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With the rapid growth of biomedical literature, a large amount of knowledge about diseases, symptoms, and therapeutic substances
hidden in the literature can be used for drug discovery and disease therapy. In this paper, we present a method of constructing two
models for extracting the relations between the disease and symptom and symptom and therapeutic substance from biomedical
texts, respectively. The former judges whether a disease causes a certain physiological phenomenon while the latter determines
whether a substance relieves or eliminates a certain physiological phenomenon. These two kinds of relations can be further
utilized to extract the relations between disease and therapeutic substance. In our method, first two training sets for extracting the
relations between the disease-symptom and symptom-therapeutic substance are manually annotated and then two semisupervised
learning algorithms, that is, Co-Training and Tri-Training, are applied to utilize the unlabeled data to boost the relation extraction
performance. Experimental results show that exploiting the unlabeled data with both Co-Training and Tri-Training algorithms can
enhance the performance effectively.

1. Introduction

In recent years, with the rapid growth of biomedical literature,
the technology of information extraction (IE) has been
extensively applied to relation extraction in this literature, for
example, extracting the semantic relations between diseases,
drugs, genes, proteins, and so forth [1–3]. The related chal-
lenges (e.g., BioCreative II protein-protein interaction (PPI)
task [4], DDIExtraction 2011 [5], andDDIExtraction 2013 [6])
have been held successfully.

In our work, we focus on extracting the relations between
diseases and their symptoms and symptoms and their ther-
apeutic substances. These relations are defined the same as
those in [4–6] and also annotated at the sentence level. The
former is the relationship between a disease and its related
physiological phenomenon in a sentence. For example, the
sentence “many blood- and blood vessel-related character-
istics are typical for Raynaud patients: Blood viscosity and

platelet aggregability are high” shows that blood viscosity
and platelet aggregability are physiological phenomenon of
Raynaud disease.The latter is the relationship between a phys-
iological phenomenon and the therapeutic substance that can
relieve it in a sentence. For example, the sentence “fish oil
and its active ingredient eicosapentaenoic acid (EPA) lowered
blood viscosity” shows that fish oil and EPA can relieve the
physiological phenomenon (blood viscosity). These two kinds
of relations can be further utilized to extract the relations
between disease and therapeutic substance. As shown in the
above example, it can be assumed that fish oil and EPA may
relieve or heal Raynaud disease. Therefore, such information
is important for drug discovery and disease treatment. Cur-
rently, a large amount of knowledge on diseases, symptoms,
and therapeutic substances remains hidden in the literature
and needs to be mined with IE technology.

Generally, the methods of extracting the semantic rela-
tion between biomedical entities include cooccurrence-based
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methods [7], pattern-based methods [8], and machine learn-
ing methods [9]. Cooccurrence-based methods use frequent
cooccurrence to extract the relations between entities. This
method is simple and shows very low precision for high recall
[10]. Yen et al. developed a cooccurrence approach based
on an information retrieval principle to extract gene-disease
relationships from text [11]. Pattern-based methods define a
series of patterns in advance and use pattern matching to
extract the relations between entities. Huang et al. used a
dynamic programming algorithm to compute distinguish-
ing patterns by aligning relevant sentences and key verbs
that describe protein interactions [12]. Since templates are
manually defined, its generalization ability is not satisfactory.
Machine learning methods, the most popular ones, use clas-
sification algorithms to extract the relations between entities
from literature, such as support vector machine (SVM) [13],
maximum entropy [14], and Naive Bayes [15]. Among others,
kernel-based methods are widely used in relation extraction.
These methods define different kernel functions to extract
the relations between entities, such as graph kernel [16], tree
kernel [17], and walk path kernel [18].

The machine learning methods belong to the supervised
learning ones which need a large of labeled examples to train
the model. However, currently no corpuses for extraction of
disease-symptom and symptom-therapeutic substance rela-
tions are available. In addition, even if limited labeled data are
available, it is still difficult to achieve satisfactory generaliza-
tion ability for a classifier. To solve the problem, we first man-
ually annotated two training sets for extracting the relations
between the disease-symptom and symptom-therapeutic
substance and then introduced the semisupervised learning
methods to utilize the unlabeled data for training themodels.

Semisupervised learning methods attempt to exploit the
unlabeled data to help improve the generalization ability of
the classifier with limited labeled data. They can be roughly
divided into four categories, that is, generative paramet-
ric models [19], semisupervised support vector machines
(S3VMs) [20], graph-based approaches [21], and Co-Training
[22–27]. Co-Training was proposed by Blum and Mitchell
[22]. This method requires two sufficient and redundant
views which do not exist in most real-world scenarios. In
order to relax this constraint, Zhou and Li proposed a Tri-
Training algorithm that neither requires the instance space
to be described with sufficient and redundant views nor puts
any constraints on the supervised learning method [28]. The
algorithm uses three classifiers, which can not only tackle
the problem of determining how to label the unlabeled data,
but also improve generalization ability of a classifier with
unlabeled data.Wang et al. made a large number of studies on
Co-Training and proved that if two views have large diversity,
Co-Training is able to improve the learning performance by
exploiting the unlabeled data even with insufficient views
[23–25]. Until now, Tri-Training and Co-Training have been
widely used in natural language processing. Pierce andCardie
[26] applied Co-Training to noun phrase recognition. They
regarded the current word and the 𝑘 words which appear
before the current word in the document as a view and the 𝑘
words appear after the current word as another view and then
trained the classifiers on these two views with Co-Training

algorithm. Mavroeidis et al. [29] applied Tri-Training algo-
rithm to spam detection filtering and achieved a satisfactory
result.

Meanwhile, the ensemble learning methods have been
proposed, which combine the outputs of several base learners
to form an integrated output for enhancing the classification
performance. There are three popular ensemble methods,
that is, Bagging [30], Boosting [31], and Random Subspace
[32]. The Bagging method uses random independent boot-
strap replicates from a training dataset to construct base
learners and calculates the final result by a simple vote [30].
For Boosting method, the base learners are constructed on
weighted versions of training set, which are dependent on
previous base learners’ results and the final result is calculated
by a simple vote or a weighted vote [31]. The Random Sub-
space method uses random subspaces of the feature space to
construct the base learners [32].

In our method, we regard three kernels (i.e., the feature
kernel, graph kernel, and tree kernel whichwill be introduced
in the following section) as three different views. Co-Training
and Tri-Training algorithms are then employed to exploit
the unlabeled data with these views and build the disease-
symptommodel and symptom-therapeutic substance model.
Meanwhile, in the Tri-Training process, we adopted the
ensemble learning method to integrate three individual
kernels and achieved a satisfactory result.

2. Methods

2.1. Feature Kernel. The core work of the feature-based
method is feature selection which has a significant impact
on the performance. The following features are used in our
feature-based kernel.

(1) Word Feature. Word feature uses two disordered sets
of words which are between two concept entities (diseases,
symptoms, and therapeutic substances) and surrounding two
conceptual entities as the eigenvector.The features surround-
ing two concept entities’ names include the leftMwords of the
first concept entity name and the rightM words of the second
concept entity name (in our experiments,M is set to 4).

(2) N-Gram Word Feature. In our method, we use N-gram
(𝑁 = 1, 2, and 3 in our experiments) words from the left four
words of the first concept entity to the right four words of the
second concept as features. N-gram features enrich the word
feature and add contextual information, which can effectively
express the relation of concept entities.

(3) Position Feature.The relative position information ofword
feature and N-gram feature for the concept entities has an
important influence on relation extraction and, therefore,
is introduced into our method. For example, “E1 L feature”
denotes a word feature or N-gram feature appears in the left
of first concept entity; “E B feature” between two concept
entities; “E2 R feature” in the right of second concept entity.

(4) Interaction Word and Distance Features. Some words
such as “induce,” “action,” and “improve” often imply the
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Figure 1: An example of a dependency graph. The candidate interaction pair is marked as “ENTRY1” and “ENTRY2.”

existence of relations. Therefore, the existence of these words
(we called interaction words) is chosen as a binary feature. In
addition, we found that the shorter the distance between two
concept entities is, the more likely the two concept entities
have an interactive relationship. Therefore, the distance is
chosen as a feature. For example, “DISLessThanTree” is a fea-
ture value showing that the distance between the two concept
entities is less than three.

The initial eigenvector extracted with our feature-based
kernel has a high dimension and includes many sparse
features. In order to reduce the dimension, we employed the
document frequency method [33] to select features. Initially,
the feature-based kernel method extracts 248,000 features
from the disease-symptom training set and we preserved the
features with document frequencies exceeding five (a total
of 12,000 features). Similarly, 345,000 features were extracted
from the symptom-therapeutic substance training set and
13,700 features were retained.

2.2. Convolution Tree Kernel. In our method, convolution
tree kernel 𝐾𝑐(𝑇1, 𝑇2), a special convolution kernel, is used
to obtain useful structural information from substructure.
It calculates the syntactic structure similarity between two
parse trees by counting the number of common subtrees of
the two parse trees rooted by 𝑇1 and 𝑇2:

𝐾𝑐 (𝑇1, 𝑇2) = ∑
𝑛
1
∈𝑁
1
,𝑛
2
∈𝑁
2

Δ (𝑛1, 𝑛2) , (1)

where𝑁𝑗 denotes the set of nodes in the tree 𝑇𝑗 and Δ(𝑛1, 𝑛2)
denotes the number of common subtrees of the two parse
trees rooted by 𝑛1 and 𝑛2.

2.2.1. Tree Pruning in Convolution Kernel. In our method,
Stanford parser [34] is used to parse the sentences. Before a
sentence is parsed, the concept entity pairs in the sentence are
replaced with “ENTRY1” and “ENTRY2,” and other entities
are replaced with “ENTRY.” Take gene-gene interaction
between C0021764 and interleukin increases C0002395 risk

(the sentence is processed with MetaMap, and the two con-
cept entities are represented with their CUIs) for example. It
is replacedwith “gene-gene interaction between ENTRY1 and
interleukin increases ENTRY2 risk.” Then, we use Stanford
parser to parse the sentence to get a Complete Tree (CT).
Since a CT includes too much contextual information which
may introduce many noisy features, we used the method
described in [35] to obtain the shortest path enclosed tree
(SPT),and replace the CTwith it. SPT is the smallest common
subtree including the two concept entities, which is a part of
CT.

2.2.2. Predicate Argument Path. The representation of a
predicate argument is a graphic structure, which expresses the
deep syntactic and semantic relations between words. In the
predicate argument structure, different substructures on the
shortest path between the two concept entities have different
information. An example of a dependency graph is shown in
Figure 1. In our method, v-walk and e-walk features (which
are both on the shortest dependency paths) are added into
the tree kernel. V-walk contains the syntactic and semantic
relations between two words. For example, in Figure 1, the
relation between “ENTRY1” and “interleukin” is “NMOD”
and the relation between “risk” and “increases” is “OBJ,” and
so forth. E-walk contains the relations between a word and
its two adjacent nodes. Figure 1 shows the relation of “inter-
leukin” with its two adjacent nodes “NMOD” and “NMOD”
and the relation of “risk” with its two adjacent nodes
“NMOD” and “OBJ.”

2.3. Graph Kernel. The graph kernel method uses the syntax
tree to express a graph structure of a sentence. The similarity
of two graphs is calculated by comparing the relation between
two public nodes (vertices). Our method uses the all-paths
graph kernel proposed byAirola et al. [16].Thekernel consists
of two directed subgraphs, that is, a parse graph and a graph
representing the linear order of words. In Figure 2 the upper
part is the analysis of the structure subgraph and the lower
part is the linear order subgraph.These two subgraphs denote
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Figure 2: Graph kernel with two directed subgraphs. The candidate interaction pair is marked as “ENTRY1” and “ENTRY2.” In the
dependency based subgraph all nodes in a shortest path are specialized using a post-tag (IP). In the linear order subgraph possible tags
are (B)efore, (M)iddle, and (A)fter.

the dependency structure and linear sequence of a sentence,
respectively.

In our method, a simple weight allocation strategy is
chosen; that is, the edges of the shortest path are assigned a
weight of 0.9; other edges 0.3; all edges in the linear order sub-
graph 0.9.The representation thus allows us to emphasize the
shortest pathwithout completely disregarding potentially rel-
evant words outside of the path. A graph kernel calculates the
similarity between two input graphs by comparing the rela-
tions between common vertices (nodes). A graph matrix𝐺 is
calculated as

𝐺 = 𝐿
∞

∑
𝑛=1

𝐴𝑛𝐿𝑇, (2)

where 𝐴 is an edge matrix whose rows and columns are
indexed vertices.𝐴 𝑖𝑗 is a weight if edge𝑉𝑖 is connected to edge
𝑉𝑗. 𝐿 is the label matrix whose row indicates the label and col-
umn indicates the vertex. 𝐿 𝑖𝑗 = 1 indicates that vertex𝑉𝑗 con-
tains 𝑖th label. The graph kernel 𝐾(𝐺, 𝐺󸀠) is defined by using
two input graph matrices 𝐺 and 𝐺󸀠 [15].

𝐾(𝐺,𝐺󸀠) =
𝐿

∑
𝑖=1

𝐿

∑
𝑗=1

𝐺𝑖𝑗𝐺󸀠𝑖𝑗. (3)

2.4. Co-Training Algorithm. The initial Co-Training algo-
rithm (or standard Co-Training algorithm) was proposed by
Blum and Mitchell [22]. They assumed that the training set
has two sufficient and redundant views; namely, the set of
attributes meets two conditions. First, each attribute set is
sufficient to describe the problem; that is, if the training set is
sufficient, each attribute set is able to learn a strong classifier.
Second, each attribute set is conditionally independent of
the other given the class label. Our Co-Training algorithm is
described in Algorithm 1:

Algorithm 1 (Co-Training algorithm).

(1) Input is as follows:
The labeled data 𝐿 and the unlabeled data 𝑈
Initialize training set 𝐿1, 𝐿2 (𝐿1 = 𝐿2 = 𝐿)
Sufficient and redundant views: 𝑉1, 𝑉2
Iteration number: N

(2) Process is as follows:

(2.1) Create a pool 𝑢 of examples by choosing 𝑛
examples at random from 𝑈, 𝑈 = 𝑈 − 𝑢.

(2.2) Use 𝐿1 to train a classifier ℎ1 in 𝑉1.
Use 𝐿2 to train a classifier ℎ2 in 𝑉2.

(2.3) Use ℎ1 and ℎ2 to label the examples from u.
(2.4) Take𝑚 positive examples and𝑚 negative exam-

ples out, which were consistently labeled by ℎ1
and ℎ2. Then take 𝑝 positive examples out from
the𝑚 positive examples and add them to 𝐿1 and
𝐿2, respectively. Choose 2𝑚 examples from𝑈 to
replenish u, 𝑈 = 𝑈 − 2𝑚,𝑁 = 𝑁 − 1.

(2.5) Repeat the processes (2.2)–(2.4) until the unla-
beled corpora 𝑈 are empty or the number of
unlabeled data in 𝑢 is less than a certain number
or𝑁 = 0.

(3) Outputs are as follows:
The classifiers ℎ1 and ℎ2

2.5. Tri-Training Algorithm. The Co-Training algorithm
requires two sufficient and redundant views. However, this
constraint does not exist in most real-world scenarios. The
Tri-Training algorithm neither requires the instance space to
be described with sufficient and redundant views and nor
puts any constraints on the supervised learning algorithm
[28]. In this algorithm, three classifiers are used, which can
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Table 1: The details of two corpora.

Corpus Training set Test set Unlabeled data
Positive Negative Positive Negative Total

Diseases and symptoms 299 299 249 250 19,298
Symptoms and therapeutic substances 300 300 249 249 19,392

tackle the problem of determining how to label the unlabeled
data and produce the final hypothesis. Our Tri-Training
algorithm is described in Algorithm 2.

In addition, the different classifiers calculate the similarity
with different aspects between the two sentences. Combining
the similarities can reduce the danger of missing important
features. Therefore, in each Tri-Training round, two different
ensemble strategies are used to integrate the three classifiers
for further performance improvement.The first strategy inte-
grates the classifiers with a simple votingmethod.The second
strategy assigns each classifier with a different weight. Then
the normalized output 𝐾 of three classifier outputs 𝐾𝑚 (𝑚 =
1, 2, 3) is defined as

𝐾 =
𝑀

∑
𝑚=1

𝜎𝑚𝐾𝑚

𝑀

∑
𝑚=1

𝜎𝑚 = 1, 𝜎𝑚 ≥ 0, ∀𝑚,
(4)

where𝑀 represents the number of classifiers (𝑀 = 3 in our
method).

Algorithm 2 (Tri-Training algorithm).

(1) Input is as follows:
The labeled data L and the unlabeled data U
Initializing training set 𝐿1, 𝐿2, 𝐿3 (𝐿1 = 𝐿2 = 𝐿3 = 𝐿)
Selecting views: 𝑉1, 𝑉2, and 𝑉3
Iterations number: N

(2) Process is as follows:

(2.1) Create a pool 𝑢 of examples by choosing 𝑛
examples at random from 𝑈, 𝑈 = 𝑈 − 𝑢.

(2.2) Use 𝐿1 to train a classifier ℎ1 in 𝑉1.
Use 𝐿2 to train a classifier ℎ2 in 𝑉2.
Use 𝐿3 to train a classifier ℎ3 in 𝑉3.

(2.3) Use ℎ1, ℎ2, and ℎ3 to label examples from 𝑢.
(2.4) Take𝑚 positive examples and𝑚 negative exam-

ples out, which were consistently labeled by
ℎ1, ℎ2, and ℎ3. Then take 𝑝1 positive examples
from the 𝑚 positive examples and add them to
𝐿1, 𝐿2, and 𝐿3, respectively; take 𝑝2 negative
examples from the𝑚 negative examples and add
them to 𝐿1, 𝐿2, and 𝐿3, respectively. Choose 2𝑚
examples from 𝑈 to replenish 𝑢, 𝑈 = 𝑈 − 2𝑚,
𝑁 = 𝑁 − 1.

(2.5) Repeat the processes (2.2)–(2.4) until the unla-
beled corpora 𝑈 are empty or the number of
unlabeled data in 𝑢 is less than a certain number
or𝑁 = 0.

(3) Outputs are as follows:
The classifiers ℎ1, ℎ2, and ℎ3

3. Experiments and Results

3.1. Experimental Datasets. In our experiments, the disease
and symptom corpus data was obtained through searching
Semantic MEDLINE Database [36] using 200 concepts cho-
sen from MeSH (Medical Subject Headings) with semantic
type “Disease or Syndrome.” Since these sentences (corpus
data) have been processed by SemRep [37], a natural language
processing tool based on the rule to identify relationship
in the MEDLINE documents, the possibility of the relation
between the two concept entities in the sentences is high. To
limit the semantic types of two concept entities in a sentence,
we only preserved the sentences containing the concepts of
the needed semantic types (i.e., biologic function, cell function,
finding, molecular function, organism function, organ or tissue
function, pathologic function, phenomenon or process, and
physiologic function). Finally, we obtained a total of about
20,400 sentences from which we manually constructed two
labeled datasets as the initial training set 𝑇initial (598 labeled
sentences as shown in Table 1) and test set (499 labeled
sentences), respectively.

During the manual annotation, the following criteria are
applied: the disease and symptom relationship indicates that
the symptom is a physiological phenomenon of the disease.
If an instance in a sentence semantically expresses the disease
and symptom relationship, it is labeled as a positive example.
As in the example provided in Section 1, the sentence “many
blood- and blood vessel-related characteristics are typical for
Raynaud patients: blood viscosity and platelet aggregability
are high” contains two positive examples, that is, Raynaud
and blood viscosity and Raynaud and platelet aggregability. In
addition, some special relationships such as “B in A” and “A
can change B” are also classified as the positive examples since
they show a physiological phenomenon (B) occurs when
someone has the disease (A). However, if a relation in a
sentence is only a cooccurrence one, it is labeled as a negative
example. For the patterns such as “A is a B” and “A and B”
they are labeled as the negative examples since “A is a B” is
a “IS A” relation and “A and B” is a coordination relation,
which are not the relations we need.

The symptom-therapeutic substance corpus data was
obtained as follows. First, some “Alzheimer’s disease” related
symptom terms were obtained from the Semantic MEDLINE
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Database. Then these symptom terms were used to search
the database for the sentences which contain the query terms
and terms belonging to the semantic types of therapeutic
substance (e.g., pharmacologic substance and organic chemi-
cal). We obtained about 20,500 sentences and then manually
annotated about 1,100 sentences as the disease-symptom
corpora: 600 labeled sentences are used as the initial training
set and the remaining 498 labeled sentences as the test set.
Similar to the disease and symptom relationship annotation,
the following criteria are applied: the symptom-therapeutic
substance relationship indicates that a therapeutic substance
can relieve a physiological phenomenon. If an instance in
a sentence semantically expresses the symptom-therapeutic
substance relationship, it is labeled as a positive example. As
in the example provided in Section 1, the sentence “fish oil
and its active ingredient eicosapentaenoic acid (EPA) lowered
blood viscosity” contains two positive examples, that is, fish oil
and blood viscosity and EPA and blood viscosity.

When the manual annotation process was completed,
the level of agreement was estimated. Cohen’s kappa scores
between each annotator of two corpora are 0.866 and 0.903,
respectively, and content analysis researchers generally think
of aCohen’s kappa scoremore than 0.8 as good reliability [38].
In addition, the two corpora are available for academic use
(see Supplementary Material available online at http://dx.doi
.org/10.1155/2016/3594937).

3.2. Experimental Evaluation. The evaluation metrics used
in our experiments are precision (P), recall (R), F-score (F),
and Area under Roc Curve (AUC) [39]. They are defined as
follows:

𝑃 = TP
TP + FP (5)

𝑅 = TP
TP + FN (6)

𝐹 = 2 ∗ 𝑃 ∗ 𝑅𝑃 + 𝑅 (7)

AUC =
∑𝑚+𝑖=1∑

𝑚
−

𝑗=1𝐻(𝑥𝑖 − 𝑦𝑗)
𝑚+𝑚−

, (8)

where TP denotes true interaction pair; TN denotes true
noninteraction pair; FP denotes false interaction pair; and
FN denotes false noninteraction pair. F-score is the balanced
measure for quantifying the performance of the systems. In
addition, the AUC is also used to evaluate the performance of
our method. It is not affected by the distribution of data, and
it has been advocated to be used for performance evaluation
in the machine learning community [40]. In formula (8),𝑚+
and 𝑚− are the numbers of positive and negative examples,
respectively, and 𝑥1, . . . , 𝑥𝑚

+
are the outputs of the system for

the positive examples, and 𝑦1, . . . , 𝑦𝑚
−
are the ones for the

negative examples. The function𝐻(𝑟) is defined as follows:

𝐻(𝑟) =
{{{{
{{{{
{

1, 𝑟 > 0
0.5, 𝑟 = 0
0, 𝑟 < 0.

(9)

Table 2:The initial results on the disease-symptom test set. Method
1 integrates three classifiers (the feature kernel, graph kernel, and tree
kernel) with the same weight while Method 2 integrates them with
a weight ratio of 4 : 4 : 2.

Method 𝑃 𝑅 𝐹-score AUC
Feature kernel 91.38 62.11 73.95 87.13
Graph kernel 93.87 59.77 73.04 87.21
Tree kernel 69.10 62.89 65.85 73.37
Method 1 92.05 63.28 75.00 89.47
Method 2 92.81 60.55 73.29 89.74

3.3. The Initial Performance of the Disease-Symptom Model.
Table 2 shows the performance of the classifiers on the initial
disease-symptom test set. Feature kernel and graph kernel
achieve almost the same performance which is better than
that of tree kernel. When the three classifiers are integrated
with the sameweight, the higher F-score (75.00%) is obtained
while, when they are integrated with a weight ratio of 4 : 4 : 2,
the F-score is a bit lower than that of feature kernel. However,
in both cases, the AUC performances are improved, which
shows that since different classifiers calculate the similarity
with different aspects between two sentences, combining
these similarities can boost the performance.

3.3.1.The Performance of Co-Training on theDisease-Symptom
Test Set. In our method, the feature set for the disease-
symptom model is divided into three views: the feature
kernel, graph kernel, and tree kernel. In Co-Training exper-
iments, to compare the results of each combination of two
views, the experiments are divided into three groups as shown
in Table 3. Each group uses same experimental parameters;
that is, u = 4,000, m = 300, and p = 100 (u, m, and 𝑝 in
Algorithm 1). The performance curves of different combina-
tions are shown in Figures 3, 4, and 5, respectively, and their
final results with different iteration times (13, 27 and 22, resp.)
are shown in Table 3.

From Figures 3, 4, and 5, we can obtain the following
observations. (1) With the increase of the iteration time
and more unlabeled data added to the training set, the F-
score shows a rising trend. The reason is that, as the Co-
Training process proceeds, more and more unlabeled data
are labelled by one classifier for the other, which improves
the performance of both classifiers. However, after a number
of iterations, the performance of the classifiers could not be
improved any more since too much noise (false positives and
false negatives) may be introduced from the unlabeled data.
(2)The AUC of classifiers have different trends with different
combinations of the views. The AUC of the feature kernel
fluctuate around 88% while the ones of the graph kernel fluc-
tuate between 85% and 87%. In contrast, all of the tree kernel’s
AUC have a rising trend since the performance of the initial
tree kernel classifier is relatively low and then improved with
the relatively accurate labelled data provided by feature kernel
or graph kernel.

In fact, the performance of semisupervised learning
algorithms is usually not stable because the unlabeled exam-
ples may often be wrongly labeled during the learning

http://dx.doi.org/10.1155/2016/3594937
http://dx.doi.org/10.1155/2016/3594937
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Figure 3: Co-Training performance curve of feature kernel and graph kernel on the disease-symptom test set.
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Figure 4: Co-Training performance curve of feature kernel and tree kernel on the disease-symptom test set.
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Figure 5: Co-Training performance curve of graph kernel and tree kernel on the disease-symptom test set.
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Table 3:The results obtained with Co-Training on the disease-symptom test set. Combinationmethod integrates three classifiers (the feature
kernel, graph kernel, and tree kernel) with the same weight.

Combination View 𝑃 𝑅 𝐹-score AUC

Feature and graph kernel
Feature kernel 88.32 67.97 76.82 88.01
Graph kernel 83.26 71.88 77.15 87.54
Combination 74.91 85.16 79.71 88.66

Feature and tree kernel
Feature kernel 86.06 69.92 77.15 88.51
Tree kernel 57.80 92.58 71.17 74.99
Combination 75.08 87.11 80.65 87.18

Graph and tree kernel
Graph kernel 84.04 69.92 76.33 86.04
Tree kernel 58.10 95.31 72.19 78.10
Combination 82.43 76.95 79.60 86.84
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Figure 6: The Tri-Training performance on the disease-symptom test set.

process [28]. At the beginning of the Co-Training, the num-
ber of the noises is limited and unlabeled data added to the
training set can help the classifiers improve the performance.
However, after a number of learning rounds, more and more
noises introduced will cause the performance decline.

3.3.2. The Performance of Tri-Training on the Disease-
Symptom Test Set. In our method, we select three views to
conduct the Tri-Training, that is, the feature kernel, graph
kernel, and tree kernel. In each Tri-Training round, SVM is
used to train the classifier on each view. The parameters are
set as follows: u = 4,000,m = 300, 𝑝1 = 100, 𝑝2 = 0, and𝑁 =
27 (u, m, 𝑝1, 𝑝2, and𝑁 in Algorithm 2). Here 𝑝2 = 0 means
that only the positive examples are added into the training
set. In this way, the recall of the classifier can be improved (the
recall is defined as the number of true positives divided by the
total number of examples that actually belong to the positive
class and usually more positive examples in the training set
will improve the recall) since it is lower compared with the
precision (see Table 2). The results are shown in Table 4 and
Figure 6.

Table 4: The results obtained with Tri-Training on the disease-
symptom test set. Method 1 integrates three classifiers (the feature
kernel, graph kernel, and tree kernel) with the same weight while
Method 2 integrates them with a weight ratio of 4 : 4 : 2.

Method 𝑃 𝑅 𝐹-score AUC
Feature kernel 83.00 80.08 81.51 88.80
Graph kernel 77.74 85.94 81.63 89.80
Tree kernel 57.38 94.14 71.30 76.00
Method 1 79.79 87.89 83.64 91.57
Method 2 79.93 85.55 82.64 90.75

Compared with the performances of the classifiers on the
initial disease-symptom test set shown in Table 2, the ones
achieved through Tri-Training are significantly improved.
This shows that Tri-Training can exploit the unlabeled data
and improve the performance more effectively. The reason is
that, as mentioned in Section 1, the Tri-Training algorithm
can achieve satisfactory results while neither requiring the
instance space to be described with sufficient and redundant
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Figure 7: Co-Training performance curve of feature kernel and graph kernel on the symptom-therapeutic substance test set.

views nor putting any constraints on the supervised learning
method.

In addition, when three classifiers are integrated either
with the same weight or with a weight ratio of 4 : 4 : 2,
the higher F-scores and AUCs are obtained. Furthermore,
comparing the performance of Co-Training and Tri-Training
shown in Tables 3 and 4, we found that, in most cases,
Tri-Training outperforms Co-Training. The reason is that,
through employing three classifiers, Tri-Training is facilitated
with good efficiency and generalization ability because it
could gracefully choose examples to label and use multiple
classifiers to compose the final hypothesis [28].

3.4. The Performance of the Symptom and Therapeutic Sub-
stance Model. Table 5 shows the performances of the clas-
sifiers on the initial symptom-therapeutic substance test set.
Similar to the results on the initial disease-symptom test
set, the feature kernel achieves the best performance while
the tree kernel performs the worst. One difference is that
when the three classifiers are integrated with a weight ratio of
4 : 4 : 2, the higher F-score andAUC are obtainedwhile, when
they are integrated with the same weight, the F-score and
AUC are a little lower than those of feature kernel.

3.4.1. The Performance of Co-Training on the Symptom and
Therapeutic Substance Test Set. Similar to that in the disease-
symptom experiments, the feature set for the symptom-
therapeutic substance model is also divided into three views:
the feature, graph, and tree kernels. The experiments are
divided into three groups. Each group uses the same experi-
mental parameters; that is, u = 4,000, m = 300, and p = 100.
The performance curves of different combinations are shown
in Figures 7, 8, and 9 and their final results with different
iteration times (27, 26, and 9, resp.) are shown in Table 6.

From the figures, we can draw similar conclusions as from
the disease-symptom experiments. In most cases, the per-
formance can be improved through the Co-Training process

Table 5: The initial results on the symptom-therapeutic substance
test set.

Method 𝑃 𝑅 𝐹 AUC
Feature kernel 79.30 90.76 84.64 87.90
Graph kernel 76.27 90.36 82.72 87.30
Tree kernel 68.90 82.73 75.18 79.94
Method 1 75.99 92.77 83.54 87.59
Method 2 77.81 94.38 85.30 88.94

while they are usually not stable since noisewill be introduced
during the learning process.

3.4.2. The Performance of Tri-Training on the Symptom and
Therapeutic Substance Test Set. In the experiments of Tri-
Training on the symptom-therapeutic substance, the param-
eters are set as follows: u = 4,000,m = 300, 𝑝1 = 100, 𝑝2 = 0,
and𝑁 = 27 (u,m, 𝑝1, 𝑝2, and𝑁 in Algorithm 2). The results
are shown in Table 7 and Figure 10.

Compared with the performance of the classifiers on
the initial symptom-therapeutic substance test set shown in
Table 6, the ones achieved through Tri-Training are also
improved as in the disease-symptom experiments. This veri-
fies that the Tri-Training algorithm is effective in utilizing the
unlabeled data to boost the relation extraction performance
once again. When the three classifiers are integrated with a
weight ratio of 4 : 4 : 2, a better AUC is obtained.

Comparing the performance of Co-Training and Tri-
Training on the symptom-therapeutic substance test set as
shown in Tables 6 and 7, we found that, in most cases, Tri-
Training outperforms Co-Training, which is consistent with
the results achieved in the disease-symptom experiments.
This is due to the better efficiency and generalization ability of
Tri-Training over Co-Training.

In addition, the performances of the classifiers on the
disease-symptom corpus are improved more than those on
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Figure 8: Co-Training performance curve of feature kernel and tree kernel on the symptom-therapeutic substance test set.
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Figure 9: Co-Training performance curve of graph kernel and tree kernel on the symptom-therapeutic substance test set.
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Figure 10: The results of Tri-Training on the symptom-therapeutic substance test set.
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Table 6: The results obtained with Co-Training on the symptom-therapeutic substance test set.

Combination View 𝑃 𝑅 𝐹 AUC

Feature kernel and graph kernel
Feature kernel 78.00 93.98 85.25 88.41
Graph kernel 71.51 98.80 82.97 86.44
Combination 77.45 95.18 85.40 89.10

Feature kernel and tree kernel
Feature kernel 78.72 93.57 85.51 88.51
Tree kernel 67.13 97.59 79.54 81.75
Combination 77.51 96.79 85.66 88.61

Graph kernel and tree kernel
Graph kernel 74.14 95.58 83.51 87.71
Tree kernel 67.82 94.78 79.06 80.14
Combination 71.05 97.59 82.23 86.24

Table 7: The results of Tri-Training on symptom-therapeutic sub-
stance test set.

𝑃 𝑅 𝐹 AUC
Feature kernel 78.98 93.57 85.66 88.94
Graph kernel 74.31 97.59 84.37 87.78
Tree kernel 68.01 94.78 79.19 81.10
Method 1 74.77 98.80 85.12 88.08
Method 2 75.62 98.39 85.51 89.13

the symptom-therapeutic substance corpus. There are two
reasons for that. First, on the symptom-therapeutic substance
corpus, the classifiers have better performance.Therefore, the
Co-training and Tri-training algorithms have less room for
the performance improvement. Second, as the Co-training
and Tri-training process proceeds, more unlabeled data are
added into the training set, which could introduce new infor-
mation for the classifiers. Therefore, the recalls of the classi-
fiers are improved. Meanwhile, more noise is also introduced
causing the precision decline. For the initial classifiers, the
higher the precision is, the less the noise is introduced in the
iterative process, and the performance of the classifier would
be improved. As a summary, if the initial classifiers have big
difference, the performance can be improved through two
algorithms. In the experiment, when more unlabeled data
are added to the training set, the difference between the
classifiers becomes smaller.Thus, after a number of iterations,
performance could not be improved any more.

3.5. Some Examples for Disease-Symptom and Symptom-Ther-
apeutic Substance Relations Extracted from Biomedical Liter-
atures. Some examples for disease-symptom or symptom-
therapeutic substance relations extracted from biomedical
literatures are shown in Tables 8 and 9. Table 8 shows some
symptoms of disease C0020541 (portal hypertension). One
sentence containing the relation between portal hypertension
and its symptomC0028778 (block) is provided. Table 9 shows
some relations between the symptom C0028778 (block) and
some therapeutic substances, in which the sentences contain-
ing the relations are provided.

Table 8: Some disease-symptom relations extracted from biomedi-
cal literature.

Disease Symptom Sentence

C0020541
(portal
hypertension)

C0028778 (block) C0020541 as C2825142 of
intrahepatic C0028778
accounted for 83% of the
patients (C0023891 65%,
meta-C0022346 12%) and

C0018920 11%

C1565860
C0035357
C0005775
C0014867
C0232338

Table 9: Some symptom-therapeutic substance relations extracted
from biomedical literature.

Symptom Therapeutic
substance Sentence

C0028778
(block)

C0017302 (general
anesthetic agents)

Use-dependent conduction
C0028778 produced by

volatile C0017302

C0006400
(bupivacaine)

Epidural ropivacaine is
known to produce less

motor C0028778 compared
to C0006400 at anaesthetic

concentrations

C0053241
(benzoquinone)

In contrast, C0053241 and
hydroquinone led to

g2-C0028778 rather than to
a mitotic arrest

4. Conclusions and Future Work

Models for extracting the relations between the disease-
symptom and symptom-therapeutic substance are important
for further extracting knowledge about diseases and their
potential therapeutic substances. However, currently there is
no corpus available to train such models. To solve the prob-
lem, we firstmanually annotated two training sets for extract-
ing the relations. Then two semisupervised learning algo-
rithms, that is, Co-Training and Tri-Training, are applied to
explore the unlabeled data to boost the performance. Exper-
imental results show that exploiting the unlabeled data with
both Co-Training and Tri-Training algorithms can enhance
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the performance. In particular, through employing three
classifiers, Tri-training is facilitated with good efficiency and
generalization ability since it could gracefully choose exam-
ples to label and use multiple classifiers to compose the final
hypothesis [28]. In addition, its applicability is wide because it
neither requires sufficient and redundant views nor puts any
constraint on the employed supervised learning algorithm.

In the future work, we will study more effective semisu-
pervised learningmethods to exploit the numerous unlabeled
data pieces in the biomedical literature. On the other hand,
wewill apply the disease-symptom and symptom-therapeutic
substance models to extract the relations between diseases
and therapeutic substances from biomedical literature and
predict the potential therapeutic substances for certain dis-
eases [41].
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