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Abstract
We demonstrate proof-of-concept for the use of massively multiplexed PCR and next-generation sequencing
(mmPCR-NGS) to identify both clonal and subclonal copy-number variants (CNVs) in circulating tumor DNA. This is
the first report of a targeted methodology for detection of CNVs in plasma.
Using an in vitro model of cell-free DNA, we show that mmPCR-NGS can accurately detect CNVs with average
allelic imbalances as low as 0.5%, an improvement over previously reported whole-genome sequencing
approaches. Our method revealed differences in the spectrum of CNVs detected in tumor tissue subsections and
matching plasma samples from 11 patients with stage II breast cancer. Moreover, we showed that liquid biopsies
are able to detect subclonal mutations that may be missed in tumor tissue biopsies. We anticipate that this
mmPCR-NGS methodology will have broad applicability for the characterization, diagnosis, and therapeutic
monitoring of CNV-enriched cancers, such as breast, ovarian, and lung cancer.
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Introduction
Cancer is a complex and dynamic disease. Tumors consist of diverse
populations of genetically distinct subclones that may be mixed or
spatially separated [1,2] and may have developed along different
evolutionary paths [3]. Tumor genomes have a broad mutational
landscape that includes single-nucleotide variations (SNVs), copy-
number variations (CNVs), and/or chromosomal aberrations [4–12].
Genetic heterogeneity has been shown to occur in nearly all cancers,
including breast cancer [1,13–15]. From a clinical perspective, it is
critical to understand tumor heterogeneity as key clonal and subclonal
mutations can indicate a reduction of the sensitivity of tumors to
targeted treatments, potentially leading to drug resistance and
ultimately metastasis [1,2,16–18].
Assessing the full mutational spectrum of heterogeneous tumors in

a clinical setting can be difficult. First, the spatially limited nature of
biopsies leads to genomic profiles that may not be representative of
the entire tumor, and thus, biopsy data tends to underrepresent the
full mutational spectrum of heterogeneous tumors. Second, some
tumors are not readily accessible for biopsy. Finally, the invasive
nature of biopsies makes them unsuitable for longitudinal analyses of
treatment efficacy or to monitor disease progression [19]. Thus, novel
methods that can more accurately assess the mutational landscape of
tumors are urgently needed.

Liquid biopsies are an attractive alternative to tissue biopsies
because they are less invasive and potentially more representative of a
patient’s overall tumor burden [20–22]. A number of proof-
of-concept studies have used next-generation sequencing (NGS)-
based methods to detect a wide range of cancer-associated alterations,
including aneuploidies, CNVs, SNVs, and epigenetic alterations in
plasma cell-free DNA (cfDNA) from both early- and late-stage
tumors [23–31]. In addition, plasma DNA analysis has been used to
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detect subclonal point mutations in a patient with lung cancer [25]
and to elucidate the genetic heterogeneity of both primary and
metastatic tumors in a patient with breast cancer [32]. Several
whole-genome sequencing (WGS) methods have been reported to
detect CNVs in plasma [26,33,34], but these require a circulating
tumor DNA (ctDNA) fraction of approximately 5% to achieve good
sensitivity and specificity. That may not be low enough to detect
subclonal CNVs or early-stage cancers. Furthermore, no tests using a
targeted methodology to detect CNVs from liquid biopsies have
been reported.

In this proof-of-concept study, we use a novel, targeted method for
identifying both clonal and subclonal CNVs, with lower ctDNA
fractions than previously reported. This methodology, which uses
single-nucleotide polymorphism (SNP)-targeted massively multi-
plexed PCR (mmPCR) followed by NGS (hereafter referred to as
“mmPCR-NGS”), was adapted from previously described approaches
for SNP-based CNV detection in noninvasive prenatal screening for
fetal aneuploidies and microdeletions [35–39].

We first validated our methodology in tumor samples with a
commercially available SNP microarray. We then defined the
analytical sensitivity of mmPCR-NGS using artificial plasma
DNA mixtures made from matched germline and affected cell
lines with known copy number variants. Finally, we applied
mmPCR-NGS to plasma samples from eleven patients with stage II
breast cancer (BC1–BC11), and analyzed the concordance between
CNVs detected in plasma and those detected in tumor samples from
each corresponding patient.

Materials and Methods

Samples
Human breast cancer cell lines (HCC1954 and HCC2218) and

matched normal cell lines (HCC1954BL and HCC2218BL) were
obtained from the American Type Culture Collection. Paired father
and child 22q11.2 deletion syndrome cell lines (GM10383 and
GM10382) were obtained from the Coriell Cell Repository
(Camden, NJ). GM10382 cells are missing the maternal homolog
of the 22q11.2 region (hg19 coordinates 17,256,415-19,795,835).

We procured fresh frozen (FF) tumor tissues and matched plasma
samples from eleven patients with breast cancer from Geneticist
(Glendale, CA) and North Shore-LIJ (Manhasset, NY). All patients
signed institutional review board-approved informed-consent forms
prior to sample collection. Patient demographics and tumor
characteristics are shown in Table 1. Tumor subsections were
resected for analysis. Each subsection weighed approximately 25 mg
(~27 mm3). Samples were first taken from the center and then in up
Table 1. Breast Cancer Patient Demographics and Tumor Characteristics

Patient Sex Age Race/Ethnicity Histology Grade Stage

BC1 Female 56 Caucasian Infiltrating ductal 2 II
BC2 Female 48 Caucasian Infiltrating ductal 3 II
BC3 Female 74 Caucasian Invasive ductal 3 II
BC4 Female 31 Asian Invasive ductal 3 II
BC5 Female 49 Caucasian Invasive ductal 3 II
BC6 Female 40 African American Invasive ductal 2 II
BC7 Female 36 Ashkenazi Jew Invasive ductal 3 II
BC8 Female 42 Caucasian Invasive ductal 3 II
BC9 Female 43 Caucasian Infiltrating ductal 3 II
BC10 Female 56 Caucasian Infiltrating ductal 1 II
BC11 Female 34 Caucasian Infiltrating ductal 3 II
to five additional distinct regions, such that the overall spatial pattern
was the same for each sample. Prior to tumor resection, blood samples
were collected into EDTA tubes. Within six hours, samples were
centrifuged at ≥2000g for 20 minutes to isolate plasma.

Blood samples from 30 putative healthy, negative controls were
also obtained, along with matched maternal and paternal buccal or
blood samples using an institutional review board-approved protocol.
Samples were collected into Streck BCT tubes and stored at room
temperature. Within four days, plasma was isolated after centrifuga-
tion at 2000g for 20 minutes, and then at 3220g for 30 minutes.
cfDNA was extracted from 1 to 4 ml plasma (~6 ng/ml) using the
QIAamp Circulating Nucleic Acid Kit (Qiagen, Valencia, CA).

Cell Culture
All cell culture reagents were from Life Technologies (Foster City,

CA). American Type Culture Collection cells were cultured in 10%
fetal bovine serum (FBS) RPMI 1640 (high glucose with pyruvate)
with 2 mM L-glutamine at 37°C in a 5% CO2 atmosphere.
GM10382 cells were cultured in 15% FBS DMEM, and GM10383
cells were grown in 15% FBS RPMI 1640. Seed stocks were made
after the first passage, and a maximum of five passages was performed.

Genomic DNA Isolation
Genomic DNA (gDNA) from FF tumor tissues, blood, and buccal

samples was extracted using theDNeasy Blood andTissueKit (Qiagen).

Artificial Plasma DNA Model
Our “PlasmArt” methodology generates mixtures of DNA

fragments with the size of mononucleosomal cfDNA fragments
naturally found in plasma. First, 9 × 106 cells were lysed with
hypotonic lysis buffer (20 mM Tris-Cl (pH 7.5), 10 mM NaCl, and
3 mM MgCl2) for 15 minutes on ice. Then, 10% IGEPAL CA-630
(Sigma, St. Louis, MO) was added to a final concentration of 0.5%.
After centrifugation at 3000g for 10 minutes at 4°C, pelleted nuclei
were resuspended in 1X micrococcal nuclease (MNase) Buffer (New
England BioLabs, Ipswich, MA) before adding 1000 U of MNase
(New England BioLabs), and then incubating for 5 minutes at 37°C.
Reactions were stopped by adding EDTA to a final concentration of
15 mM. Undigested chromatin was removed by centrifugation at
2000g for 1 min. Fragmented DNA was purified with the DNA
Clean & Concentrator-500 kit (Zymo Research, Irvine, CA).
Mononucleosomal DNA produced by MNase digestion was purified
and size-selected using AMPure XP magnetic beads (Beckman
Coulter, Brea, CA). DNA fragments were sized and quantified with a
Bioanalyzer DNA 1000 chip (Agilent, Santa Clara, CA).

To model different ctDNA concentrations, we mixed different
fractions of mononucleosomal DNA from HCC1954 and HCC2218
cancer cells with those from the corresponding matched normal cell
line (HCC1954BL and HCC2218BL, respectively). Three samples
were analyzed at each concentration. Similarly, to model allelic
imbalances in plasma DNA in a focal 2.76 Mb region, we generated
PlasmArts from DNA mixtures containing different ratios of DNA
from a child with a maternal 22q11.2 deletion and from the father.
Samples containing only the father’s DNA were used as negative
controls. Eight samples were analyzed at each concentration.

Massively Multiplexed PCR Primer Design
Massively multiplexed PCR allows simultaneous amplification of

many targets in a single reaction. In this study, we targeted 3168
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SNPs, which were distributed across five chromosome arms as
follows: 646 on 1p, 602 on 1q, 541 on 2p, 707 on 2q, and 672 on the
22q11.2 focal region. These genomic regions were selected for
convenience from SNP panels available in our laboratory. Target
SNPs had at least 10% population minor allele frequency (1000
Genomes Project data; April 30, 2012 release) to ensure that a
sufficient fraction would be heterozygous in any given patient. For
each SNP, multiple primers were designed to have a maximum
amplicon length of 75 bp and a melting temperature between 54.0
and 60.5°C, using Primer3Plus software [40]. To minimize the
likelihood of primer-dimer product formation, primer interaction
scores for all possible combinations of primers were calculated, and
primers with high scores were eliminated. Candidate PCR assays were
ranked and 3168 assays were selected on the basis of target SNP
minor-allele frequency, observed heterozygosity rate (from dbSNP),
presence in HapMap, and amplicon length.

mmPCR-NGS Workflow
The mmPCR-NGS workflow involved five steps: (1) library

preparation, (2) mmPCR, (3) barcoding and pooling, (4)
sequencing, and (5) sequence read alignment. First, a library was
prepared by blunt-end repairing cfDNA fragments, tailing, and
ligating to standard adapters. For mmPCR amplifications, we
modified a previously described protocol [38]. Briefly, 3168 SNPs
were amplified using one primer pair for each SNP. The mmPCR
reaction contained Qiagen Multiplex PCR Master Mix, 70 mM
tetramethylammonium chloride (Sigma), 6 μM primers, and 7 μl
of library. Thermocycling conditions were 95°C for 15 min,
followed by 25 cycles of 96°C for 30 seconds, 65°C for 20 seconds,
and 72°C for 30 seconds. A final extension was performed at 72°C
for 2 minutes, and then the reaction was cooled at 4°C. Next,
sequencing tags and index sequences were added in a barcoding
PCR reaction, as described previously [38]. Subsequently, the
barcoded PCR products were pooled, purified with the QIAquick
PCR Purification Kit (Qiagen), and quantified using the Qubit
dsDNA BR Assay Kit (Life Technologies). Amplicons were then
single-end sequenced using an Illumina HiSeq 2500 sequencer
with 1.5 to 7M reads/sample for tumor tissue DNA and 18 to 25M
reads/sample for plasma cfDNA. Finally, BWA-MEM [41]
(version 0.7.10) and samtools mpileup [42] were used to align
sequencing reads with the hg19 human reference genome and
determine read base counts, respectively.

Definitions
For dimorphic SNPs that have alleles arbitrarily designated ‘A’ and

‘B’, the allele ratio of the A allele is nA/(nA + nB), where nA and nB are
the number of sequencing reads for alleles A and B, respectively.
Allelic imbalance is the difference between the allele ratios of A and B
for loci that are heterozygous in the germline. This definition is
analogous to that for SNVs, where the proportion of abnormal DNA
is typically measured using mutant allele frequency, or nm/(nm + nr),
where nm and nr are the number of sequencing reads for the mutant
allele and the reference allele, respectively.
We report the proportion of abnormal DNA for a CNV (i.e., a

variation in the number of copies of a DNA segment) by the average
allelic imbalance (AAI) for SNPs in one haplotype of a DNA
segment. Because tumor genomes often contain variable copy
number in different regions, we prefer the use of the term AAI, which
describes the proportion of abnormal genetic material in a sample, to
the term “ctDNA fraction,” which is usually calculated as the
number of genomes from a tumor sample divided by the total
number of genomes. ctDNA fraction may be ambiguous in cases
with variable copy number; this is especially important in cancers,
e.g. breast cancer, which frequently have multiple duplications in
key regions [5].

Tumor Tissue Genomic DNA Analysis
In tumor tissue samples, CNVs were delineated by transitions

between allele frequency distributions. Regions with at least 100
SNPs that had an allele ratio statistically different from 0.50 were
considered to be of interest. More specifically, we focused on regions
with average allele ratios of ≤0.45 or ≥0.55 for loci that were
heterozygous in the germline. We used a segmentation algorithm to
exhaustively search DNA sequences in the five aforementioned
genomic regions for such regions, and iteratively selected them
starting from the longest one until a limit of 100 SNPs was reached.
Once a ≥100 SNP region was determined to contain a CNV, it was
further segmented by average allelic ratios with a minimum segment
size of 50 SNPs as appropriate.

FF tissue samples from three patients with breast cancer were also
analyzed using Illumina CytoSNP-12 microarrays as previously
described [43].

Circulating Tumor DNA Analysis
In plasma samples, CNVs were identified by a maximum-

likelihood algorithm that searched for plasma CNVs in regions
where the tumor sample from the same individual also had CNVs
using haplotype information deduced from the tumor sample. In the
negative control samples, haplotype information was deduced from
parental genotypes.

The CNV detection algorithm models expected allelic frequencies
across all allelic imbalance ratios at 0.025% intervals for three sets of
hypotheses: (1) all cells are normal (no allelic imbalance), (2) some/all
cells have a homolog 1 deletion or a homolog 2 amplification, or (3)
some/all cells have a homolog 2 deletion or a homolog 1
amplification. The likelihood of each hypothesis was determined at
each SNP using a Bayesian classifier based on expected and observed
allele frequencies at all heterozygous SNPs, and then the joint
likelihood across multiple SNPs was calculated. Finally, the
hypothesis with the maximum likelihood was selected.

This algorithm also calculates the confidence of each CNV call by
comparing the likelihoods of different hypotheses. A minimum
confidence threshold of 99.9% was used in plasma samples from
patients with cancer to minimize false-positive results.

Statistical Analyses
A linear regression model was used to compare either expected AAI

or tumor input DNA percentage and observed AAI determined by the
CNV detection algorithm. P b .05 was considered statistically
significant. SigmaPlot 12.5 (Systat Software, San Jose, CA) and
Matlab 7.12.0 R2011.a (MathWorks, Natick, MA) were used.

Results

Validation of mmPCR-NGS Assay
To assess the ability of mmPCR-NGS to detect CNVs in tumor

tissue samples, we first validated our CNV detection algorithm by
comparing CNVs detected in three breast cancer samples using
mmPCR-NGS with those identified by the Illumina CytoSNP-12
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microarray. We observed a strong linear correlation (R2 = 0.974)
between these two different methods (Supplementary Figure 1),
which confirmed the accuracy of our methodology.
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Figure 1. Determination of sensitivity and reproducibility of
mmPCR-NGS to detect copy-number variants (CNVs) using artificial
cfDNA mixtures (“PlasmArts”). (A) Correlation between actual and
estimated average allelic imbalance (AAI) in PlasmArt samples with
DNA from GM10382 cells with a 22q11.2 deletion and matched
normal cells. (B) Correlation between estimated AAI and actual
tumor DNA input in PlasmArt samples with DNA from HCC1954
breast cancer cells with chromosome 1p and 1q CNVs and
matched normal HCC1954BL cells, containing 0% to 5.66% tumor
DNA fractions. (C) Correlation between estimated AAI and actual
tumor DNA input in PlasmArt samples with DNA from HCC2218
breast cancer cells with chromosome 2p and 2q CNVs and
matched normal HCC2218BL cells, containing 0% to 9.09% tumor
DNA fractions. Data points and error bars indicate the mean and
standard deviation (SD), respectively, of 3 to 8 replicates.
Sensitivity of mmPCR-NGS
The sensitivity and reproducibility of mmPCR-NGS to detect

CNVs were evaluated using mixtures of abnormal DNA titrated into
samples with matched normal DNA. These artificial cfDNA
mixtures, which we call “PlasmArts”, contain DNA fragments with
a size distribution approximating that of natural mononucleosomal
cfDNA (see Materials and Methods).

A DNA sample having a deletion of the 22q11.2 region was
titrated with 0% to 3.0% input (equivalent to 0% to 1.5% AAI) into
a matched normal sample (Figure 1A). For CNVs in this region, we
observed good agreement between actual and estimated AAIs
(Table 2). The algorithm found CNVs of at least 0.45% AAI in all
positive control samples (minimum expected AAI of 0.5%), 0% AAI
(no CNV) in 7/8 (88%) of the negative control samples, and
0.05% AAI in the remaining negative sample. The estimated AAI
values showed high linearity (R2 = 0.940) and reproducibility (error
variance = 0.026%). These results implied that AAIs as low as 0.5%
could be detected and accurately quantified.

Two additional PlasmArt titrations of normal and matched tumor
DNA, with CNVs on chromosome 1 or chromosome 2, were also
evaluated (Figure 1, B and C). High linearity (R2 = 0.952 for
HCC1954 1p, 0.993 for HCC1954 1q, 0.977 for HCC2218 2p,
and 0.968 for HCC2218 2q) and reproducibility (error variance =
0.027% for HCC1954 1p, 0.012% for HCC1954 1q, 0.014% for
HCC2218 2p, and 0.029% for HCC2218 2q) were observed
between the known input DNA amounts and those calculated by
mmPCR-NGS. A comparison of tumor DNA input vs. estimated
AAIs for these CNVs is shown in Table 2. The algorithm found 0%
Table 2. Comparison of Actual and Estimated AAIs of CNVs in PlasmArts Experiments

Genomic
Region

Input
Fraction † (%)

Actual
AAI (%)

Estimated AAI (%)

Mean 95% CI n

22q11.2 1.00 0.50 0.55 0.45-0.65 8
1.50 0.75 0.74 0.62-0.86 8
2.00 1.00 1.15 1.04-1.26 8
2.50 1.25 1.50 1.39-1.61 8
3.00 1.50 1.70 1.58-1.81 8

1p 0.99 Unk 0.22 0-0.65 3
1.96 Unk 0.71 0.69-0.73 3
2.91 Unk 0.91 0.84-0.98 3
3.85 Unk 1.33 1.17-1.49 3
4.76 Unk 1.66 1.49-1.82 3
5.66 Unk 2.08 1.88-2.29 3

1q 0.99 Unk 0.68 0.46-0.90 3
1.96 Unk 1.24 1.07-1.42 3
2.91 Unk 1.81 1.69-1.93 3
3.85 Unk 2.48 2.42-2.53 3
4.76 Unk 2.94 2.81-3.06 3
5.66 Unk 3.65 3.60-3.70 3

2p 0.99 Unk 0.51 0.46-0.55 3
1.96 Unk 0.56 0.51-0.60 3
3.85 Unk 1.10 1.00-1.21 3
5.66 Unk 1.42 1.29-1.55 3
7.41 Unk 1.79 1.66-1.93 3
9.09 Unk 2.25 2.10-2.40 3

2q 0.99 Unk 0.61 0.52-0.70 3
1.96 Unk 1.00 0.90-1.11 3
3.85 Unk 1.44 1.31-1.58 3
5.66 Unk 2.02 1.85-2.18 3
7.41 Unk 2.30 2.12-2.47 3
9.09 Unk 2.79 2.60-2.98 3

Abbreviations: CI, confidence interval; Unk, unknown due to tumor heterogeneity.
† Defined as the proportion of nuclei originating from abnormal cells.
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Table 3. CNVs Detected in Tumor Subsections and Plasma from Patients with Breast Cancer

BC 1 1p 1q 2p 2q 22q11.2 BC 2 1p 1q 2p 2q 22q11.2

Tumor Tumor
Plasma Plasma

BC 3 1p 1q 2p 2q 22q11.2 BC 4 1p 1q 2p 2q 22q11.2
Tumor Tumor

Plasma Plasma

BC 5 1p 1q 2p 2q 22q11.2 BC 6 1p 1q 2p 2q 22q11.2
Tumor Tumor

Plasma Plasma
BC 7 1p 1q 2p 2q 22q11.2

Tumor
Plasma

BC 8 1p 1q 2p 2q 22q11.2 BC 9 1p 1q 2p 2q 22q11.2
Subsection 1 Subsection 1

Subsection 2 Subsection 2
Subsection 3 Subsection 3
Subsection 4 Subsection 4

Plasma Plasma
BC 10 1p 1q 2p 2q 22q11.2 BC 11 1p 1q 2p 2q 22q11.2

Subsection 1 Subsection 1

Subsection 2 Subsection 2
Subsection 3 Subsection 3
Subsection 4 Subsection 4
Subsection 5 Subsection 5
Subsection 6 Subsection 6

Plasma Plasma

Black and gray boxes indicate CNV-positive plasma and tumor samples, respectively. Unshaded boxes indicate CNV-negative samples. BC, breast cancer.
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AAI (no CNV) in 11/12 (92%) of the negative control samples, and
0.32% AAI in the remaining negative sample.
Based on these titration experiments, we chose to use a conservative

AAI threshold of 0.45% to call CNVs in plasma samples. Together,
these findings suggested that mmPCR-NGS would be able to detect
CNVs with high sensitivity and reproducibility in actual samples
from patients with cancer.

CNV Analyses of Tumor Tissue Samples
We first analyzed a single tissue subsection from a tumor from each

of seven patients with breast cancer (BC1 to BC7) using
mmPCR-NGS. All seven subsections had a CNV detected in at
least one of the five targeted genomic regions (1p, 1q, 2p, 2q, and
22q11.2; Table 3, Supplemental Table 1).
We then analyzed four to six tumor subsections from each of four

additional patients with breast cancer (BC8 to BC11). Similar to what
was observed with patients BC1 to BC7, all subsections from patients
BC8 to BC11 had a CNV detected in at least one of the five targeted
genomic regions (Table 3, Supplemental Table 1). A CNV was
identified in at least one tumor subsection in 18/20 (90%) genomic
regions. Among these 18 CNV-positive regions, 11 (61%) had a
CNV detected in that particular region in all subsections.

Different patterns of AAIs across these five chromosomal
regions were also observed among different tumor subsections
(Figure 2 and Supplementary Figure 2). In patient BC8 (Figure 2),
for example, a similar pattern of CNVs was observed for regions 2p,
2q, and 22q11.2 in all four subsections, suggesting that these CNVs
are clonal mutations. In contrast, only two of the four subsections for
this patient had CNVs observed in the 1p region, and three of the
four subsections had CNVs observed in the 1q region, suggesting that
those CNVs were subclonal mutations. Similar patterns of possible
clonal and subclonal CNVs were observed in patients BC10 and
BC11, whereas for patient BC9, CNVs appeared to be more
homogenous (Figure 2).

In addition, even when a CNV was detected in all subsections for a
particular patient, such as in the 1q region for patient BC10
(Figure 2), the AAI often varied between subsections. Overall AAI
patterns also differed between patients. Taken together, these findings
suggest that mmPCR-NGS can be used to elucidate both intra- and
inter-tumor clonal heterogeneity.
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Concordance of CNVs in Tumors and Plasma cfDNA
To quantify the amount of overlap between CNVs detected in

plasma cfDNA and those detected in tumor tissue gDNA, we used
mmPCR-NGS to interrogate the plasma samples corresponding to
the eleven tumor tissue samples. In patients BC1 to BC7, 9/21 (43%)
CNV-positive genomic regions identified in tumors were also
detected in the plasma (0.81% to 5.26% AAI) (Table 3, Supple-
mental Table 2). No CNVs were detected in any of the five targeted
genomic regions in 2/7 (29%) patients (BC6 and BC7; Table 3).

As expected, we found a similar degree of overlap between tumor
and plasma samples frompatients BC8 toBC11. Specifically, 7/18 (39%)
CNV-positive genomic regions identified in tumor subsections were also
detected in the plasma (0.77% to 5.80% AAI) (Figure 3, Table 3,
Supplemental Table 2). One of these four patients (25%; BC10) did not
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have any CNVs detected in plasma in any of the targeted chromosomal
regions (Table 3).
We further compared the concordance between clonal and

subclonal CNVs in tumor tissue subsections and CNVs in matching
plasma samples from patients BC8 to BC11. Considering only the 11
clonal CNVs—those that were detected in all tumor subsections—a
CNV was detected in four (36%) of the patient-matched plasma
samples (estimated AAI: 0.77% to 5.80%). Among the seven
subclonal CNVs—those that were not observed in all subsections—
we detected a CNV in 3/7 (43%) of the regions (estimated AAI:
1.24% to 3.36%) in the corresponding cfDNA. Of note, in these
three regions (BC1, chromosome 1p; BC1, chromosome 1q; and
BC4, chromosome 2p), a CNV was detected in 10/14 (71%) of the
matched tumor subsections. In contrast, in the other four genomic
regions that did not have a CNV detected in the corresponding
plasma samples (BC3, chromosomal regions 1p, 2p, 2q, and
22q11.2), we only detected a CNV in 7/24 (29%) of the tissue
subsections. These data suggest that the more prevalent a subclonal
CNV is within a tumor, the more likely it is to be observed in cfDNA.

In the 150 genomic regions assayed in 30 negative controls, there
were no CNVs with AAIs N0.45% and confidence N99.9%.
Furthermore, these AAIs were significantly lower than those from
regions with CNVs detected in patients with breast cancer (Figure 4).
Together, these results suggest that mmPCR-NGS has a low
false-positive rate.

Discussion
Despite significant advances in targeted cancer therapies, the majority
of patients with cancer still develop resistance due to emergence of
new subclonal mutations. Improved control of tumor growth and
spread requires methods that are sufficiently sensitive to identify
clinically actionable mutations as early as possible, preferably before
metastasis occurs. Currently, most clinical methods for cfDNA
analysis focus on SNVs [23,24]. However, to maximize detection and
characterization of early-stage tumors, methods that interrogate other
mutation types, such as CNVs, should be incorporated into cancer
tests. To our knowledge, no methods with sufficient analytical
sensitivity to enable detection of CNVs in early-stage tumors have
been described.

Here we describe a novel methodology to detect CNVs in plasma
that has substantially higher sensitivity than any previously reported,
allowing us to detect clonal and subclonal mutations in both tissue
and plasma from patients with stage II breast cancer. We anticipate
that the ability to detect both SNVs and CNVs in plasma samples
with low tumor fraction will provide greater genomic coverage and
thereby facilitate early detection of cancer and improvement of
therapeutic strategies [1,2,16–18].

Unlike traditional tumor biopsies, which require sufficiently large
tumors to sample and are often costly and difficult to obtain due to
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their invasive nature, liquid biopsies are more amenable to collection
at all tumor stages and at multiple time points. Two hurdles, however,
have prevented the clinical application of liquid biopsies for CNV
detection. First, current methods have not been sufficiently sensitive
to detect CNVs in plasma when levels of ctDNA are low, which is
typical of patients with early-stage disease or subclonal mutations
[20,22,27]. Although the lower limit of CNV detection using WGS
has not been rigorously defined, three studies reported that a ctDNA
fraction of approximately 3.7% to 5.0% ctDNA fraction (equivalent
to 2.2% to 3.7% AAI2) was necessary to achieve clinically relevant
specificities [26,33,34]. Given that our method can detect CNVs
with AAIs as low as 0.5% with excellent specificity, our methodology
is at least five times more sensitive than WGS. Furthermore, because
CNVs often comprise multiple duplication events, our method may
be able to detect tumors from plasma with substantially lower ctDNA
fraction. In this study, we were able to detect CNVs in plasma from 8/
11 (72.7%) patients with stage II breast cancer, suggesting that this
methodology may enable earlier detection of CNVs from liquid
biopsies, a point when successful treatment is more likely.

Second, the clinical use of liquid biopsies has been hindered by lack
of understanding about the concordance between clonal and
subclonal tumor mutations and those observed in ctDNA [44].
Analysis of matched tumor and plasma samples using the
mmPCR-NGS methodology could help address this knowledge
gap. In this study, we detected CNVs in plasma that were not
observed in all corresponding tissue subsections, suggesting that a
liquid biopsy may be more representative of tumor heterogeneity than
single biopsies. However, in other cases, we did not detect CNVs in
the plasma that were observed in some or all of the corresponding
tissue subsections, indicating that a liquid biopsy may not be able to
detect all tumor CNVs. It is not clear whether this is due to the limit
of detection of mmPCR-NGS, or the lack of representation of DNA
from tumor-tissue subsections in plasma.

Studies using somatic SNVs as markers have also noted partial
concordance between ctDNA and tumor tissue [45,46]. The
incomplete overlap is consistent with the idea that plasma ctDNA
and tumor biopsies are two different ways the mutational landscape of
a tumor can be sampled, and consequently they may capture different
mutational profiles. Although both approaches may provide clinically
useful information, ctDNA tends to be enriched for mutations that
develop early in tumor evolution [44,46] and may therefore be more
actionable [2].

Despite its ability to detect subclonal mutations, the
mmPCR-NGS methodology described here has two main limitations.
First, our methodology requires knowledge of haplotype information,
which is necessary to identify CNVs with very low AAI values in
ctDNA; in this study, for the patients with cancer, we deduced
haplotype information from analysis of tumor tissue, or for the
negative controls, from parental genotypic information. However, the
2 Leary et al. (2012) estimated that ~5% ctDNA fraction is necessary to achieve 99% specificity. AAI is
approximately one-half the ctDNA fraction for tumors that contain a deletion or a single duplication, and less than
half the ctDNA fraction for tumors where there aremultiple duplications of a target region. Therefore, 2.5% AAI
represents a lower bound on the sensitivity of this method for clinically relevant specificities. Heidary et al.
(2014) estimated 3.7% ctDNA fraction by calculating the mean mutant allele frequency of eight SNVs in
three plasma samples, which they also used for CNV analyses. Since mutant allele frequency maps to AAI in
a 1:1 manner, their result is also an indirect estimate of the lower bound of the AAIs for the CNVs they
detected. Chan et al. (2013) determined the fractional concentration of tumor-derived DNA defined as
(A-B)/A, where A and B are the number of sequencing reads from each of the two alleles at SNPs from a
genomic region showing loss of heterozygosity in the tumor, and B is the number of reads from the allele on
the homolog that was deleted. The AAI corresponds to (A-B)/(A+B), which gives a lower bound of 2.2%
AAI for the sample with the lowest ctDNA fraction (4.3%) for which a deletion was detected in the plasma.
ability to detect early-stage disease (i.e., before tumors are large
enough to be biopsied) using liquid biopsies necessitates de novo
haplotype phasing, which could be achieved by other methods [47],
such as haplotyping by dilution [48] or long-read sequencing [49].

Second, although mmPCR-NGS can determine the absence or
presence of a CNV at low AAI, it is not able to differentiate between
copy number gains and losses at low AAI. However, discrimination of
duplications from deletions may not be necessary for some clinical
applications. Furthermore, because many cancers tend to display
either deletions or duplications in specific genomic regions, but not
both, knowledge of CNVs in conjunction with single-nucleotide
variant (SNV) markers may be sufficient to fingerprint specific
cancers [11]. Although the five genomic regions assayed in this study
were not optimized for breast cancer diagnosis, they do suggest that
recurrent CNV patterns can be detected in limited genomic analyses.
For example, in this study, plasma ctDNA analysis detected 2p CNVs
in 6/11 (55%) of breast tumors, but identified 1p CNVs in only 2/11
(18%) of breast tumors. Analysis of AAI patterns in ctDNA—
analogous to those we performed in tumor-tissue subsections—may
also provide more detailed insights into the clonal architecture of
tumors to help predict their therapeutic responses and optimize
treatment strategies. Therefore, we are currently developing
mmPCR-NGS panels to detect clinically actionable CNVs and
SNVs. Such panels would be particularly useful for patients with
cancers where CNVs represent a substantial proportion of the
mutation load, as is common in breast, ovarian, and lung cancer [5].

Conclusions
We have developed a CNV detection methodology, mmPCR-NGS,
that can be used to detect CNVs in plasma with better sensitivity than
previously described methods. This methodology permits detection
of subclonal CNVs in plasma samples from patients with cancer that a
single tumor biopsy might miss. We anticipate that future
optimization of mmPCR-NGS will result in a rapid and cost-effective
diagnostic for CNV-enriched cancers, and that is likely to facilitate
personalized cancer medicine.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.tranon.2015.08.004.
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