Introduction

Pituitary adenylate cyclase-activating polypeptide (PACAP), a neuropeptide belong-
ing to the vasoactive intestinal polypeptide (VIP)-secretin family, is broadly expressed
throughout the body. It exists in 27- and 38-amino acid-containing forms (PACAP-27 and
PACAP-38), the latter one is the predominant form in mammals. PACAP was shown
to have diverse actions in both the central nervous system (CNS) and the periphery. Its
physiological roles include the regulation of circadian rhythm, energy homeostasis, as well
as the activity of the hypothalamic-pituitary-adrenal axis. PACAP also has a major role
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in neurodevelopment, neuroprotection and regeneration in a variety of CNS injuries and
neurodegenerative processes [1,2]. PACAP exerts most of its effects via the specific PAC1
receptor, as well as the VPAC1 and 2 receptors [3–5] shared with VIP having compara-
ble affinities. In addition, Mas-related G-protein coupled receptor (Mrgpr) activation by
PACAP-38 or its truncated derivatives, PACAP(6-38) or PACAP(6-27), was described on
mast cells [6,7]. Mrgpr receptors belong to a diverse family of receptors, many of which
are also expressed on sensory neurons [8]. Still, Mrgpr activation by PACAP has not been
explored up to date.

Conflicting results were reported for the effects of PACAP on nociception in rodent
models. While electrophysiological recordings showed that PACAP had a direct activating
and sensitizing effect on nociceptive neurons, both pronociceptive and analgesic effects
were reported in pain models, in vivo. Intrathecally administered PACAP induced nocif-
ensive behavior in mice [9,10], but attenuated formalin-induced responses in rats [11,12].
Peripherally administered PACAP reduced hyperalgesia and pain-related behaviors in
acute/subacute models of inflammatory and visceral pain [13]. In PACAP gene-deleted
mice, the overall effect of PACAP was concluded to be pronociceptive in a variety of chronic
pain models by contributing to central nociceptive sensitization [14–17].

It is of particular relevance that PACAP was implicated in the generation of migraine
headaches. PACAP plasma levels were found to be elevated in migraine patients [18]
and PACAP infusion could trigger headache in healthy volunteers and also induced a
delayed, migraine-like headache in migraine patients [19,20]. Neurogenic inflammation
induced by dural sensory nerve stimulation and consequent release of proinflammatory
neuropeptides such as calcitonin-gene related peptide (CGRP), tachykinins and PACAP, is
an important component of migraine [21] It consists of meningeal vasodilatation, plasma
protein extravasation (oedema formation) and activation of inflammatory cells including
mast cells [22], which in turn also release inflammatory mediators i.e., cytokines and
peptides, such as PACAP [23]. These mediators further trigger the sensory nerve terminals
leading to the aggravation of local neurogenic inflammation and pain [24,25].

Both PACAP and its receptors are expressed in the primary and secondary sensory
neurons in the trigeminal ganglia (TG) [26,27] and trigeminal nucleus caudalis (TNC),
respectively [4,28]. Animal experiments also confirmed that PACAP induced meningeal
vasodilation and neuronal activation in the trigeminovascular system [29,30].

The receptorial mechanisms of PACAP in the trigeminovascular system are not un-
derstood. Since the headache-inducing effect of PACAP was not shared with VIP, the
contribution of VPAC receptors could be discarded [31]. Additional data also demonstrate
that PACAP can induce CGRP release independently of VPAC2 and PAC1 receptors, as
well [32]. Since various Mrgprs are also expressed on primary sensory neurons [33,34], it
can also be suggested that Mrgpr activation might contribute to the pronociceptive effects
of PACAP.

Even though PACAP(6-38) can antagonize the effect of PACAP on heterologously
expressed PAC1 receptors and various neuronal cell lines, our previous results clearly
showed that PACAP(6-38) treatment did not inhibit PACAP-38, but produced identical
effects by itself in rat primary sensory neurons. Both PACAP-38 and PACAP(6-38) could
inhibit neuropeptide release from sensory nerve terminals of isolated trachea [35] and
induce Ca2+-influx in primary cultures of trigeminal ganglion cells [36].

In order to elucidate the receptorial and signaling mechanisms of PACAP-induced
trigeminal ganglia primary sensory neuronal activation related to migraine, here we ana-
lyzed and compared the transcriptome changes in cell cultures treated with PACAP-38 or
PACAP(6-38).

2. Results

We determined the common differentially-expressed (DE) genes identified 6 h af-
ter PACAP-38 and PACAP(6-38) treatment. Administration of the two peptides has a
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high impact related to migraine-like cellular processes. All data are demonstrated in the
Supplementary section.

2.1. Expression of PAC1, VPAC2 and Mrgpr Receptor Transcripts in TG Cultures

Transcripts of the known receptors of PACAP, PAC1 (Adcyap1r1) and VPAC2 receptors,
as well as several Mrgpr receptors were detected in most samples as presented in Figure 1.
These receptors were not differentially expressed in the PACAP-38- and PACAP(6-38)-
treated groups compared to the control. VPAC1 was not expressed in either group.
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2.2. Differentially-Expressed (DE) Genes in Both PACAP-38- and PACAP(6-38)-Treated
Trigeminal Ganglion Cultures

Figure 2 shows the numerical analysis of differentially expressed genes. Sample
collection 6 h after the treatment yielded 200 common differentially expressed genes for
PACAP-38 and PACAP6-38. For PACAP-38, 70 other DE genes, for PACAP6-38 132 other
DE genes were found at the 6 h samplings. All DE genes are listed in Table A1.
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Figure 3 shows common DE genes potentially involved in neurological pathophys-
iology for PACAP-38 and PACAP(6-38) treatments compared to the untreated control
cell culture. Noteworthy findings in the DE list are Cenpb, Gnal, Hsp90aa1, Hmga1,
Tomm70, Gnai1 and Tomm34 which were upregulated regarding FC value in the case of
both PACAP-38- and PACAP(6-38)-treated TG cell culture (Figure 2). It is highly notable in
both neuropeptide-treated cell cultures that Ndufb6 (NADH:ubiquinone oxidoreductase
subunit B6) was extensively downregulated compared to the control group (value of FC
was −50.7 and −80.9 for PACAP-38- and PACAP(6-38)-treated cells, respectively) and
Trpm8 was upregulated in both cases. Fbl (Fibrillarin); Fhl2 (four and a half LIM domains
2), Slc25a5 (solute carrier family 25 member 5), Tomm6 (translocase of outer mitochondrial
membrane 6) were also highly downregulated in both. Listed abbreviations can be found
in Appendix A.
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2.3. Pathway Analysis with Common DE Genes

Figure 4 shows the results for GO analyses of downregulated genes. This search
highlighted mitochondrial dysfunction, regarding p-values for each term or number of
significant DE genes for both administration types (Figure 4A,B).
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Figure 4. Highlighted GO analysis results which were significant in both PACAP-38- (red) and
PACAP(6-38)- (blue) treated trigeminal ganglion cells (1 µM, 6 h). Panel A represents the number of
differentially expressed (DE) genes related to each GO term, while panel B shows p values for the
identical terms (p < 0.05).

Reactome analysis was used to determine the intracellular pathways the DE genes
were involved in. Figure 5 shows pathways for the common DE genes gained from the
Reactome database. CREB1 phosphorylation through the activation of adenylate cyclase,
protein kinase A (PKA) activation in glucagon signaling, glucagon signaling in metabolic
regulation, PKA activation, PKA-mediated phosphorylation of CREB, Post NMDA receptor
activation events were found in the case of upregulated genes. Ca-dependent events
were upregulated, while Complex I biogenesis was downregulated in response to both
PACAP-38- and PACAP(6-38)-treatment, referring to potential mitochondrial dysfunction
mechanism. The results of GO (Figure 4) and Reactome analysis also revealed inhibiting
effects of both peptides on mitochondrial functions supporting this concept.
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In the KEGG analysis, one of the common pathway results was the calcium signaling
pathway. Figure 6 highlights the common DE genes in this signaling pathway. In both cases
GnaI, Prkacb were upregulated, and F2R, Slc25a5 were downregulated. This result also
highlighted the possible negative effect on the mitochondria. For TG culture treated with
PACAP-38, Figure 6 showed Plcb3 as upregulated, in contrast to TG culture administered
with PACAP(6-38), while Gnaq was significantly upregulated in the PACAP(6-38) but
not PACAP-38 group. Expression of some genes also presented with a distinct pattern:
Calm2, MCU were upregulated in the PACAP(6-38) and Camk2g in the PACAP-38 treated
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cells. These results showed the effect of PACAP-38/PACAP(6-38) on the calcium signaling
pathway. The KEGG Ca2+ pathway was also implicated significantly when ranked list
enrichment was performed, which takes into account not only DE genes but all genes
whose transcripts were detected. The Ca2+ pathway containing all genes can be found in
Supplementary Figure S1.
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3. Discussion

This is the first description of transcriptomic changes of rat trigeminal ganglion cells
in response to PACAP-38 related to mitochondrial dysfunction and neuroinflammatory
mechanisms potentially mediated by calcium signaling. Moreover, these alterations were
similar after treatment with PACAP(6-38), known to be PAC1 receptor antagonist at the
cloned receptor, which indicates that trigeminal ganglion cell activation is independent
of the PAC1 receptor. In our previous study, both PACAP-38 and PACAP(6-38) were
found to induce increased intracellular Ca2+ levels in the same trigeminal ganglion cell
culture [36]. Interestingly, similar agonistic effects for the two peptides were found on
sensory nerve terminals of the rat trachea and human cytotrophoblast cells [35,37], mouse
macrophages [38], chicken chondroblasts [39] and rat mast cells [7]. The stimulating effect
of PACAP(6-38) was a surprising finding, since it is a well-established antagonist on the
identified and cloned receptors of PACAP-38, PAC1 and VPAC1/2 receptors, heterologously
expressed in CHO, Cos7 cells and Xenopus oocytes [7,36,40]. Our previous and present
results raises the possibility that PACAP-induced trigeminovascular activation involved
in migraine [21] is not mediated by these known receptors. This virtually contradictory,
stimulating effect of PACAP(6-38) might be explained by an action on a receptor other
than PAC1 [22]. The MrgB3 receptor was proposed as a potential target of both peptides
to induce rat meningeal mast cell activation [7], but the involvement of a different PAC1
splice variant with modified binding site cannot be excluded.

Among the known receptors of PACAP-38, transcripts of PAC1 and VPAC2 recep-
tors were detected in trigeminal ganglion cell cultures which is in line with previously
reported data [27]. We have also detected several subtypes of the Mrgpr family which
could be putative targets mediating the shared effects of PACAP-38 and PACAP(6-38).
Mrgprs constitute a large, diverse family of G-protein coupled receptors originally de-
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scribed on primary sensory neurons [8], but expressed by other cell types including mast
cells [6,7,41]. The endogenous ligands of these receptors are still not well defined, but
various Mrgprs can be activated by amino acids or peptides, e.g., MrgprD by β-alanine or
MrgprX1 by proenkephalin and proopiomelanocortin cleavage products [34]. In sensory
neurons Mrgprs have been implicated in the transduction of pain and itch, as well [42].
However, interestingly, a small subset of MrgprB4-positive C-fibers were also identified
as transmitting gentle stroking, but not noxious mechanical stimuli [43]. In mast cells,
Mrgprs are responsible for the non-IgE-mediated activation by basic secretagogues [41]. In
particular, degranulation induced by PACAP, PACAP(6-27) or PACAP(6-38) was shown
to be mediated by MrgprX2 in human and MrgprB3 receptors in rat mast cells [6,7]. In
our TG culture, we have detected the presence of MrgprB3 and transcripts of seven other
Mrgprs. According to our results, we cannot exclude totally the role of PAC1 receptor,
because we did not have a group for inhibiting PAC1 receptor or deleting PAC1 receptor in
cells. It can be suggested, that either MrgprB3 or one of the other Mrgpr subtypes were
activated by PACAP-38 and PACAP(6-38), but further experiments are needed to confirm
this mechanism.

In order to identify the PACAP-induced intracellular signaling pathways in primary
sensory neurons functional enrichment analysis of commonly altered DE genes by PACAP-
38 and PACAP(6-38) pointed to significantly altered calcium signaling and PKA activation.
Since PAC1 receptors can activate adenylate cyclase and phospholipase C signaling path-
ways as well [4], these data does not conclusively exclude the role of PAC1 receptors in the
response to PACAP. However, as mentioned above, it is plausible that a common target
is mediating the effects of the two peptides. Both calcium and PKA of these signaling
pathways can be associated with increased nociceptor sensitivity [44,45] which supports
the pronociceptive effects of PACAP. PKA activation can increase the sensitivity of transient
receptor potential vanilloid 1 (TRPV1) channels, a key transducer of noxious heat and
chemical stimuli [46,47] and voltage-gated sodium channels [48,49], which result in low-
ered activations thresholds and increased suprathreshold responses of nociceptive neurons.
Intracellular calcium binding to calmodulin can activate calmodulin-dependent kinase
(CaMKII) which was shown to be involved in changes of synaptic plasticity behind chronic
pain conditions [45]. Increased intracellular calcium levels can also affect mitochondrial
function. Functional enrichment analysis results point to mitochondrial alteration asso-
ciated with a mitochondrial electron transport chain dysfunction. In particular, the B6
subunit of NADH: ubiquinone oxidoreductase (Complex I) was strongly downregulated
by both treatments. This is an intriguing finding which can also link the effect of PACAP to
migraine as metabolic changes and mitochondrial dysfunction such as decreased activity
of Complex I, III, IV and citrate synthase have been detected in migraine patients [50,51].
Our recent study investigating the transcriptome of peripheral blood mononuclear cells
of migraine patients also revealed that the mitochondrial electron transport chain was sig-
nificantly affected even in headache-free periods and during headache when compared to
healthy control samples [52]. It is plausible therefore that the migraine headache-inducing
effect of PACAP is generated with the involvement of mitochondria. Regarding the im-
portance of mitochondria in nociceptive sensory neurons, there is accumulating evidence
demonstrating mitochondrial dysfunction in several chronic pain conditions and pain is a
common complaint in patients with mitochondrial diseases [53–55]. Mitochondria together
with the endoplasmic reticulum are key regulators of intracellular calcium homeostasis
which set neuronal excitability. Moreover, mitochondrial dysfunction can lead to increased
generation of reactive oxygen species which can also contribute to nociceptor sensitization
by acting on multiple targets [56]. There is direct evidence that experimental inhibition of
mitochondrial complex III in airway C fibers resulted in increased excitability by activation
of TRP channels and protein kinase C [57,58]. Moreover, reactive oxygen species and
the release of mtDNA can induce an inflammatory reaction promoting the sensitization
of nociceptors.



Int. J. Mol. Sci. 2022, 23, 2120 8 of 16

Other interesting pain-related genes in the DE list include upregulation of the TRPM8
ion channel, which is a menthol- and cold-sensitive ion channel expressed in both dorsal
root and trigeminal ganglion cells [59,60]. TRPM8 is expressed by both nociceptive and
non-nociceptive sensory neurons, co-expressed with the TRPV1 ion channels in the first
case [61–63]. Under physiological conditions TRPM8 is responsible for detecting innocuous
and noxious cold temperatures [64–66], but it can also reduce the activation of nociceptors
by other stimuli, which explains the alleviation of pain by cooling or menthol. However,
there are also data showing the involvement of TRPM8 in cold allodynia in chronic in-
flammatory and neuropathic pain models [67]. Remarkably, there is also a possible role
of TRPM8 in migraine as several large genome-wide association studies identified single
nucleotide polymorphisms within and near the TRPM8 gene which confer a reduced risk
of migraine [68–70]. Cutaneous application of menthol reduced the headache in migraine
patients [71]. Likewise, another TRPM8 receptor agonist icilin reversed allodynia in an
animal model of dural sensitization [72]. The relevance of the upregulation of Trpm8 after
PACAP-38- or PACAP(6-38)-treatment is not yet clear as there are no literature data linking
TRPM8 ion channel function with PACAP. There is, however, an interesting potential con-
nection between TRPM8 channels and mitochondrial dysfunction. The presence of TRPM8
was shown in the endoplasmic reticulum (ER) of several cell types, including human
keratinocytes [73], bronchial epithelial cells [74], prostate cancer cells [75] as well as mouse
vascular smooth muscle cells [76]. In these studies, TRPM8 channels in the ER were shown
to participate in the regulation of calcium homeostasis between intracellular compartments
and influence mitochondrial function. While the presence of TRPM8 in the ER has not
yet been reported in sensory neurons, other TRP channels, such as TRPV1 are expressed
in both the plasma and ER membranes of dorsal root ganglion cells [77,78] therefore it is
plausible that the ER TRPM8 can affect mitochondrial Ca2+ levels in trigeminal neurons,
as well.

Figure 7 summarizes our findings in a schematic graph. Both neuropeptides act on
G-protein coupled receptors (GPCR) which could either be a different target structure such
as Mrgpr receptors or a splice variant of PAC1/VPAC2 receptors. GPCR trigger Guanine
nucleotide-binding protein G(i) subunit alpha-1 (GnaI). GnaI activates protein kinase cAMP-
Activated Catalytic Subunit Beta via increased cAMP levels. Phosphorylation by PKA
may induce TRPM8 channel inhibition [79] and this inhibitory activity might potentiallly
cause overexpression of TRPM8, potentiating calcium overload in mitochondria resulting
Complex I suppression.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 7. Schematic representation of the hypothetical mechanisms initiated by PACAP in 
trigeminal ganglion cells. PACAP-38/PACAP6-38 activate G- protein coupled receptors (GPCR). 
Activation of Guanine nucleotide-binding protein G(i) subunit alpha-1 (GnaI) leads to protein 
kinase A (PKA; Protein Kinase cAMP-Activated Catalytic Subunit Beta—Prkacb) activation via 
increased cAMP levels. Phosphorylation by PKA may induce TRPM8 channel inhibition which 
could cause overexpression of TRPM8 ion channel. Calcium overload could lead to suppressed 
Complex I biogenesis. 

In conclusion, transcriptomic changes induced by PACAP-38 and PACAP6-38 in 
cultured TG cells indicated cellular processes which can be associated with mechanisms 
occurring in migraine patients, in particular nociceptive sensitization and mitochondrial 
dysfunction. A limitation of our approach is the lack of functional confirmation of the 
affected cellular pathways which needs future research. Results, reported in this article 
are supported by previous human and animal experimental data on the mechanisms of 
migraine headache. Although, we could not identify the target of PACAP-38 for sensory 
neuronal activation, the common transcriptome alterations with PACAP(6-38) can 
potentially suggest a PAC1 independent shared pathway. These results open novel 
perspectives for antimigraine drug research connected to mitochondrial function.  

4. Materials and Methods 
4.1. Primary Cultures of TG Neurons 

Primary cell cultures of TG neurons were made from 1–4-day-old Wistar rat pups as 
described elsewhere [80]. TG cells were dissected in ice-cold phosphate-buffered solution 
(PBS), incubated for 35 min at 37 °C in PBS containing collagenase (Type XI, 1 mg/mL) 
and then in PBS with deoxyribonuclease I (1000 units/mL) for 8 min. The ganglia were 
washed with Ca2+ and Mg2+-free PBS and dissociated by trituration. TG cells were plated 
on poly-D-lysin-coated glass coverslips and grown in a nutrient-supplemented medium 
for the experiment. The cell culture medium contained 180 mL Dulbecco’s- Modified 
Eagle Medium (D-MEM), 20 mL horse serum, 20 mL fetal bovine albumin, 2 mL insulin-
transferrinselenium- S, 3.2 mL putrescin dihydrochloride (100 µg/mL), 20 µL triiodo-
thyronine (0.2 mg/mL), 1.24 mL progesterone (0.5 mg/mL), 100 µL penicillin, 100 µL 
streptomycin and nerve growth factor (NGF, 200 ng/mL). The coverslips were maintained 
at 37 °C in an atmosphere containing 5% CO2. The cell cultures were incubated with 1 µM 
PACAP-38 or PACAP6-38. Untreated cultures served as controls. After 6 h after PACAP-
38 or PACAP6-38 administration, samples were collected for RNA isolation. Conditions 
were repeated in triplicates.  

4.2. RNA Isolation and Quality Control 
Total RNA isolation and purification was performed as previously described [81] 

applying the phenol-based TRI Reagent procedure (Molecular Research Center, 

Figure 7. Schematic representation of the hypothetical mechanisms initiated by PACAP in trigeminal
ganglion cells. PACAP-38/PACAP6-38 activate G- protein coupled receptors (GPCR). Activation
of Guanine nucleotide-binding protein G(i) subunit alpha-1 (GnaI) leads to protein kinase A (PKA;
Protein Kinase cAMP-Activated Catalytic Subunit Beta—Prkacb) activation via increased cAMP levels.
Phosphorylation by PKA may induce TRPM8 channel inhibition which could cause overexpression
of TRPM8 ion channel. Calcium overload could lead to suppressed Complex I biogenesis.
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In conclusion, transcriptomic changes induced by PACAP-38 and PACAP6-38 in cul-
tured TG cells indicated cellular processes which can be associated with mechanisms
occurring in migraine patients, in particular nociceptive sensitization and mitochondrial
dysfunction. A limitation of our approach is the lack of functional confirmation of the
affected cellular pathways which needs future research. Results, reported in this article
are supported by previous human and animal experimental data on the mechanisms of
migraine headache. Although, we could not identify the target of PACAP-38 for sensory
neuronal activation, the common transcriptome alterations with PACAP(6-38) can poten-
tially suggest a PAC1 independent shared pathway. These results open novel perspectives
for antimigraine drug research connected to mitochondrial function.

4. Materials and Methods
4.1. Primary Cultures of TG Neurons

Primary cell cultures of TG neurons were made from 1–4-day-old Wistar rat pups as
described elsewhere [80]. TG cells were dissected in ice-cold phosphate-buffered solution
(PBS), incubated for 35 min at 37 ◦C in PBS containing collagenase (Type XI, 1 mg/mL)
and then in PBS with deoxyribonuclease I (1000 units/mL) for 8 min. The ganglia were
washed with Ca2+ and Mg2+-free PBS and dissociated by trituration. TG cells were plated
on poly-D-lysin-coated glass coverslips and grown in a nutrient-supplemented medium
for the experiment. The cell culture medium contained 180 mL Dulbecco’s- Modified
Eagle Medium (D-MEM), 20 mL horse serum, 20 mL fetal bovine albumin, 2 mL insulin-
transferrinselenium- S, 3.2 mL putrescin dihydrochloride (100 µg/mL), 20 µL triiodo-
thyronine (0.2 mg/mL), 1.24 mL progesterone (0.5 mg/mL), 100 µL penicillin, 100 µL
streptomycin and nerve growth factor (NGF, 200 ng/mL). The coverslips were maintained
at 37 ◦C in an atmosphere containing 5% CO2. The cell cultures were incubated with 1 µM
PACAP-38 or PACAP6-38. Untreated cultures served as controls. After 6 h after PACAP-38
or PACAP6-38 administration, samples were collected for RNA isolation. Conditions were
repeated in triplicates.

4.2. RNA Isolation and Quality Control

Total RNA isolation and purification was performed as previously described [81]
applying the phenol-based TRI Reagent procedure (Molecular Research Center, Cincinnati,
OH, USA), up to the step of acquiring the RNA containing aqueous layer. The aqueous
phase was mixed with an equal volume of absolute ethanol and was loaded into Zymo-
Spin™ IICR Column. Direct-zol RNA MiniPrep kit (Zymo Research, Irvine, CA, USA) was
used according to the manufacturer’s protocol including the optional on-column DNase
digestion. Qubit 3.0 (Invitrogen, Carlsbad, CA, USA) was used for RNA concentration
measurement. The RNA quality verification was carried out with TapeStation 4200 using
RNA ScreenTape (Agilent Technologies, Santa Clara, CA, USA). Sequencing libraries were
prepared from high quality (RIN > 8) RNA samples.

4.3. Illumina Library Preparation and Sequencing

The library for Illumina sequencing was prepared using QuantSeq 3′ mRNA-Seq
Library Prep Kit FWD for Illumina (Lexogen, Vienna, Austria). 400 ng of total RNA was
used as input for first strand cDNA generation using oligodT primer followed by RNA
removing. Thereafter, the second strand synthesis is initiated by random priming and
the products were purified with magnetic beads. Finally, the libraries were amplified
and barcoded using PCR. All libraries were assessed on the TapeStation 4200 (Agilent
Technologies, Santa Clara, CA, USA) to examine if adapter dimers formed during PCR. The
QuantSeq libraries were sequenced using the Illumina NextSeq550 platform to produce
75 bp single end reads.
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4.4. Bioinformatics

The sequencing reads were aligned against the Rattus norvegicus reference genome
(Rnor 6.0 Ensembl release) with STAR v2.5.3a [82]. After alignment, the reads were associ-
ated with known protein-coding genes and the number of reads aligned within each gene
was counted using HTSeq library v0.11.1 [83]. Gene count data were normalized using the
trimmed mean of M values (TMM) normalization method of the edgeR R/Bioconductor
package (v3.28, R v3.6.0, Bioconductor v3.9) [84]. Data were further log transformed using
the voom approach for statistical evaluation [85] in the limma package [86]. Fold change
(FC) values between the compared groups resulting from linear modeling process and
modified t-test p-values were produced by the limma package. When determining dif-
ferentially expressed (DE) genes, filtering thresholds were set to FC 2 and p-value 0.05
when the PACAP-38 treatment was compared to the untreated control group, and to FC 1.5
and p-value 0.001 for the PACAP(6-38) versus untreated control comparison (p-values are
provided after correction for multiple comparisons by the Benjamini-Hochberg method.
Normalized counts were represented as transcripts per million (TPM) values. Functional
analysis (annotations of genes) was performed using the Gene Ontology (GO), Kyoto Ency-
clopedia of Genes and Genomes (KEGG), and Reactome databases. Detection of functional
enrichment was performed in the differentially expressed gene list (DE list enrichment:
Fisher’s exact test for GO, hypergeometric test for KEGG and Reactome) and towards
the top of the list when all genes have been ranked according to the evidence for being
differentially expressed (ranked list enrichment: non-parametric Kolmogorov-Smirnov
test for GO and KEGG, hypergeometric test for Reactome) applying the topGO v2.37.0,
ReactomePA v1.30.0, gage v2.36.0 packages. The pathview package v1.26.0 [86] was used
to visualize mapping data to KEGG pathways. All data for each gene at different time can
be found in Supplementary section.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms23042120/s1.
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Appendix A

Table A1. List of DE Gene Names.

Abbreviation Description

Abca3 ATP binding cassette subfamily A member 3

Adam23 ADAM metallopeptidase domain 23

Akap7 A-kinase anchoring protein 7

Ankh ANKH inorganic pyrophosphate transport regulator

Antxr2 ANTXR cell adhesion molecule 2

Arhgap21 Rho GTPase activating protein 21

Arhgap23 Rho GTPase activating protein 23

Arhgap42 Rho GTPase activating protein 42

Art3 ADP-ribosyltransferase 3

Atic 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP
cyclohydrolase

Atp2c1 ATPase secretory pathway Ca2+ transporting 1

Bmp2k BMP-2 inducible kinase

Cask calcium/calmodulin dependent serine protein kinase

Ccl2 C-C motif chemokine ligand 2

Cenpb centromere protein B

Clic4 chloride intracellular channel 4

Cluh clustered mitochondria homolog

Col4a2 collagen type IV alpha 2 chain

Ctsl cathepsin L

Dgkd diacylglycerol kinase, delta

Dnajc13 DnaJ heat shock protein family (Hsp40) member C13

Dync1h1 dynein cytoplasmic 1 heavy chain 1

Dync1li1 dynein cytoplasmic 1 light intermediate chain 1

Epb41l2 erythrocyte membrane protein band 4.1-like 2

Esyt2 extended synaptotagmin 2

F2r coagulation factor II (thrombin) receptor

Fbl fibrillarin

Fgfr1 Fibroblast growth factor receptor 1

Fhl2 four and a half LIM domains 2

Fpgs folylpolyglutamate synthase

Gas7 growth arrest specific 7

Gnai1 G protein subunit alpha i1

Gnal G protein subunit alpha L
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Table A1. Cont.

Hbb hemoglobin subunit beta

Hmga1 high mobility group AT-hook 1

Hsp90aa1 heat shock protein 90 alpha family class A member 1

Hspa9 heat shock protein family A (Hsp70) member 9

Lonp1 lon peptidase 1, mitochondrial

Map2k4 mitogen activated protein kinase kinase 4

Map3k20 mitogen-activated protein kinase kinase kinase 20

Mapk8ip3 mitogen-activated protein kinase 8 interacting protein 3

Myef2 myelin expression factor 2

Nav1 neuron navigator 1

Ncs1 neuronal calcium sensor 1

Ndfip2 Nedd4 family interacting protein 2

Ndufab1 NADH:ubiquinone oxidoreductase subunit AB1

Ndufb6 NADH:ubiquinone oxidoreductase subunit B6

Opa1 OPA1, mitochondrial dynamin-like GTPase

Osmr oncostatin M receptor

Parp14 poly (ADP-ribose) polymerase family, member 14

Pcdhgc3 protocadherin gamma subfamily C, 3

Pitpnb phosphatidylinositol transfer protein, beta

Plin2 perilipin 2

Plxna4 plexin A4

Ppp1cb protein phosphatase 1 catalytic subunit beta

Praf2 PRA1 domain family, member 2

Prkacb protein kinase cAMP-activated catalytic subunit beta

Prkar1a protein kinase cAMP-dependent type I regulatory subunit alpha

Prkar2a protein kinase cAMP-dependent type II regulatory subunit alpha

Prrc2b proline-rich coiled-coil 2B

Psen1 presenilin 1

Ptprg protein tyrosine phosphatase, receptor type, G

Rcn1 reticulocalbin 1

Slc20a2 solute carrier family 20 member 2

Slc25a5 solute carrier family 25 member 5

Slc30a9 solute carrier family 30 member 9

Slc3a2 solute carrier family 3 member 2

Snca synuclein alpha

Tiam1 TIAM Rac1 associated GEF 1

Tmem128 transmembrane protein 128

Tmem131 transmembrane protein 131

Tollip toll interacting protein

Tomm34 translocase of outer mitochondrial membrane 34

Tomm6 translocase of outer mitochondrial membrane 6

Tomm70 translocase of outer mitochondrial membrane 70
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Tpm4 tropomyosin 4

Trio trio Rho guanine nucleotide exchange factor

Trpm8 transient receptor potential cation channel, subfamily M, member 8

Txlna taxilin alpha

Txn1 thioredoxin 1

Txndc17 thioredoxin domain containing 17
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35. Németh, J.; Reglődi, D.; Pozsgai, G.; Szabó, Á.; Elekes, K.; Pintér, E.; Szolcsányi, J.; Helyes, Z. Effect of Pituitary Adenylate Cyclase
Activating Polypeptide-38 on Sensory Neuropeptide Release and Neurogenic Inflammation in Rats and Mice. Neuroscience 2006,
143, 223–230. [CrossRef]
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