22639 measured reflections

 $R_{\rm int} = 0.079$ 

5292 independent reflections

3470 reflections with  $I > 2\sigma(I)$ 

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

### Chlorido[hvdridotris(pyrazol-1-yl- $\kappa N^2$ )borato](1*H*-pyrazole- $\kappa N^2$ )(triphenylphosphine-*κP*)ruthenium(II)

#### Chiung-Cheng Huang,<sup>a</sup> Han-Gung Chen,<sup>b</sup> Yih Hsing Lo,<sup>b</sup>\* Li-Sheng Hsu<sup>b</sup> and Chia-Her Lin<sup>c</sup>

<sup>a</sup>Department of Chemical Engineering, Tatung University, Taipei 104, Taiwan, <sup>b</sup>Department of Natural Science, Taipei Municipal University of Education, Taipei 10048, Taiwan, and <sup>c</sup>Department of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan

Correspondence e-mail: yhlo@mail.tmue.edu.tw

Received 22 May 2010; accepted 6 June 2010

Key indicators: single-crystal X-ray study; T = 200 K; mean  $\sigma$ (C–C) = 0.011 Å; disorder in main residue; R factor = 0.053; wR factor = 0.118; data-to-parameter ratio = 14.7

In the title compound,  $[Ru(C_9H_{10}BN_6)Cl(C_3H_4N_2)(C_{18}H_{15}P)]$ , the Ru<sup>II</sup> atom is coordinated by an N, N', N''-tridentate hydridotrispyrazolylborate (Tp) ligand, a pyrazole (HPz) molecule, a chloride ion and a triphenylphosphine ligand, resulting in a distorted RuClPN<sub>4</sub> octahedral coordination for the metal ion: the tridentate N atoms occupy one octahedral face and the Cl and P atoms are cis. One of the phenyl rings is disordered over two orientations in a 0.547 (10):0.453 (10) ratio, and a weak intramolecular N-H···Cl hydrogen bond generates an S(5) ring.

#### **Related literature**

For general background to ruthenium coordination chemistry with pyrazole-type ligands, see: Alcock et al. (1992); Cheng et al. (2009); Deacon et al. (1998); Govind et al. (1996); Lo et al. (2004); Pavlik et al. (2005). For related structures, see: Gemel et al. (1996); Slugovc et al. (1998). Tong et al. (2008, 2009).



#### **Experimental**

#### Crystal data

| $\beta = 116.316 \ (3)^{\circ}$           |
|-------------------------------------------|
| V = 3039.5 (3) Å <sup>3</sup>             |
| Z = 4                                     |
| Mo $K\alpha$ radiation                    |
| $\mu = 0.69 \text{ mm}^{-1}$              |
| T = 200  K                                |
| $0.11 \times 0.08 \times 0.03 \text{ mm}$ |
|                                           |
|                                           |

#### Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SORTAV; Blessing, 1995)  $T_{\min} = 0.928, T_{\max} = 0.980$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.053$ | 360 parameters                                       |
|---------------------------------|------------------------------------------------------|
| $wR(F^2) = 0.118$               | H-atom parameters constrained                        |
| S = 1.02                        | $\Delta \rho_{max} = 0.89 \text{ e} \text{ Å}^{-3}$  |
| 5292 reflections                | $\Delta \rho_{min} = -0.88 \text{ e} \text{ Å}^{-3}$ |
| 5292 reflections                | $\Delta \rho_{\rm min} = -0.88 \text{ e A}^{-1}$     |

#### Table 1

Selected bond lengths (Å).

| Ru1-N1 | 2.067 (4) | Ru1-N7  | 2.076 (4)   |
|--------|-----------|---------|-------------|
| Ru1-N3 | 2.097 (4) | Ru1-P1  | 2.3031 (15) |
| Ru1-N5 | 2.076 (4) | Ru1-Cl1 | 2.4374 (14) |

#### Table 2 Hydrogen-bond geometry (Å, °).

| $D-\mathrm{H}\cdots A$ | D-H  | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdots \mathbf{A}$ |
|------------------------|------|--------------|--------------|------------------------------------|
| $N8-H8'\cdots Cl1$     | 0.88 | 2.49         | 3.025 (6)    | 120                                |

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We gratefully acknowledge financial support in part from the National Science Council, Taiwan (NSC 97-2113-M-133-001-MY2) and in part from the project of specific research fields in Tatung University, Taiwan (B96-C07-081). We also thank Mr Ting Shen Kuo (Department of Chemistry, National Taiwan Normal University) for his assistance with the X-ray single-crystal structure analysis and the project of specific research fields in Chung Yuan Christian University, Taiwan, under grant CYCU-98-CR-CH.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5462).

#### References

- Alcock, N. W., Burns, I. D., Claire, K. S. & Hill, A. F. (1992). *Inorg. Chem.* **31**, 2906–2908.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Cheng, C. J., Tong, H. C., Fong, Y. H., Wang, P. Y., Kuo, Y. L., Lo, Y. H. & Lin, C. H. (2009). *Dalton Trans.* pp. 4435–4438.
- Deacon, G. B., Delbridge, E. E., Skelton, B. W. & White, A. H. (1998). Angew. Chem. Int. Ed. 37, 2251–2554.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gemel, C., Trimmel, G., Slugovc, C., Kremel, S., Mereiter, K., Schmid, R. & Kirchner, K. (1996). Organometallics, 15, 3998–4004.
- Govind, B., Satyanarayana, T. & Veera-Reddy, K. (1996). Polyhedron, 15, 1009–1022.

- Lo, Y. H., Lin Y.-C., Lee, G. H. & Wang, Y. W. (2004). Eur. J. Inorg. Chem. pp. 4616–4623.
- Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Pavlik, S., Mereiter, K., Puchberger, M. & Kirchner, K. (2005). Organometallics, 24, 3561–3575.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Slugovc, C., Mereiter, K., Schmid, R. & Kirchner, K. (1998). Organometallics, 17, 827–831.
- Tong, H.-C., Hsu, C.-Y. C., Lo, Y.-H., Lin, C.-H. & Wang, Y. (2008). Acta Cryst. E64, m1453.
- Tong, H.-C., Hung, Y.-C., Wang, P.-Y., Lin, C.-H. & Lo, Y.-H. (2009). Acta Cryst. E65, m438.

Acta Cryst. (2010). E66, m795-m796 [doi:10.1107/S1600536810021525]

# Chlorido[hydridotris(pyrazol-1-yl- $\kappa N^2$ )borato](1*H*-pyrazole- $\kappa N^2$ )(triphenylphosphine- $\kappa P$ )ruthenium(II)

#### C.-C. Huang, H.-G. Chen, Y. H. Lo, L.-S. Hsu and C.-H. Lin

#### Comment

Pyrazoles and pyrazolate anions are attractive ligands that disclose a rich coordination chemistry (Deacon *et al.*, 1998). Pyrazoles and substituted pyrazoles usually perform as monodentate ligands (Lo *et al.*, 2004) and these monodentate pyrazoles may give rise to fascinating processes such as prototropic equilibrium or reversible metal-ligand binding, which are relevant to biological systems (Govind *et al.*, 1996). On the other hand, Tp (hydridotripyrazolylborate) ligand is often compared with the Cp (Cp =  $\eta^5$ -C<sub>5</sub>H<sub>5</sub>) ligand due to their charge and number of electrons donated in the formation of complex. The ruthenium chloride complex [Ru(Tp)Cl(PPh<sub>3</sub>)<sub>2</sub>] (Alcock *et al.*, 1992) has been used as the precursor for the synthesis of several complexes because of its substitutionally labile phosphines and chloride (Cheng *et al.*, 2009). TpRu complexes are of importance for stoichiometric and catalytic transformations of organic compounds (Pavlik *et al.*, 2005).

Treatment of the complex [Ru(Tp)Cl(PPh<sub>3</sub>)<sub>2</sub>] reacts with pyrazole in toluene affording the title compound [RuCl(Tp)(PPh<sub>3</sub>)(HPz)] (Figure 1). The single crystals of the title compound suitable for X-ray structure analysis were obtained by recrystallization of the crude product from dichloromethane–ether. In the crystal structure of the title compound the ruthenium metal center is coordinated by four N, one P and one Cl atom within slightly distorted octahedron. The bite angle of the Tp ligand produces an average produces an average N—Ru—N angle of 86.6° only slightly distorted from 90°. The three Ru—N(Tp) bond lengths (2.067 (4), 2.097 (4), and 2.076 (4) Å) are slightly longer than the average distance of 2.038 Å in other ruthenium Tp complexes (Gemel *et al.* 1996; Slugovc *et al.* 1998). The Ru—Cl bond of 2.4374 (14) Å are similar to those found in other (pyrazole)ruthenium complexes, such as 2.4259 (14) Å in [Ru(Tp)Cl(PPh<sub>3</sub>)(PhCN)] (Tong *et al.* 2008) and 2.4429 (7) Å in [Ru(Tp)Cl(PPh<sub>3</sub>) (HN=CPh<sub>2</sub>)] (Tong *et al.* 2009). Weak N—H—Cl hydrogen bond is observed in the crystal structure.

#### **Experimental**

To a solution of [Ru(Tp)Cl(PPh<sub>3</sub>)<sub>2</sub>] (3.95 g, 4.50 mmol) in toulene (100 ml), an excess of pyrazole were added. The mixture was heated using a warm water bath for 30 min. A deep yellow color developed during this time. The reaction mixture was stirred for a further 2 h at room temperature (298 K). Then it was concentrated to approximately half of the volume and cooled to 273 K. The yellow precipitate was filtered off, washed with ethanol and ether and dried under vacuum to give the title compound. Yellow prisms of (I) were obtained by recrystallization from dichloromethane–ether.

#### Refinement

The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 Å and  $U_{iso}(H) = 1.2 U_{eq}(C)$  and B—H = 1.0 Å and  $U_{iso}(H) = 1.2 U_{eq}(B)$ .

Figures



Fig. 1. Molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level (H atoms are shown as spheres of arbitrary radius).

### Chlorido[hydridotris(pyrazol-1-yl- $\kappa N^2$ )borato](1*H*-pyrazole- $\kappa N^2$ )(triphenylphosphine- $\kappa P$ )ruthenium(II)

#### Crystal data

| [Ru(C <sub>9</sub> H <sub>10</sub> BN <sub>6</sub> )Cl(C <sub>3</sub> H <sub>4</sub> N <sub>2</sub> )(C <sub>18</sub> H <sub>15</sub> P)] | Z = 4                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| $M_r = 679.91$                                                                                                                            | F(000) = 1384                                         |
| Monoclinic, $P2_1/c$                                                                                                                      | $D_{\rm x} = 1.486 {\rm ~Mg~m}^{-3}$                  |
| Hall symbol: -P 2ybc                                                                                                                      | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| a = 17.7782 (12)  Å                                                                                                                       | $\mu = 0.69 \text{ mm}^{-1}$                          |
| b = 10.0843 (5) Å                                                                                                                         | T = 200  K                                            |
| c = 18.9139 (10)  Å                                                                                                                       | Prism, yellow                                         |
| $\beta = 116.316 (3)^{\circ}$                                                                                                             | $0.11 \times 0.08 \times 0.03 \text{ mm}$             |
| $V = 3039.5 (3) \text{ Å}^3$                                                                                                              |                                                       |

#### Data collection

| Nonius KappaCCD<br>diffractometer                          | 5292 independent reflections                                          |
|------------------------------------------------------------|-----------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                   | 3470 reflections with $I > 2\sigma(I)$                                |
| graphite                                                   | $R_{\rm int} = 0.079$                                                 |
| Detector resolution: 9 pixels mm <sup>-1</sup>             | $\theta_{\text{max}} = 25.0^\circ, \ \theta_{\text{min}} = 2.4^\circ$ |
| CCD rotation images, thick slices scans                    | $h = -21 \rightarrow 21$                                              |
| Absorption correction: multi-scan (SORTAV; Blessing, 1995) | $k = -11 \rightarrow 12$                                              |
| $T_{\min} = 0.928, \ T_{\max} = 0.980$                     | $l = -22 \rightarrow 21$                                              |
| 22639 measured reflections                                 |                                                                       |

#### Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods |
|---------------------------------|----------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map           |
| $R[F^2 > 2\sigma(F^2)] = 0.053$ | Hydrogen site location: inferred from neighbouring sites       |
| $wR(F^2) = 0.118$               | H-atom parameters constrained                                  |
|                                 |                                                                |

| <i>S</i> = 1.02  | $w = 1/[\sigma^2(F_o^2) + (0.0431P)^2 + 4.7477P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
|------------------|-------------------------------------------------------------------------------------|
| 5292 reflections | $(\Delta/\sigma)_{\text{max}} = 0.001$                                              |
| 360 parameters   | $\Delta \rho_{max} = 0.89 \text{ e } \text{\AA}^{-3}$                               |
| 0 restraints     | $\Delta \rho_{min} = -0.88 \text{ e } \text{\AA}^{-3}$                              |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x          | у           | Ζ          | $U_{\rm iso}*/U_{\rm eq}$ | Occ. (<1) |
|-----|------------|-------------|------------|---------------------------|-----------|
| C1  | 0.2902 (4) | 0.3286 (6)  | 0.1960 (4) | 0.0463 (16)               |           |
| H1  | 0.2738     | 0.2987      | 0.1436     | 0.056*                    |           |
| C2  | 0.2953 (4) | 0.4609 (6)  | 0.2186 (4) | 0.0555 (18)               |           |
| H2  | 0.2837     | 0.5370      | 0.1858     | 0.067*                    |           |
| C3  | 0.3205 (4) | 0.4581 (6)  | 0.2979 (4) | 0.0474 (17)               |           |
| H3  | 0.3290     | 0.5333      | 0.3309     | 0.057*                    |           |
| C4  | 0.5121 (3) | 0.0343 (6)  | 0.4007 (4) | 0.0404 (15)               |           |
| H4  | 0.5261     | -0.0394     | 0.3776     | 0.048*                    |           |
| C5  | 0.5677 (4) | 0.0987 (7)  | 0.4686 (4) | 0.0539 (18)               |           |
| Н5  | 0.6255     | 0.0793      | 0.4997     | 0.065*                    |           |
| C6  | 0.5218 (4) | 0.1956 (6)  | 0.4810 (4) | 0.0480 (17)               |           |
| H6  | 0.5419     | 0.2566      | 0.5238     | 0.058*                    |           |
| C7  | 0.2128 (4) | 0.0109 (6)  | 0.3727 (4) | 0.0402 (15)               |           |
| H7  | 0.1830     | -0.0666     | 0.3468     | 0.048*                    |           |
| C8  | 0.2055 (4) | 0.0742 (7)  | 0.4345 (4) | 0.0562 (19)               |           |
| H8  | 0.1701     | 0.0498      | 0.4580     | 0.067*                    |           |
| C9  | 0.2593 (4) | 0.1778 (7)  | 0.4543 (4) | 0.057 (2)                 |           |
| Н9  | 0.2689     | 0.2395      | 0.4954     | 0.069*                    |           |
| C10 | 0.4314 (4) | 0.1132 (7)  | 0.1913 (4) | 0.0540 (18)               |           |
| H10 | 0.4311     | 0.2064      | 0.1983     | 0.065*                    |           |
| C11 | 0.4754 (5) | 0.0497 (8)  | 0.1565 (4) | 0.073 (2)                 |           |
| H11 | 0.5096     | 0.0890      | 0.1354     | 0.087*                    |           |
| C12 | 0.4589 (5) | -0.0808 (8) | 0.1592 (4) | 0.069 (2)                 |           |
| H12 | 0.4799     | -0.1519     | 0.1401     | 0.082*                    |           |
| C13 | 0.1166 (4) | -0.1063 (6) | 0.1829 (3) | 0.0387 (15)               |           |
| C14 | 0.1434 (4) | -0.2266 (6) | 0.2193 (5) | 0.068 (2)                 |           |
| H14 | 0.2008     | -0.2507     | 0.2383     | 0.082*                    |           |
|     |            |             |            |                           |           |

| C15  | 0.0875 (6)  | -0.3145 (8)   | 0.2288 (5)   | 0.097 (2)    |            |
|------|-------------|---------------|--------------|--------------|------------|
| H15  | 0.1071      | -0.3971       | 0.2545       | 0.116*       |            |
| C16  | 0.0059 (6)  | -0.2816 (8)   | 0.2013 (4)   | 0.0853 (19)  |            |
| H16  | -0.0322     | -0.3420       | 0.2069       | 0.102*       |            |
| C17  | -0.0222 (5) | -0.1622 (7)   | 0.1657 (4)   | 0.0608 (14)  |            |
| H17  | -0.0796     | -0.1390       | 0.1474       | 0.073*       |            |
| C18  | 0.0328 (4)  | -0.0738 (6)   | 0.1559 (3)   | 0.0448 (16)  |            |
| H18  | 0.0126      | 0.0090        | 0.1307       | 0.054*       |            |
| C19  | 0.1261 (3)  | 0.1512 (5)    | 0.1297 (3)   | 0.0377 (15)  |            |
| C20  | 0.1150 (3)  | 0.2350 (5)    | 0.1821 (4)   | 0.0389 (15)  |            |
| H20  | 0.1442      | 0.2181        | 0.2371       | 0.047*       |            |
| C21  | 0.0622 (4)  | 0.3428 (7)    | 0.1557 (4)   | 0.0608 (14)  |            |
| H21  | 0.0536      | 0.3977        | 0.1923       | 0.073*       |            |
| C22  | 0.0221 (6)  | 0.3709 (8)    | 0.0766 (5)   | 0.0853 (19)  |            |
| H22  | -0.0124     | 0.4473        | 0.0582       | 0.102*       |            |
| C23  | 0.0325 (6)  | 0.2860 (8)    | 0.0239 (5)   | 0.097 (2)    |            |
| H23  | 0.0037      | 0.3030        | -0.0311      | 0.116*       |            |
| C24  | 0.0842 (5)  | 0.1779 (7)    | 0.0509 (4)   | 0.078 (3)    |            |
| H24  | 0.0909      | 0.1206        | 0.0142       | 0.094*       |            |
| C25  | 0.2000 (3)  | -0.0681 (5)   | 0.0859 (3)   | 0.0391 (15)  |            |
| C26  | 0.2011 (7)  | -0.2090 (10)  | 0.0842 (7)   | 0.039 (3)*   | 0.547 (10) |
| H26  | 0.1893      | -0.2624       | 0.1194       | 0.047*       | 0.547 (10) |
| C27  | 0.2208 (7)  | -0.2625 (12)  | 0.0263 (7)   | 0.052 (4)*   | 0.547 (10) |
| H27  | 0.2197      | -0.3561       | 0.0204       | 0.063*       | 0.547 (10) |
| C28  | 0.2412 (8)  | -0.1881 (13)  | -0.0209 (9)  | 0.048 (3)*   | 0.547 (10) |
| H28  | 0.2497      | -0.2303       | -0.0617      | 0.058*       | 0.547 (10) |
| C26' | 0.1488 (9)  | -0.1639 (13)  | 0.0340 (8)   | 0.045 (4)*   | 0.453 (10) |
| H26' | 0.1061      | -0.2001       | 0.0454       | 0.054*       | 0.453 (10) |
| C27' | 0.1535 (10) | -0.2134 (15)  | -0.0340 (9)  | 0.060 (5)*   | 0.453 (10) |
| H27' | 0.1188      | -0.2849       | -0.0632      | 0.072*       | 0.453 (10) |
| C28' | 0.2087 (10) | -0.1562 (15)  | -0.0564 (10) | 0.048 (4)*   | 0.453 (10) |
| H28' | 0.2167      | -0.1872       | -0.1000      | 0.057*       | 0.453 (10) |
| C29  | 0.2503 (5)  | -0.0547 (7)   | -0.0130 (4)  | 0.063 (2)    |            |
| H29  | 0.2658      | -0.0021       | -0.0462      | 0.076*       |            |
| C30  | 0.2354 (6)  | -0.0005 (7)   | 0.0473 (4)   | 0.075 (3)    |            |
| H30  | 0.2511      | 0.0891        | 0.0619       | 0.090*       |            |
| N1   | 0.3114 (3)  | 0.2499 (4)    | 0.2585 (3)   | 0.0316 (11)  |            |
| N2   | 0.3313 (3)  | 0.3310 (4)    | 0.3217 (3)   | 0.0337 (11)  |            |
| N3   | 0.4364 (3)  | 0.0895 (4)    | 0.3725 (2)   | 0.0281 (10)  |            |
| N4   | 0.4429 (3)  | 0.1907 (4)    | 0.4224 (3)   | 0.0334 (11)  |            |
| N5   | 0.2680 (3)  | 0.0749 (4)    | 0.3548 (3)   | 0.0303 (11)  |            |
| N6   | 0.2968 (3)  | 0.1791 (4)    | 0.4062 (3)   | 0.0389 (12)  |            |
| N7   | 0.3897 (3)  | 0.0274 (4)    | 0.2138 (3)   | 0.0367 (12)  |            |
| N8   | 0.4080 (3)  | -0.0912 (5)   | 0.1936 (3)   | 0.0476 (14)  |            |
| H8'  | 0.3887      | -0.1669       | 0.2020       | 0.057*       |            |
| B1   | 0.3644 (4)  | 0.2722 (6)    | 0.4052 (4)   | 0.0397 (18)  |            |
| Hl'  | 0.3771      | 0.3442        | 0.4452       | 0.048*       |            |
| CII  | 0.34907 (9) | -0.18597 (13) | 0.31246 (9)  | 0.0368 (4)   |            |
| Ru1  | 0.32023 (3) | 0.04732 (4)   | 0.27709 (3)  | 0.02453 (15) |            |

| P1               | 0.19260 (9)       | 0.00460 (14     | 4)              | 0.17152 (9)  | 0.0329 (4)     |             |
|------------------|-------------------|-----------------|-----------------|--------------|----------------|-------------|
|                  |                   |                 |                 |              |                |             |
| Atomic displacer | nent parameters ( | $(\AA^2)$       |                 |              |                |             |
|                  | $U^{11}$          | U <sup>22</sup> | U <sup>33</sup> | $U^{12}$     | $U^{13}$       | $U^{23}$    |
| C1               | 0.055 (4)         | 0.032 (4)       | 0.040 (4)       | -0.002 (3)   | 0.010(3)       | 0.011 (3)   |
| C2               | 0.067 (5)         | 0.027 (4)       | 0.059 (5)       | -0.006(3)    | 0.016 (4)      | 0.020 (3)   |
| C3               | 0.052 (4)         | 0.020 (3)       | 0.071 (5)       | -0.007 (3)   | 0.028 (4)      | -0.001 (3)  |
| C4               | 0.034 (3)         | 0.037 (4)       | 0.045 (4)       | 0.003 (3)    | 0.013 (3)      | 0.005 (3)   |
| C5               | 0.032 (4)         | 0.059 (4)       | 0.043 (4)       | -0.006 (3)   | -0.008 (3)     | 0.014 (4)   |
| C6               | 0.052 (4)         | 0.047 (4)       | 0.026 (4)       | -0.023 (4)   | 0.000 (3)      | 0.000 (3)   |
| C7               | 0.032 (3)         | 0.034 (3)       | 0.052 (4)       | -0.001 (3)   | 0.016 (3)      | 0.013 (3)   |
| C8               | 0.055 (4)         | 0.063 (5)       | 0.072 (5)       | -0.004 (4)   | 0.047 (4)      | 0.002 (4)   |
| С9               | 0.078 (5)         | 0.054 (4)       | 0.068 (5)       | 0.003 (4)    | 0.058 (5)      | -0.004 (4)  |
| C10              | 0.064 (5)         | 0.061 (4)       | 0.049 (4)       | -0.017 (4)   | 0.037 (4)      | -0.001 (4)  |
| C11              | 0.088 (6)         | 0.087 (6)       | 0.074 (6)       | -0.008(5)    | 0.063 (5)      | 0.003 (5)   |
| C12              | 0.078 (6)         | 0.086 (6)       | 0.066 (5)       | 0.010 (5)    | 0.053 (5)      | -0.008 (4)  |
| C13              | 0.034 (3)         | 0.033 (3)       | 0.036 (4)       | -0.007 (3)   | 0.004 (3)      | -0.009(3)   |
| C14              | 0.049 (4)         | 0.028 (4)       | 0.108 (7)       | -0.025 (3)   | 0.017 (4)      | 0.005 (4)   |
| C15              | 0.128 (6)         | 0.072 (4)       | 0.048 (4)       | 0.049 (4)    | 0.001 (4)      | 0.007 (3)   |
| C16              | 0.123 (5)         | 0.068 (4)       | 0.054 (4)       | 0.031 (4)    | 0.030 (4)      | -0.003 (3)  |
| C17              | 0.058 (3)         | 0.076 (4)       | 0.051 (3)       | 0.016 (3)    | 0.026 (3)      | -0.006 (3)  |
| C18              | 0.043 (4)         | 0.054 (4)       | 0.036 (4)       | -0.006 (3)   | 0.016 (3)      | -0.002(3)   |
| C19              | 0.038 (3)         | 0.030 (3)       | 0.028 (4)       | 0.009 (3)    | -0.001 (3)     | -0.005 (3)  |
| C20              | 0.034 (3)         | 0.036 (3)       | 0.032 (4)       | 0.010 (3)    | 0.002 (3)      | 0.002 (3)   |
| C21              | 0.058 (3)         | 0.076 (4)       | 0.051 (3)       | 0.016 (3)    | 0.026 (3)      | -0.006 (3)  |
| C22              | 0.123 (5)         | 0.068 (4)       | 0.054 (4)       | 0.031 (4)    | 0.030 (4)      | -0.003 (3)  |
| C23              | 0.128 (6)         | 0.072 (4)       | 0.048 (4)       | 0.049 (4)    | 0.001 (4)      | 0.007 (3)   |
| C24              | 0.101 (6)         | 0.070 (5)       | 0.032 (4)       | 0.056 (5)    | 0.002 (4)      | 0.000 (4)   |
| C25              | 0.030 (3)         | 0.031 (3)       | 0.045 (4)       | 0.001 (3)    | 0.007 (3)      | -0.013 (3)  |
| C29              | 0.087 (5)         | 0.061 (5)       | 0.040 (4)       | -0.017 (4)   | 0.026 (4)      | -0.003 (4)  |
| C30              | 0.151 (8)         | 0.044 (4)       | 0.032 (4)       | -0.041 (5)   | 0.043 (5)      | -0.017 (3)  |
| N1               | 0.039 (3)         | 0.017 (2)       | 0.033 (3)       | -0.002(2)    | 0.011 (3)      | 0.001 (2)   |
| N2               | 0.038 (3)         | 0.018 (3)       | 0.043 (3)       | -0.005(2)    | 0.017 (3)      | -0.003 (2)  |
| N3               | 0.026 (3)         | 0.029 (3)       | 0.024 (3)       | -0.001 (2)   | 0.008 (2)      | 0.000 (2)   |
| N4               | 0.041 (3)         | 0.033 (3)       | 0.021 (3)       | -0.009(2)    | 0.008 (2)      | -0.003 (2)  |
| N5               | 0.030 (3)         | 0.025 (3)       | 0.034 (3)       | 0.002 (2)    | 0.012 (2)      | 0.001 (2)   |
| N6               | 0.049 (3)         | 0.033 (3)       | 0.044 (3)       | -0.001 (2)   | 0.029 (3)      | -0.005 (2)  |
| N7               | 0.042 (3)         | 0.035 (3)       | 0.037 (3)       | 0.001 (2)    | 0.021 (3)      | -0.006 (2)  |
| N8               | 0.058 (4)         | 0.044 (3)       | 0.052 (4)       | 0.001 (3)    | 0.034 (3)      | -0.010 (3)  |
| B1               | 0.049 (5)         | 0.029 (4)       | 0.045 (5)       | -0.006 (3)   | 0.025 (4)      | -0.008 (3)  |
| Cl1              | 0.0399 (8)        | 0.0218 (7)      | 0.0420 (9       | ) 0.0043 (6) | 0.0120 (7)     | 0.0027 (6)  |
| Ru1              | 0.0258 (2)        | 0.0193 (2)      | 0.0246 (3       | ) -0.0007 (2 | ) 0.00759 (19) | 0.0001 (2)  |
| P1               | 0.0322 (9)        | 0.0231 (8)      | 0.0321 (9       | ) 0.0004 (6) | 0.0039 (7)     | -0.0036 (6) |
|                  |                   |                 |                 |              |                |             |
| Geometric parar  | neters (Å, °)     |                 |                 |              |                |             |

| C1—N1 | 1.332 (7) | C20—C21 | 1.377 (8) |
|-------|-----------|---------|-----------|
| C1—C2 | 1.392 (8) | С20—Н20 | 0.9500    |

| C1—H1    | 0.9500     | C21—C22        | 1.371 (9)   |
|----------|------------|----------------|-------------|
| С2—С3    | 1.363 (9)  | C21—H21 0.9500 |             |
| С2—Н2    | 0.9500     | C22—C23        | 1.387 (10)  |
| C3—N2    | 1.343 (7)  | C22—H22 0.9500 |             |
| С3—Н3    | 0.9500     | C23—C24        | 1.370 (9)   |
| C4—N3    | 1.329 (6)  | С23—Н23        | 0.9500      |
| C4—C5    | 1.387 (8)  | C24—H24        | 0.9500      |
| С4—Н4    | 0.9500     | C25—C30        | 1.341 (8)   |
| C5—C6    | 1.359 (9)  | C25—C26'       | 1.390 (14)  |
| С5—Н5    | 0.9500     | C25—C26        | 1.422 (11)  |
| C6—N4    | 1.350 (7)  | C25—P1         | 1.835 (6)   |
| С6—Н6    | 0.9500     | C26—C27        | 1.396 (14)  |
| C7—N5    | 1.337 (6)  | С26—Н26        | 0.9500      |
| C7—C8    | 1.387 (8)  | C27—C28        | 1.334 (15)  |
| С7—Н7    | 0.9500     | С27—Н27        | 0.9500      |
| C8—C9    | 1.352 (9)  | C28—C29        | 1.355 (14)  |
| С8—Н8    | 0.9500     | C28—H28        | 0.9500      |
| C9—N6    | 1.346 (7)  | C26'—C27'      | 1.416 (18)  |
| С9—Н9    | 0.9500     | С26'—Н26'      | 0.9500      |
| C10—N7   | 1.326 (7)  | C27'—C28'      | 1.358 (19)  |
| C10—C11  | 1.382 (9)  | С27'—Н27'      | 0.9500      |
| C10—H10  | 0.9500     | C28'—C29       | 1.316 (16)  |
| C11—C12  | 1.354 (9)  | C28'—H28'      | 0.9500      |
| C11—H11  | 0.9500     | C29—C30        | 1.392 (9)   |
| C12—N8   | 1.332 (7)  | С29—Н29        | 0.9500      |
| C12—H12  | 0.9500     | С30—Н30        | 0.9500      |
| C13—C14  | 1.371 (8)  | N1—N2          | 1.359 (6)   |
| C13—C18  | 1.384 (8)  | N2—B1          | 1.539 (8)   |
| C13—P1   | 1.838 (6)  | N3—N4          | 1.361 (6)   |
| C14—C15  | 1.402 (11) | N4—B1          | 1.524 (8)   |
| C14—H14  | 0.9500     | N5—N6          | 1.367 (6)   |
| C15—C16  | 1.347 (11) | N6—B1          | 1.531 (8)   |
| C15—H15  | 0.9500     | N7—N8          | 1.339 (6)   |
| C16—C17  | 1.362 (9)  | N8—H8'         | 0.8800      |
| С16—Н16  | 0.9500     | B1—H1'         | 1.0000      |
| C17—C18  | 1.394 (8)  | Ru1—N1         | 2.067 (4)   |
| С17—Н17  | 0.9500     | Ru1—N3         | 2.097 (4)   |
| C18—H18  | 0.9500     | Ru1—N5         | 2.076 (4)   |
| C19—C24  | 1.365 (8)  | Ru1—N7         | 2.076 (4)   |
| C19—C20  | 1.382 (7)  | Ru1—P1         | 2.3031 (15) |
| C19—P1   | 1.839 (5)  | Ru1—Cl1        | 2.4374 (14) |
| N1—C1—C2 | 110.2 (6)  | C27—C26—C25    | 114.5 (9)   |
| N1—C1—H1 | 124.9      | С27—С26—Н26    | 122.8       |
| C2—C1—H1 | 124.9      | С25—С26—Н26    | 122.8       |
| C3—C2—C1 | 105.2 (5)  | C28—C27—C26    | 123.0 (12)  |
| С3—С2—Н2 | 127.4      | С28—С27—Н27    | 118.5       |
| C1—C2—H2 | 127.4      | С26—С27—Н27    | 118.5       |
| N2—C3—C2 | 108.5 (5)  | C27—C28—C29    | 122.6 (12)  |
| N2—C3—H3 | 125.8      | C27—C28—H28    | 118.7       |
|          |            |                |             |

| С2—С3—Н3    | 125.8     | C29—C28—H28    | 118.7      |
|-------------|-----------|----------------|------------|
| N3—C4—C5    | 110.8 (6) | C25—C26'—C27'  | 127.1 (12) |
| N3—C4—H4    | 124.6     | C25—C26'—H26'  | 116.5      |
| С5—С4—Н4    | 124.6     | C27'—C26'—H26' | 116.5      |
| C6—C5—C4    | 105.1 (6) | C28'—C27'—C26' | 118.4 (15) |
| С6—С5—Н5    | 127.5     | C28'—C27'—H27' | 120.8      |
| C4—C5—H5    | 127.5     | C26'—C27'—H27' | 120.8      |
| N4—C6—C5    | 108.5 (5) | C29—C28'—C27'  | 114.9 (13) |
| N4—C6—H6    | 125.8     | C29—C28'—H28'  | 122.6      |
| С5—С6—Н6    | 125.8     | C27'—C28'—H28' | 122.6      |
| N5—C7—C8    | 110.1 (5) | C28'—C29—C28   | 32.0 (7)   |
| N5—C7—H7    | 124.9     | C28'—C29—C30   | 123.9 (9)  |
| С8—С7—Н7    | 124.9     | C28—C29—C30    | 115.0 (8)  |
| C9—C8—C7    | 105.7 (5) | C28'—C29—H29   | 105.7      |
| С9—С8—Н8    | 127.1     | С28—С29—Н29    | 122.5      |
| С7—С8—Н8    | 127.1     | С30—С29—Н29    | 122.5      |
| N6—C9—C8    | 108.8 (6) | C25—C30—C29    | 123.5 (6)  |
| N6—C9—H9    | 125.6     | С25—С30—Н30    | 118.2      |
| С8—С9—Н9    | 125.6     | С29—С30—Н30    | 118.2      |
| N7—C10—C11  | 111.4 (6) | C1—N1—N2       | 106.4 (4)  |
| N7—C10—H10  | 124.3     | C1—N1—Ru1      | 135.2 (4)  |
| C11—C10—H10 | 124.3     | N2—N1—Ru1      | 118.4 (3)  |
| C12—C11—C10 | 104.8 (6) | C3—N2—N1       | 109.7 (5)  |
| C12—C11—H11 | 127.6     | C3—N2—B1       | 130.1 (5)  |
| C10-C11-H11 | 127.6     | N1—N2—B1       | 120.1 (4)  |
| N8—C12—C11  | 107.4 (6) | C4—N3—N4       | 106.0 (5)  |
| N8—C12—H12  | 126.3     | C4—N3—Ru1      | 134.1 (4)  |
| C11—C12—H12 | 126.3     | N4—N3—Ru1      | 119.8 (3)  |
| C14—C13—C18 | 118.2 (6) | C6—N4—N3       | 109.6 (5)  |
| C14—C13—P1  | 119.2 (5) | C6—N4—B1       | 132.5 (5)  |
| C18—C13—P1  | 122.7 (5) | N3—N4—B1       | 117.9 (5)  |
| C13—C14—C15 | 121.0 (7) | C7—N5—N6       | 106.1 (4)  |
| C13—C14—H14 | 119.5     | C7—N5—Ru1      | 136.3 (4)  |
| C15-C14-H14 | 119.5     | N6—N5—Ru1      | 117.5 (3)  |
| C16—C15—C14 | 119.9 (8) | C9—N6—N5       | 109.3 (5)  |
| C16—C15—H15 | 120.0     | C9—N6—B1       | 129.9 (5)  |
| C14—C15—H15 | 120.0     | N5—N6—B1       | 120.7 (4)  |
| C15—C16—C17 | 120.3 (9) | C10—N7—N8      | 104.5 (5)  |
| С15—С16—Н16 | 119.9     | C10—N7—Ru1     | 133.0 (4)  |
| С17—С16—Н16 | 119.9     | N8—N7—Ru1      | 122.2 (4)  |
| C16—C17—C18 | 120.4 (7) | C12—N8—N7      | 111.9 (5)  |
| С16—С17—Н17 | 119.8     | C12—N8—H8'     | 124.0      |
| С18—С17—Н17 | 119.8     | N7—N8—H8'      | 124.0      |
| C13—C18—C17 | 120.2 (6) | N4—B1—N6       | 108.4 (5)  |
| C13—C18—H18 | 119.9     | N4—B1—N2       | 108.9 (5)  |
| C17—C18—H18 | 119.9     | N6—B1—N2       | 107.7 (5)  |
| C24—C19—C20 | 118.7 (5) | N4—B1—H1'      | 110.6      |
| C24—C19—P1  | 124.3 (5) | N6—B1—H1'      | 110.6      |
| C20—C19—P1  | 116.9 (4) | N2—B1—H1'      | 110.6      |
|             |           |                |            |

| C21—C20—C19  | 120.9 (6) | N1—Ru1—N5  | 87.90 (16)  |
|--------------|-----------|------------|-------------|
| С21—С20—Н20  | 119.5     | N1—Ru1—N7  | 91.02 (17)  |
| С19—С20—Н20  | 119.5     | N5—Ru1—N7  | 171.23 (18) |
| C22—C21—C20  | 119.9 (6) | N1—Ru1—N3  | 85.26 (17)  |
| C22—C21—H21  | 120.0     | N5—Ru1—N3  | 86.71 (17)  |
| C20-C21-H21  | 120.0     | N7—Ru1—N3  | 84.53 (17)  |
| C21—C22—C23  | 119.1 (7) | N1—Ru1—P1  | 93.79 (13)  |
| C21—C22—H22  | 120.4     | N5—Ru1—P1  | 93.51 (13)  |
| С23—С22—Н22  | 120.4     | N7—Ru1—P1  | 95.25 (13)  |
| C24—C23—C22  | 120.3 (7) | N3—Ru1—P1  | 179.02 (12) |
| С24—С23—Н23  | 119.8     | N1—Ru1—Cl1 | 172.51 (13) |
| С22—С23—Н23  | 119.8     | N5—Ru1—Cl1 | 92.33 (12)  |
| C19—C24—C23  | 120.9 (6) | N7—Ru1—Cl1 | 87.62 (13)  |
| С19—С24—Н24  | 119.5     | N3—Ru1—Cl1 | 87.28 (12)  |
| C23—C24—H24  | 119.5     | P1—Ru1—Cl1 | 93.67 (5)   |
| C30—C25—C26' | 106.7 (7) | C25—P1—C13 | 101.8 (3)   |
| C30—C25—C26  | 118.8 (7) | C25—P1—C19 | 103.0 (3)   |
| C26'—C25—C26 | 45.6 (6)  | C13—P1—C19 | 100.0 (3)   |
| C30-C25-P1   | 120.8 (4) | C25—P1—Ru1 | 114.28 (18) |
| C26'—C25—P1  | 128.3 (7) | C13—P1—Ru1 | 120.32 (19) |
|              | 115 2 (6) | C10 D1 Du1 | 114.01(10)  |

iroge na ge ietry (A, °) ŋ

| D—H···A    | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|------------|-------------|--------------|--------------|------------|
| N8—H8'…Cl1 | 0.88        | 2.49         | 3.025 (6)    | 120        |



