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Abstract  
Background: Adult and pediatric tumors display stark differences in their mutation 
spectra and chromosome alterations.  Here, we attempted to identify common and 
unique gene dependencies and their associated biomarkers among adult and pediatric 
tumor isolates using functional genetic lethal screens and computational modeling.  
 
Methods: We performed CRISRP-Cas9 lethality screens in two adult glioblastoma 
(GBM) tumor isolates and five pediatric brain tumor isolates representing atypical 
teratoid rhabdoid tumors (ATRT), diffuse intrinsic pontine glioma, GBM, and 
medulloblastoma.  We then integrated the screen results with machine learning-based 
gene-dependency models generated from data from >900 cancer cell lines. 
 
Results: We found that >50% of candidate dependencies of 280 identified were shared 
between adult GBM tumors and individual pediatric tumor isolates. 68% of screen hits 
were found as nodes in our network models, along with shared and tumor-specific 
predictors of gene dependencies. We investigated network predictors associated with 
ADAR, EFR3A, FGFR1 (pediatric-specific), and SMARCC2 (ATRT-specific) gene 
dependency among our tumor isolates.  
 
Conclusions: The results suggest that, despite harboring disparate genomic signatures, 
adult and pediatric tumor isolates share a preponderance of genetic dependences. 
Further, combining data from primary brain tumor lethality screens with large cancer cell 
line datasets produced valuable insights into biomarkers of gene dependency, even for 
rare cancers.    
 
Importance of the Study: Our results demonstrate that large cancer cell lines data sets 
can be computationally mined to identify known and novel gene dependency 
relationships in adult and pediatric human brain tumor isolates. Gene dependency 
networks and lethality screen results represent a key resource for neuro-oncology and 
cancer research communities.  We also highlight some of the challenges and limitations 
of this approach. 
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Introduction 
Finding effective treatments for adult and pediatric brain tumors remains a 

daunting challenge.  For the last three decades, while significant progress has been 
made for treatment of other pediatric cancers, like leukemia, effective treatments for 
brain tumors have failed to materialize.  Standard of care (SOC) for gliomas (e.g., 
glioblastoma (GBM)) arising in the cerebral cortex requires patients to undergo surgical 
resection and chemoradiotherapy, resulting in lengthy recoveries and often significant 
side effects [1].  Even with SOC, median survival for GBM patients overall ranges from 
14-17 months, with rare exceptions of long-term survival [2, 3].   

In children, brain tumors are now the leading cause of cancer-related deaths, 
responsible for 30% of such deaths [4, 5], with gliomas comprising ~60% of cases [6]. 
The two year survival rate for pediatric gliomas ranges from 30% for tumors arising in 
the cerebral cortex to <10% for diffuse intrinsic pontine gliomas (DIPGs)[7].  Other 
pediatric brain tumors include embryonal tumors such as medulloblastoma (MB) and 
atypical teratoid/rhabdoid tumors (ATRT) and ependymoma (EPN) [8-12].   

Recent efforts to characterize molecular features and candidate disease drivers 
have revealed stark differences in the mutation spectra and chromosome alterations 
observed adult and pediatric brain tumors (e.g., EGFR and PTEN) [13-21], even where 
tumors are histologically indistinguishable.  Thus, understanding of similarities and 
differences in functional genetic dependencies between adult and pediatric tumors may 
be one key to identifying appropriate therapeutic approaches for these respective 
tumors [22].   
 As an alternative approach, candidate therapeutic targets have been sought via 
functional genomic screens to identify synthetic lethal relationships, i.e., novel gene 
dependencies driven by cancer-specific alterations [23, 24](reviewed in [25]).  These 
approaches have revealed several types of synthetic lethal interactions, including: loss 
of paralogs (e.g., ARID1A/ARID1B, SMARCA2/SMARCA4)[26, 27], collateral lethality 
due to the co-deletion of genes near tumor suppressor loci (e.g., PRMT5 and MTAP-
CDKN2A) [28, 29], pathway lethality (e.g., PTEN/PIK3CB) [30], and vulnerabilities 
associated with molecular features (e.g., WRN/microsatellite instability [31]). 

One lingering question from these studies is the degree to which serum-derived 
cancer cell lines reproduce the genomic, molecular, and phenotypic features of their 
original patient cancers. Standard in vitro growth conditions trigger profound 
transcriptional, epigenetic, and DNA alterations changes (e.g., [32, 33]).  By contrast, for 
GBM, for example, serum-free culture methods that resemble a stem cell niche allow 
retention of many of the properties associated with patient tumor isolate, including stem-
like cell states [32, 34-36].   

For brain tumor isolates, serum-free culture methods that resemble a stem cell 
niche allow retention of many of the properties associated with patient tumor isolate, 
including stem-like cell states [32, 34-36].  Performing screens in brain tumor isolates in 
these culture conditions has revealed multiple novel gene dependencies for GBM cells 
[37-42]. However, the scope of screens in primary cells is limited by more costly and 
elaborate culture conditions.   

To overcome these limitations, here, we combined the results of CRISPR-Cas9 
lethality screen results from adult and pediatric brain tumor isolates with network models 
generated from cancer cell line functional genomic data [43]. The results reveal that 
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these networks can be leveraged to provide insight into genetic dependencies in brain 
tumor patient isolates, even for rare brain tumors.  
  
Results 
CRISPR-Cas9 screens in primary adult and pediatric brain tumor isolates 

We previously performed genome-scale CRISPR-Cas9 screens in two adult 
human GSCs (GSC-0131-mesenchymal and GSC-0827-proneural) and two normal 
diploid NSC isolates (CB660 and U5) to identify genes differentially required for GSC 
outgrowth isolates [41]. We also performed the same screen using pediatric GSC-1502-
mesenchymal cells (unpublished).  Using sgRNA-seq to compare pre/post outgrown 
populations and GSCs versus NSCs, we identified hundreds of candidate GBM-lethal 
genes, validating a small portion, including the Wee1-like kinase PKMYT1 [41].  In this 
study, we created a comprehensive retest library from this data containing sgRNAs 
targeting: 208 candidate lethal targets from GSC-0131 cells, 763 from GSC-0827s, and 
192 from GSC-1502s. Hits were selected based on a relaxed scoring criteria (³1 sgRNA 
at logFC<-1 (FDR<.05)) and whether they failed to score in NSCs.  In addition, the 
retest pool contained gene hits from a human embryonic stem cell screen [44] and 
biological controls (44 genes) and non-targeting controls (110 sgRNAs).  In total this 
library contained 6591 sgRNAs targeting 1079 genes (Table S1).  
 We then screen this pool using the same outgrowth lethality screening approach 
in adult GBM stem-like isolates and pediatric brain tumor isolates including atypical 
teratoid/rhabdoid tumors (ATRT), diffuse intrinsic pontine glioma (DIPG), and 
medulloblastoma (MED).  These included GSC-0131, GSC-0827, and GSC-1502 cells 
(mentioned above), ATRT-310 (SHH subgroup; SMARCB1 (focal loss)), ATRT-311 
(SHH subgroup; SMARCB1 (stop gain mutation)), DIPG-4E (ACVR1, H3.1 K27M), and 
MED-411 (group 3; MYC amplification) [45] (Figure 1A).  These isolates were chosen 
because they grow robustly in vitro making them amenable for screens. A 
representative example of the screen results with positive and negatively scoring 
sgRNAs is shown in Supplementary Figure S1A.   
 Retest rates were ~43% for GSC-0131, ~40% for GSC-0827s, and ~53% for 
GSC-1502s (³ 2 sgRNAs; Z score <-1, FDR<.05).  The frequencies likely reflect a 
higher false positive rate from the initial screens due to first generation sgRNA designs, 
relaxed inclusion criteria for retest screens, and the variability of primary cultures. In 
total, 280 genes validated in one or more brain tumor isolate (Table S1). 

Overall, ~50% of GBM hits scored in pediatric brain tumors with 46% of 827 hits, 
65% of 0131 hits, and 66% of 1502 hits (Figure 1B)(Table S1).  Moreover, the majority 
of screen hits scoring for each GBM isolates were shared with non-GBM brain tumor 
isolates and vice versa (Figures 1C and 1D).  There were no hits in GBM tumors that 
did not also score in at least non-GBM tumor isolate (Table S1).  

We also compared lethal gene hits among serum-grown GBM cell line data 
available via Broad Institute and Sanger Center data (depmap.org).  However, we only 
observe 9 genes overlapping (~3% of total hits) (Figure 1D).  This is consistent with 
profound phenotypic divergence observed between serum-free and serum isolated 
brain tumor cells previously reported [32, 33].  
 We next compared gene expression and screen data via dendrogram and 
principal component analysis (Figures 1E and 1F; Supplementary Figures 1B and 
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1C).  The RNA-seq data reveal isolates cluster by tumor types as GBM or non-GBM 
tumors (Figure 1E and S1B).  However, these same relationships were not found 
among gene dependencies, where pediatric MED-411 clustered with adult GSC-0827 
(both share MYC amplifications), pediatric isolates from ATRT grouped more closely 
with adult GSC-0131 cells, and pediatric DIPG-4E cells were an outlier (Figures 1F and 
S1C).  

Taken together, these results suggest that, despite dramatic differences in driver 
mutations, common vulnerabilities likely exist between the adult and pediatric brain 
tumor isolates, a notion supported by a recently published lethality screens in pediatric 
cancer cell lines [22].   
 
Intersection of machine learning models and screening hits reveals candidates 
for new interactions  
 We next sought to identify molecular and phenotypic features that predict 
candidate genetic dependencies. The limited numbers of brain tumor isolates screened 
were not sufficient to, on their own, create functional genomic networks or associate 
particular genetic dependencies with genetic features in the patient tumors.  Therefore, 
we endeavored to integrate our lethality screen results with more comprehensive 
functional genomic lethality screen data sets for >1000 human cancer cell lines now 
available through the Broad and Sanger Institutes [46, 47].  This included the use of cell 
line gene effect scores or CERES scores [46].  CERES scores are calculated for every 
gene in the library and they account for multiple confounding effects that bias the direct 
measurements of individual sgRNA enrichment and depletion. Negative CERES scores 
denote net gene depletion and positive scores denote enrichment across sgRNAs.  
 The Pritchard group has recently incorporated CERES scores with addition cell 
line features, including (mutation, RNA-seq, CNV, and lineage from the Cancer Cell 
Line Encyclopedia), to create multivariate machine learning models for gene 
requirement [43] (Figure 2A).  This results in thousands of machine-learning models 
that incorporate the effects of millions of CRISPR knockout phenotypes in addition to 
mutations, copy number, lineage, and RNA-seq to predict cell type specific phenotypes 
[43]. For this analysis each screen hit or "target gene" is associated with 10 model 
features nodes that represent genes that co-vary with requirement for the target gene.  
The selection of 10 feature models (i.e., multivariate) outperformed single feature 
models in predicting target gene requirement [43].   
 For our data sets, we used 280 screen hits to populate cell line network models 
and identify candidate predictive features associated with genetic dependencies (Table 
S3).  76% or 1348 features were based on CERES score interactions, while 17% or 309 
were based on gene expression, 7% or 121 CNV and <1% or 1 mutation (Figure 2B).  
This is in-line with assessment of all cancer cell line network models, where 73% of 
predictive features are based on CERES scores (i.e., co-requirement for the two genes) 
22% on RNA-seq, 5% on CNV, and <1% on mutation [43].  Thus, most network 
interactions exist as “co-dependencies”, where requirement for the target gene tends to 
co-occur with requirement for feature genes (i.e., CERES score-based edges).    
 Comparisons of network features from all cancer cell line data, common essential 
genes, and our validating screen hits revealed there were 190 screen hits that are 
shared among the total network nodes and 71 genes which are brain tumor selective 
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(i.e., not essential or represented in networks) (Figure 2C). A portion of our screens hits 
and network work features contain common essential genes (~31% of validating screen 
hits). Inclusion of these genes (e.g., TATA binding protein (TBP)) reflects how these 
scored in brain tumor isolates relative to NSCs both in the original screen and validation 
screens.   
 Gene set enrichment analysis for all brain tumor network nodes revealed 
enrichment for genes associated with cell cycle, p53 pathway, chromatin modification, 
DNA damage response, and mTOR pathway (Figure S2).  They were also enriched in 
genes associated with other cancers such as small cell lung and prostate cancer.   
 Comparisons to recently published functional genetic dependencies in pediatric 
cancer cell lines [22] showed 18 candidate dependencies directly in common and 49 
overall that appear in hit-based feature models and have feature predictions (Figure 
2C). These included, for example, MCL1 gene dependency, which were associated with 
BCL2L1 expression and which our models also predict, as well as EFR3A, FGFR2, 
MDM2, PIK3CA, etc. (Figures 2C and 2D).  The portion of pediatric dependencies not 
shared likely include dependencies from non-CNS cancers and false negatives from our 
library gene selection process.   
 Among the results, we find previously identified functional genetic interactions 
and predictive associations in our isolates.  These include MDM2 requirement in 
p53/TP53 wildtype cancers [48].  As shown in Figure 2B, MDM2 is differentially required 
where p53 protein is functional among the tumor isolates; these include ATRT310, 
ATRT311, GSC-0827, and MED411 isolates, which are not mutated for TP53 and 
sgTP53 causes growth enhancement.  The predictive MDM2 network includes TP53 
other known p53 transcriptional targets including CDKN1A [49] and RPS27L [50] 
(Figure 2D).    
 Other examples include ARID1A and ARID1B synthetic lethality (by CERES 
score)[27], same gene interactions for CCND3 and CCNE1 (by RNA-seq) [30], 
paralogous functional redundancy between RAB6A and RAB6B [30] and ZFY and ZFX 
(by RNA-seq)[51], and association of interferon gene expression with ADAR 
requirement (by RNA-seq)[52].   
 The sole mutational predictor among our screens hits was PIK3CA, where 
hotspot mutations predict requirement for PIK3CA.  PIK3CA did not score in the original 
GBM lethal screens but was included in the retest pool as a biological control.  It scored 
significantly only in DIPG4E cells (Table S1). Examination of RNA-seq reads across 
PIK3CA locus revealed that DIPG4E cells indeed harbor a G to A mutation in a 
preponderance of RNA-seq reads at codon 545 which changes glutamate to lysine, an 
activating, hotspot mutation found DIPGs and other cancers [53](not shown).  
 Given these confirmatory results, we explored four gene dependencies identified 
in network models for our brain tumor isolates and their possible implications for brain 
and other tumors.   
 
EFR3B expression predicts EFR3A requirement 
 EFR3A and EFR3B are paralogs (ensembl.org) that function redundantly to 
localize an adapter protein required to localize PI4KIIIα to the plasma membrane and 
regulate PtdIns(4)P synthesis [54, 55] (Figure 3A).  EFR3A scored as a screen hit in 
GSC-0131 cells, but not other isolates.  As predicted by network model and supported 
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by cell line screening data, GSC-0131 cells show lower expression of EFR3B 
expression and a requirement for EFR3A (Figures 3B and 3C).  Ectopic expression of 
EFR3B suppressed requirement for EFR3A alone in GSC-0131 cells or EFR3A and 
EFR3B together in GSC-0827 cells (Figures 3B and 3C).  Analysis of EFR3B 
expression in wide variety adult and pediatric tumors and control brain tissues revealed 
that its expression is significantly reduced (compared to control GTEX brain samples) in 
adult GBM (IDH-wt) (p<.001; n= 348) and the following pediatric tumors: ATRT (p<.01; 
n=30), meningioma (p<.001; n= 29), neurofibroma (p<.001; n= 21), and Schwannoma  
(p<.001; n= 19) tumors (Figures 3F and G) (Table S4). These results suggest that loss 
of EFR3B expression predicts sensitivity to its paralog EFR3A.  The ancestral EFR3 
gene is predicted to have duplicated ~796 MYA in bilateral animals (Ensemble 
GeneTree ENSGT00390000002143).  However, yeast still harbor a single EFR3 gene 
which, similar to EFR3A/B function in mammals, is essential for recruiting PtdIns 4-
kinase to plasma membrane [56].  
 
FGF2 predicts requirement for FGFR1  
 Similar to PIK3CA, the receptor tyrosine kinase gene FGFR1 was added as a 
biological control in validation screens given its importance in regulating developmental 
potential of neural stem/progenitor cells [32, 57].  Among our isolates, pediatric ATRT 
and DIPG cells showed specific dependency on FGFR1 for outgrowth (Figure 4A).  The 
FGFR1 feature network reveals multiple co-dependencies by CERES score of genes 
required for FGFR1 signaling (Figure 4B).  These include FRS2 expression, which 
encodes a key FGFR1 target that regulates neural stem/progenitor cells self-renewal 
[58], and genes required for synthesis of heparan sulfate, a mandatory cofactor in 
paracrine FGF signaling [59], including B3GAT3, EXT1, EXT2, EXTL3, GLCE, HS2ST1 
and SLC35B2 (Reactome database).   
 The expression of FGF2, one of FGFR1's key ligands [60], also scored as being 
predictive of FGFR1 requirement (Figure 4B).  This was true for cancer cell lines 
derived from diverse tumor types: bone, brain, breast, liver, lung, skin, and soft tissue 
(Figure 4C-E).  Moreover, FGFR1 mutational status was not associated with sensitivity, 
when compared to FGFR1 wt or FGF2 high expressors (Figure 4F). 33 out of 1082 cell 
lines are shown in Figures 4C-E are FGFR1 mutant; only 3 of 33 score as effect score 
<-0.5.  Examination of FGF2 expression among our FGFR1-sensitive and insensitive 
brain tumor isolates supported this notion.  ATRT-310, ATRT-311, and DIPG4E, show 
higher expression of FGF2 than the insensitive cells in vitro (Figure S4A) and in vivo 
(Figure 4G).  Analysis of tumor expression of FGF2 revealed most adult low and high 
grade gliomas and 12 of 18 pediatric tumor types examined (e.g., DIPG, ependymoma, 
pilocytic astrocytoma, etc.) have significantly higher expression than normal tissue 
controls (Figures 4H and 4I)(Table S4).  By contrast, pediatric medulloblastoma and 
meningioma showed significantly less FGF2 expression (Figure 4I). Thus, FGF2 
expression is a candidate biomarker for sensitivity to FGFR1 network inhibition.  
 
SMARCB1 mutant ATRT tumor isolates show requirement for SMARCC2.  
 SMARCC2 was included in our retest library due to its effect in GSC-0827 
screens, where a single sgRNA scored using relaxed inclusion criteria. SMARCC2 
codes for a non-essential core subunit of the SWI/SNF chromatin remodeling complex 
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core module and is structurally redundant with SMARCC1 [61].  SMARCC2 is part of a 
SWI/SNF complex dependency network and is associated with requirement for other 
SWI/SNF complex members, including ARID1A, ARID1B, DPF2, SS18, SMARCB1, 
SMARCC1, and SMARCE1 (Figure 5A) [61].  However, Figure 5B shows that 
SMARCC2 is specifically lethal among ATRT isolates, scoring similar to common 
essential gene hits.  SMARCC2 KO did not significantly growth affect the growth of U5 
or CB660 NSCs (Table S1). 
 ~95% of malignant rhabdoid tumors, which include ATRTs, have biallelic 
inactivation of SMARCB1 [62, 63], a key component of “canonical” BAF and PBAF 
complexes [61].  While SMARCB1 is thought of as a is a tumor suppressor for rhabdoid 
and certain other cancer types, it is, none the less, essential in proliferating somatic cell 
lines as shown in the cell line screen data (as is another key component SMARCE1) 
(Figure 5C). By contrast, SMARCC2 is non-essential in somatic cell lines (Figure 5C, 
possibly owing to its structural redundancy with SMARCC1 [61].  
 Further, SMARCC2 and SMARCB1 dependency co-occurred in our SWI/SNF 
network model (Figure 5A).  However, SMARCB1 mutation or expression was not 
associated with SMARCC2 requirement. This is likely due to underrepresentation of 
rhabdoid tumors among cancer cell line data (e.g., n=5 ATRT cell lines) and 
overrepresentation of the SMARCB1 sensitive lines.    
 We also examined SMARCB1 gene expression across multiple types of adult 
and pediatric brain tumors (Figures 5D and 5E)(Table S4).  This analysis revealed that 
loss of SMARCB1 expression is highly selective for ATRT tumors (n=30), consistent 
with biallelic inactivation (Figure 5E).  However, meningiomas also showed significant 
reduction (p<.001; n=29) (Table S4) and ganglioglioma and schwannomas showed a 
tendency (p<.16). 
 This data suggests that SMARCC2 is required in the context of SMARCB1-
deficient ATRT tumors and that gene expression is likely a suitable biomarker of loss of 
SMARCB1 function.   
 
ADAR requirement in adult and pediatric brain tumor isolates.  
 ADAR was originally a screen hit in adult GSC-0131 cells [41] that validated in 
both GSC-0131 and DIPG4E cells (Figure 2B).  ADAR, also known as ADAR1, is a 
dsRNA editing enzyme that post-transcriptionally converts adenosine-to-inosine in both 
coding gene mRNAs and repetitive genomic element RNAs [64]. It was recently shown 
that tumor cells displaying interferon-stimulated gene (ISG) expression signatures 
require ADAR activity to prevent accumulation of cytotoxic dsRNA species [52, 65].  The 
network associated with ADAR gene dependency fits well with this concept (Figure 6A).  
It includes many ISG genes (e.g., MX1) as predictive RNA-seq based features that are 
negatively correlated and more highly expressed in cells with ADAR requirement.   
Consistent with this notion, sensitive brain tumor isolates and in general a portion of 
adult and pediatric brain tumors have increased ISG gene signature (Figures 6B and 
S6A).  
 To confirm these results, we assayed protein expression of several ISG genes, 
including MX1, ADAR, OAS1 and IRF9 (Figures 6C, S5C and S5D).  Of these, MX1 
produced a robust signal which appears to correlate with ADAR sensitivity in screen 
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lines and also other isolates (Figures 6C, S5D and S5E). These included a pediatric 
ependymoma and two matched, recurrent GBM isolates.   
 Since ADAR gene dependency has not been established in pediatric brain 
tumors, we next examined genes that are enriched with MX1 expression in pediatric 
brain cancers (Figures 6D and 6E).  Not surprisingly, ISG genes were among the top 
genes correlated with MX1 expression, which included ISG15. Top pediatric cancer 
expressors ISG15 and MX1 included ATRT, EPD, and low and high grade gliomas 
(Figure 6D). Moreover, we could find statistically significant increase in MX1 expression 
in most adult and pediatric brain tumor types surveyed, with the exception of pediatric 
embryonal tumors, medulloblastomas, and DNETs (Table S4).  
 Further retests of ADAR KO in these isolates displayed a range of in vitro 
sensitivities where were in line with MX1 expression, where recurrent GBM-222 and 
EPD-210 had the greatest loss of viability (Figure 6F).  EPD-210 cells harbor high 
levels of dsRNA relative to GBM-110 non-MX1 expressing, a hallmark of ADAR 
sensitive  [52] (Figure 6G).  Further, inhibiting ADAR in the context of orthotopic EPD-
210 brain tumors had a significant survival benefit (Figure 6H).  Taken together, these 
data confirm that ADAR gene dependency in variety of adult and pediatric brain tumors 
and is predicted by MX1 protein expression. 
 
Discussion  

There is currently a critical need for new therapeutic strategies for adult and 
pediatric brain tumors.  A primary goal of this study was to determine whether functional 
genetic relationships from cancer cell line data, mostly derived from non-CNS cancers, 
could be leveraged to reveal and characterize gene dependencies in adult and pediatric 
brain tumors.  Our results reveal that this integrated approach can be powerful tool for 
discovery of candidate cancer liabilities and their molecular predictors in patient tumor 
isolates.  

In-line with other studies, we found that most gene dependencies in brain tumor 
isolates are predicted by other gene dependencies, rather than gene expression or 
genetic alterations.  The lone mutational predictor was a PIK3CA hotspot mutation 
predicting PIC3CA requirement in DIPG cells (Table S2).  Instead, our results show that 
brain tumor networks models can illuminate connections between candidate genetic 
vulnerabilities and candidate biomarkers in brain tumors, capturing previously described 
and novel ones.  In total, we provide machine learning networks with candidate 
predictors for 280 brain tumor screen hits (Figure 2; Table S2).  
 EFR3B expression predicts sensitivity to its paralog EFR3A (Figure 3).  These 
genes function redundantly in other systems to localize PI4KIIIα to the plasma 
membrane and regulate PtdIns(4)P synthesis [54, 55]. EFR3B expression is enriched in 
brain, muscle, and endocrine tissues and is associated with neuronal signaling, while 
EFR3A is expressed in most tissues (www.proteinatlas.org).  EFRB3 expression is lost 
in a subset of brain tumor types including GBM and multiple pediatric tumors (e.g., 
ATRT, meningioma, neurofibroma and Schwannoma).  The results suggest that EFR3A 
or PtdIns(4)P synthesis is worthy of consideration as a selective vulnerability in EFR3B 
low tumors.  
 FGF2 expression predicts sensitivity to FGFR1 inhibition.  FGFR inhibitors are 
currently in clinical trials for a variety of tumors, including GBM (e.g.,[66]).  However, 
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these trials tend to focus exclusively on FGFR-altered tumors with mixed results.  Both 
ATRT and DIPG tumor isolates were sensitive to FGFR1 loss but are not mutated for 
FGFR1 (Figure 4).  Instead, the FGFR1 dependency network suggested that FGF2 
expression is associated with FGFR1 requirement.  Consistent with this, ~13% of 
cancer cell lines that show sensitivity to FGFR1 loss have significantly higher FGF2 
expression (Figures 4C-E).  FGFR1 mutant cells, on the other hand, were significantly 
less likely to be FGFR1 sensitive, compared to wt or FGF2 high cells.  Thus, the results 
imply that FGF2 expression maybe a valid indicator of FGFR1 sensitivity in FGFR wt 
cancers.  

We observed a novel requirement for SMARCC2, a core SWI/SNF subunit, in 
ATRT isolates (Figure 5).  Mutant rhabdoid tumors, including ATRTs, have biallelic 
inactivation mutations in SMARCB1 [62, 63], which codes for a key  “canonical” 
SWI/SNF complex subunit [61].  In most other cancer cell types, however, SMARCB1 is 
essential; by contrast, SMARCC2 is not (Figure 5C).  Previous studies have shown that 
SMARCB1 mutant rhabdomyosarcoma and synovial sarcoma cells are sensitivity to 
loss of “non-canonical” BAF components, including BRD9 and GLTSCR1, to maintain 
cancer-specific chromatin structure and gene expression [67, 68].  Because ATRT 
tumors are predicted to be deficient in canonical SWI/SNF function, novel SMARCC2 
requirement may arise due to its participation in noncanonical SWI/SNF complex [61]. 
For example, ncBAF includes a BAF core consisting of SMARCC1/2, SMARCD1/2/3) 
and an ATPase module (SMARCA2/4) but not other commonly studied SWI/SNF 
complex proteins (e.g., ARID1A/B, DPF2, SMARCB1, SMARCE1, etc.) [61].   Thus, 
ATRTs and also possibly meningiomas (Figure 5E) may show differentiation 
requirement for ncBAF, which may be an actionable target (e.g., via BRD9 inhibition 
[69] or targeted degradation [70]). However, future studies will need to demonstrate 
gene dependencies for other ncBAF components.  
  We also found that ADAR requirement in brain tumors is predicted by interferon 
gene expression and MX1 protein expression (Figure 6).  Previous studies have 
suggested that ADAR influences glioma cell proliferation either through regulation of the 
m6A-methyltransferase activity [71] or translation control [72].  However, our results and 
network model predictions are in-line with reports in other cancers, whereby interferon 
signaling is triggered by the aberrant accumulation of dsRNA [52] (Figure 6G).  MX1 
expression is significantly increased in most adult and pediatric brain tumor types 
surveyed compared to normal brain tissue.  One such tumor, MX1 high pediatric 
ependymoma, was shown to be sensitive to ADAR loss in vivo (Figure 6H).  
Additionally, we find that recurrent GBM isolates can display high MX1 expression, 
consistent with proneural-to-mesenchymal transition after SOC [73], and are sensitive to 
ADAR loss.  Thus, ADAR may be a selective target for a broad range of brain tumors. 
 
Limitations  
 Basing networks on cancer cell line data from current functional genomic libraires 
has a few key limitations.  First, the cellular heterogeneity found in tumors (e.g., [74, 
75]) is missed.  GBM tumors, for example, contain cell populations with diverse neuro-
developmental states that co-exist in tumors (e.g., [74, 75]), which may contribute to 
their recurrence.  One relevant example is the mesenchymal cell state, which is 
associated with interferon gene expression and ADAR requirement (Figure 6). Targeting 
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ADAR in tumors would likely affect only the mesenchymal subpopulations.  Similarly, 
many brain tumor-specific gene dependencies are not found among cell line data 
(Figure 2E).  Such limitations may be addressed by using new computational strategies 
to reduce CRISPR library complexity while retaining predictive power [43] for screens in 
primary tumor systems in vivo. 

Other limitations include the absence of paralogous gene interactions, which 
require two or more genes to be targeted simultaneously [76], and the absence of non-
coding RNAs and other genetic elements not present in screening libraries.  
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Methods 
Key Reagents and Resources are available in Table S6. 
 
Cell Culture 
Isolates were cultured in NeuroCult NS-A basal medium (StemCell Technologies) 
supplemented with B27 (Thermo Fisher Scientific), N2 (homemade 2x stock in 
Advanced DMEM/F-12 (Thermo Fisher Scientific)), EGF and FGF-2 (20 ng/ml) 
(PeproTech), glutamax (Thermo Fisher Scientific), and antibiotic-antimycotic (Thermo 
Fisher Scientific). Cells were cultured on laminin (Trevigen or in-house-purified)-coated 
polystyrene plates and passaged as previously described [77], using Accutase (EMD 
Millipore) to detach cells. 
 
Primary GBM cultures 
Primary, patient-derived GBM cultures were generated in-house from tissue samples 
obtained during surgical resection of patients diagnosed with GBM. As previously 
described [78], tumors were subjected to enzymatic digest, mechanically dissociated 
and cultured as neurospheres. GBM neurospheres were expanded as intracranial 
xenografts (PDX) in athymic nu/nu mice and processed as previously described by [79]. 
Cultures from PDX samples were processed similarly to the patient derived tumors. 
Freshly isolated human GBM samples were obtained under an IRB approved protocol 
(approval SHIRB # 2015.059-1).  
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CRISPR-Cas9 library 
For generating our comprehensive retest library, sgRNAs for chosen genes and controls 
were mined from the human GeCKO v2 library [80] as well as our whole genome screen 
results, and an oligo pool representing these sgRNAs and PCR adapters was obtained 
(Twist Bioscience). The oligo pool was PCR amplified using Herculase II Fusion DNA 
Polymerase (Agilent) and cloned into lentiCRISPRv2 puro vector (Addgene) using 
Gibson Assembly Master Mix (New England Biolabs). The assembled pool was then 
transformed into Stellar Competent Cells (Clontech) and plated onto LB agar plates 
(liquid culture was avoided in order to minimize competition between clones containing 
different sgRNAs). The resulting colonies were scraped from the plates and the finished 
lentiCRISPRv2 plasmid comprehensive retest library was extracted using a NucleoBond 
Xtra Midi Endotoxin-Free Kit (Macherey–Nagel). This lentiviral library was then used to 
generate virus and infect cells for outgrowth screening.  
 
Lentiviral Production 
For virus production, lentiCRISPR v2 plasmids [81] were transfected using 
polyethylenimine (Polysciences) into 293T cells along with psPAX and pMD2.G 
packaging plasmids (Addgene) to produce lentivirus.  For the whole-genome CRISPR-
Cas9 libraries, 25x150mm plates of 293T cells were seeded at ~15 million cells per 
plate.  Fresh media was added 24 hours later and viral supernatant harvested 24 and 
48 hours after that. For screening, virus was concentrated 1000x following 
ultracentrifugation at 6800xg for 20 hours. For validation, lentivirus was used 
unconcentrated at an MOI<1. 
 
CRISPR-Cas9 Screening 
For screening, cells were transduced to achieve ~750X representation of the library (at 
~30% infection efficiency to ensure a high proportion of single integrants). 2 days after 
transduction, media was replaced with media containing 2 μg/mL puromycin. After 3 
days of selection, portions of cells representing 500-750X coverage of the library were 
collected as the “Day_0” samples. The remaining cells were cultured and consistently 
maintained at 500-750X representation for 21-23 days, after which time the “Day_final” 
samples were collected. Screening was carried out in triplicate. To read out screen 
results, genomic DNA was extracted using the QIAamp DNA Blood Mini Kit (QIAGEN), 
and a two-step PCR procedure was used to first amplify the genomically integrated 
sgRNA sequences and then to incorporate Illumina deep sequencing adapters and 
barcodes onto the sgRNA amplicons. For the first round of PCR, a sufficient number of 
PCR reactions were carried out to use all gDNA from the 500-750X coverage sample of 
cells at 2μg genomic DNA per PCR reaction, using MagniTaq Multiplex PCR Master Mix 
(Affymetrix) and 12 cycles. For the second round of PCR, 5μL of the first round product 
was used as a template in combination with primers that would add the deep 
sequencing adapters and barcodes, using Herculase II Fusion DNA Polymerase 
(Agilent) and 16 cycles. Amplicons from the second round PCR were then column 
purified using the PureLink Quick PCR Purification Kit (Invitrogen). Purified PCR 
products were sequenced using HiSeq 2500 (Illumina). Bowtie [82] was used to align 
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the sequenced reads to the sgRNA library, allowing for 1 mismatch. The R/Bioconductor 
package edgeR [83] was used to assess changes across groups.  
 
RNA-seq analysis 
Cells were lysed with Trizol (Thermo Fisher). Total RNA was isolated (Direct-zol RNA 
kit, Zymo Research) and quality validated on the Agilent 2200 TapeStation. Illumina 
sequencing libraries were generated with the KAPA Biosystems Stranded RNA-Seq 
Kit[84] and sequenced using HiSeq 2000 (Illumina) with 100bp paired-end reads. RNA-
seq reads were aligned to the UCSC hg19 assembly using STAR2 (v 2.6.1)[85] and 
counted for gene associations against the UCSC genes database with HTSeq [86]. 
Normalized gene count data was used for subsequent hierarchical clustering (R 
package ggplot2 [87]) and differential gene expression analysis (R/Bioconductor 
package edgeR [83]). Heatmaps were made using R package pheatmap [88]. 
 
Model building and network analysis.  
The retrieval and preprocessing of Cancer Dependency Map datasets 19Q3 and 19Q4 
data were performed as in [43].  Features (CERES score, RNA-seq, copy number, 
mutation, lineages) derived from multiple omics datasets for 18333 genes were used to 
build predictive models for each of the 280 brain tumor screen hits in the Broad data. 
The model building process is provided at the Pritchard Lab at PSU GitHub repository 
[https://github.com/pritchardlabatpsu/cga]. Briefly, a regression model with iterative 
random forest and Boruta feature selection was used to select each target brain screen 
hit gene's top 10 predictive features. The top 10 features were then used to fit a new 
reduced feature random forest model. To evaluate the model, only qualified gene 
models(R2>0.1, recall>0.95, defined in [43]) were selected. This left 178 predictable 
genes and their top 10 features used in subsequent analyses. Default parameters were 
used in the model building process: random forest regressor:1000 trees; maximum 
depth:15 per tree; minimum samples required per leaf node: 5; maximum number of 
features:log2 of the total number of features. 
 
Network analyses.  
Networks were derived from the model results in [43]. A fully documented git repository 
with all source codes and notebooks can be accessed at the Pritchard Lab at PSU 
GitHub repository [https://github.com/pritchardlabatpsu/cga]. The data used as the input 
to this study are available in the Zenodo database under the DOI identifier 
(10.5281/zenodo.5721869). Network communities surrounding hits (N=1 nearest 
neighbors in the published network) were extracted and visualized using Cytoscape 
v3.7.256. 
 
Western Blotting 
Cells were harvested, washed with PBS, and lysed with modified RIPA buffer (150mM 
NaCl, 25mM Tris-HCl (pH 8.0), 1mM EDTA, 1.0% Igepal CA-630 (NP-40), 0.5% sodium 
deoxycholate, 0.1% SDS, 1X protease inhibitor cocktail (complete Mini EDTA-free, 
Roche)). Lysates were sonicated (Bioruptor, Diagenode) and then quantified using 
Pierce BCA assay (Thermo Fisher). Identical amounts of proteins (20-40µg) were 
electrophoresed on 4–15% Mini-PROTEAN TGX precast protein gels (Bio-Rad). For 
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transfer, the Trans-Blot Turbo transfer system (Bio-Rad) with nitrocellulose membranes 
was used according to the manufacturer’s instructions. TBS (137mM NaCl, 20mM Tris, 
pH 7.6) +5% nonfat milk was used for blocking, and TBS+0.1%Tween-20+5% milk was 
used for antibody incubations. An Odyssey infrared imaging system (LI-COR) was used 
to visualize blots.  
 
Flow Cytometry 
Processed cells were flow cytometry analyzed immediately using either a BD 
FACSymphony A5 or BD LSRFortessa X-50 machine.  Results were analyzed using 
FlowJo software. 
 
Viability Assays 
Viable cell numbers were measured using CellTiter-Glo Luminescent Cell Viability 
Assay (Promega) according to manufacturer’s instructions. 
 
Xenograft tumors 
All in vivo experiments were conducted in accordance with the NIH Guide for the Care 
and Use of Experimental Animals and with approval from the Fred Hutchinson Cancer 
Research Center, Institutional Animal Care and Use Committee (Protocol 1457).  
100,000 GSCs were orthotopically xenografted into a single frontal cerebral hemisphere 
or in flanks of HSD:athymic nude Foxn1nu mice (#069, Envigo).   
 
Brain tumor gene expression analysis.  
Brain tumor and normal gene expression data were obtained from Children's Brain 
Tumor Network [89],  CGGA [90], GTEX [91], and TCGA [92].  A detailed description of 
creation of the analysis pipeline is available in (Arora et al. in preparation). 
 
Competing Interests 
The authors have stated explicitly that there are no conflicts of interest in connection 
with this article. 
 
Data availability statement 
The RNA-seq data that support the findings of this study are openly available in the 
NCBI Gene Expression Omnibus at https://www.ncbi.nlm.nih.gov/geo/, GEO accession 
number GSE213269 (token: cfqhwiemrfifrqf). Other data that support the findings of this 
study are available in the Supporting Materials of this article. 
 
Ethical statement 
We followed the guidelines set by the Fred Hutchinson Cancer Center Institutional 
Review Office for De-identified Human Specimens and/or Data, which categorizes the 
studies presented here as Research Not Involving Human Subjects as detailed by the 
Institutional Review Board's Human Subjects Research Determination Form.   
 
References 
 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2023. ; https://doi.org/10.1101/2023.01.05.522885doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.05.522885
http://creativecommons.org/licenses/by-nc/4.0/


 15 

1 American Cancer Society. American Cancer Society: Cancer Facts and Figures 
2010. 

 
2 Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ et al. 

Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N 
Engl J Med 2005; 352: 987-996. 

 
3 O'Reilly SM, Newlands ES, Glaser MG, Brampton M, Rice-Edwards JM, 

Illingworth RD et al. Temozolomide: a new oral cytotoxic chemotherapeutic agent 
with promising activity against primary brain tumours. Eur J Cancer 1993; 29A: 
940-942. 

 
4 ACS. American Cancer Society. Cancer Facts & Figures 2014. Atlanta: American 

Cancer Society, 2014. 
 
5 Curtin SC MA, Anderson RN. Declines in cancer death rates among children and 

adolescents in the United States, 1999–2014. National Center for Health 
Statistics 2016  NCHS data brief, no 257 
http://www.cdc.gov/nchs/products/databriefs/db257.htm. 

 
6 Kaatsch P, Rickert CH, Kuhl J, Schuz J, Michaelis J. Population-based 

epidemiologic data on brain tumors in German children. Cancer 2001; 92: 3155-
3164. 

 
7 Jones C, Baker SJ. Unique genetic and epigenetic mechanisms driving 

paediatric diffuse high-grade glioma. Nat Rev Cancer 2014; 14. 
 
8 Johann PD, Erkek S, Zapatka M, Kerl K, Buchhalter I, Hovestadt V et al. Atypical 

Teratoid/Rhabdoid Tumors Are Comprised of Three Epigenetic Subgroups with 
Distinct Enhancer Landscapes. Cancer Cell 2016; 29: 379-393. 

 
9 Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, 

Cavenee WK et al. The 2016 World Health Organization Classification of Tumors 
of the Central Nervous System: a summary. Acta neuropathologica 2016; 131: 
803-820. 

 
10 Pajtler KW, Witt H, Sill M, Jones DT, Hovestadt V, Kratochwil F et al. Molecular 

Classification of Ependymal Tumors across All CNS Compartments, 
Histopathological Grades, and Age Groups. Cancer Cell 2015; 27: 728-743. 

 
11 Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC et al. 

Molecular subgroups of medulloblastoma: the current consensus. Acta 
neuropathologica 2012; 123: 465-472. 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2023. ; https://doi.org/10.1101/2023.01.05.522885doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.05.522885
http://creativecommons.org/licenses/by-nc/4.0/


 16 

12 Gajjar A, Pfister SM, Taylor MD, Gilbertson RJ. Molecular insights into pediatric 
brain tumors have the potential to transform therapy. Clin Cancer Res 2014; 20: 
5630-5640. 

 
13 Bredel M, Pollack IF, Hamilton RL, James CD. Epidermal growth factor receptor 

expression and gene amplification in high-grade non-brainstem gliomas of 
childhood. Clin Cancer Res 1999; 5: 1786-1792. 

 
14 Sung T, Miller DC, Hayes RL, Alonso M, Yee H, Newcomb EW. Preferential 

inactivation of the p53 tumor suppressor pathway and lack of EGFR amplification 
distinguish de novo high grade pediatric astrocytomas from de novo adult 
astrocytomas. Brain Pathol 2000; 10: 249-259. 

 
15 Cheng Y, Ng HK, Zhang SF, Ding M, Pang JC, Zheng J et al. Genetic alterations 

in pediatric high-grade astrocytomas. Hum Pathol 1999; 30: 1284-1290. 
 
16 Raffel C, Frederick L, O'Fallon JR, Atherton-Skaff P, Perry A, Jenkins RB et al. 

Analysis of oncogene and tumor suppressor gene alterations in pediatric 
malignant astrocytomas reveals reduced survival for patients with PTEN 
mutations. Clin Cancer Res 1999; 5: 4085-4090. 

 
17 Jones C, Karajannis MA, Jones DT, Kieran MW, Monje M, Baker SJ et al. 

Pediatric high-grade glioma: biologically and clinically in need of new thinking. 
Neuro Oncol 2016. 

 
18 Paugh BS, Qu C, Jones C, Liu Z, Adamowicz-Brice M, Zhang J et al. Integrated 

molecular genetic profiling of pediatric high-grade gliomas reveals key 
differences with the adult disease. J Clin Oncol 2010; 28: 3061-3068. 

 
19 Pollack IF, Hamilton RL, James CD, Finkelstein SD, Burnham J, Yates AJ et al. 

Rarity of PTEN deletions and EGFR amplification in malignant gliomas of 
childhood: results from the Children's Cancer Group 945 cohort. Journal of 
neurosurgery 2006; 105: 418-424. 

 
20 Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K et al. 

Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric 
glioblastoma. Nature 2012; 482: 226-231. 

 
21 Wu G, Diaz AK, Paugh BS, Rankin SL, Ju B, Li Y et al. The genomic landscape 

of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. 
Nat Genet 2014; 46: 444-450. 

 
22 Dharia NV, Kugener G, Guenther LM, Malone CF, Durbin AD, Hong AL et al. A 

first-generation pediatric cancer dependency map. Nat Genet 2021; 53: 529-538. 
 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2023. ; https://doi.org/10.1101/2023.01.05.522885doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.05.522885
http://creativecommons.org/licenses/by-nc/4.0/


 17 

23 Hartwell LH, Szankasi P, Roberts CJ, Murray AW, Friend SH. Integrating Genetic 
Approaches into the Discovery of Anticancer Drugs. Science 1997; 278: 1064. 

 
24 Paddison PJ, Hannon GJ. RNA interference: the new somatic cell genetics? 

Cancer Cell 2002; 2: 17-23. 
 
25 Huang A, Garraway LA, Ashworth A, Weber B. Synthetic lethality as an engine 

for cancer drug target discovery. Nat Rev Drug Discov 2020; 19: 23-38. 
 
26 Hoffman GR, Rahal R, Buxton F, Xiang K, McAllister G, Frias E et al. Functional 

epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal 
target in BRG1-deficient cancers. Proc Natl Acad Sci U S A 2014; 111: 3128-
3133. 

 
27 Helming KC, Wang X, Wilson BG, Vazquez F, Haswell JR, Manchester HE et al. 

ARID1B is a specific vulnerability in ARID1A-mutant cancers. Nat Med 2014; 20: 
251-254. 

 
28 Kryukov GV, Wilson FH, Ruth JR, Paulk J, Tsherniak A, Marlow SE et al. MTAP 

deletion confers enhanced dependency on the PRMT5 arginine 
methyltransferase in cancer cells. Science 2016; 351: 1214-1218. 

 
29 Mavrakis KJ, McDonald ER, 3rd, Schlabach MR, Billy E, Hoffman GR, deWeck A 

et al. Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers 
leads to dependence on PRMT5. Science 2016; 351: 1208-1213. 

 
30 McDonald ER, 3rd, de Weck A, Schlabach MR, Billy E, Mavrakis KJ, Hoffman 

GR et al. Project DRIVE: A Compendium of Cancer Dependencies and Synthetic 
Lethal Relationships Uncovered by Large-Scale, Deep RNAi Screening. Cell 
2017; 170: 577-592 e510. 

 
31 Chan EM, Shibue T, McFarland JM, Gaeta B, Ghandi M, Dumont N et al. WRN 

helicase is a synthetic lethal target in microsatellite unstable cancers. Nature 
2019; 568: 551-556. 

 
32 Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM et al. Tumor stem cells 

derived from glioblastomas cultured in bFGF and EGF more closely mirror the 
phenotype and genotype of primary tumors than do serum-cultured cell lines. 
Cancer Cell 2006; 9: 391-403. 

 
33 Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, Russell R et al. 

Glioma stem cell lines expanded in adherent culture have tumor-specific 
phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 
(Research Support, Non-U.S. Gov't) 2009; 4: 568-580. 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2023. ; https://doi.org/10.1101/2023.01.05.522885doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.05.522885
http://creativecommons.org/licenses/by-nc/4.0/


 18 

34 Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, 
Bronner-Fraser M et al. Cancerous stem cells can arise from pediatric brain 
tumors. Proc Natl Acad Sci U S A 2003; 100: 15178-15183. 

 
35 Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al. 

Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63: 
5821-5828. 

 
36 Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, Russell R et al. 

Glioma Stem Cell Lines Expanded in Adherent Culture Have Tumor-Specific 
Phenotypes and Are Suitable for Chemical and Genetic Screens. Cell Stem Cell 
2009; 4: 568-580. 

 
37 Ding Y, Hubert CG, Herman J, Corrin P, Toledo CM, Skutt-Kakaria K et al. 

Cancer-Specific requirement for BUB1B/BUBR1 in human brain tumor isolates 
and genetically transformed cells. Cancer discovery (Research Support, N.I.H., 
Extramural 

Research Support, Non-U.S. Gov't 
Research Support, U.S. Gov't, Non-P.H.S.) 2013; 3: 198-211. 
 
38 Lee E, Pain M, Wang H, Herman JA, Toledo CM, DeLuca JG et al. Sensitivity to 

BUB1B inhibition defines an alternative classification of glioblastoma. Cancer 
Res 2017. 

 
39 Hubert CG, Bradley RK, Ding Y, Toledo CM, Herman J, Skutt-Kakaria K et al. 

Genome-wide RNAi screens in human brain tumor isolates reveal a novel 
viability requirement for PHF5A. Genes Dev (Research Support, N.I.H., 
Extramural 

Research Support, Non-U.S. Gov't) 2013; 27: 1032-1045. 
 
40 Toledo CM, Herman JA, Olsen JB, Ding Y, Corrin P, Girard EJ et al. BuGZ is 

required for Bub3 stability, Bub1 kinetochore function, and chromosome 
alignment. Dev Cell 2014; 28: 282-294. 

 
41 Toledo CM, Ding Y, Hoellerbauer P, Davis RJ, Basom R, Girard EJ et al. 

Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between 
PKMYT1 and WEE1 in Glioblastoma Stem-like Cells. Cell Rep 2015; 13: 2425-
2439. 

 
42 Ding Y, Herman JA, Toledo CM, Lang JM, Corrin P, Girard EJ et al. ZNF131 

suppresses centrosome fragmentation in glioblastoma stem-like cells through 
regulation of HAUS5. Oncotarget 2017. 

 
43 Zhao B, Rao Y, Leighow S, O'Brien EP, Gilbert L, Pritchard JR. A pan-CRISPR 

analysis of mammalian cell specificity identifies ultra-compact sgRNA subsets for 
genome-scale experiments. Nature communications 2022; 13: 625. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2023. ; https://doi.org/10.1101/2023.01.05.522885doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.05.522885
http://creativecommons.org/licenses/by-nc/4.0/


 19 

 
44 Mathieu J, Detraux D, Kuppers D, Wang Y, Cavanaugh C, Sidhu S et al. 

Folliculin regulates mTORC1/2 and WNT pathways in early human pluripotency. 
Nature communications 2019; 10: 632. 

 
45 Brabetz S, Leary SES, Grobner SN, Nakamoto MW, Seker-Cin H, Girard EJ et 

al. A biobank of patient-derived pediatric brain tumor models. Nat Med 2018; 24: 
1752-1761. 

 
46 Meyers RM, Bryan JG, McFarland JM, Weir BA, Sizemore AE, Xu H et al. 

Computational correction of copy number effect improves specificity of CRISPR-
Cas9 essentiality screens in cancer cells. Nat Genet 2017; 49: 1779-1784. 

 
47 Behan FM, Iorio F, Picco G, Goncalves E, Beaver CM, Migliardi G et al. 

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature 
2019; 568: 511-516. 

 
48 Woods DB, Vousden KH. Regulation of p53 function. Exp Cell Res 2001; 264: 

56-66. 
 
49 el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al. 

WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75: 817-825. 
 
50 He H, Sun Y. Ribosomal protein S27L is a direct p53 target that regulates 

apoptosis. Oncogene 2007; 26: 2707-2716. 
 
51 Koferle A, Schlattl A, Hormann A, Thatikonda V, Popa A, Spreitzer F et al. 

Interrogation of cancer gene dependencies reveals paralog interactions of 
autosome and sex chromosome-encoded genes. Cell Rep 2022; 39: 110636. 

 
52 Liu H, Golji J, Brodeur LK, Chung FS, Chen JT, deBeaumont RS et al. Tumor-

derived IFN triggers chronic pathway agonism and sensitivity to ADAR loss. Nat 
Med 2019; 25: 95-102. 

 
53 Mackay A, Burford A, Carvalho D, Izquierdo E, Fazal-Salom J, Taylor KR et al. 

Integrated Molecular Meta-Analysis of 1,000 Pediatric High-Grade and Diffuse 
Intrinsic Pontine Glioma. Cancer Cell 2017; 32: 520-537 e525. 

 
54 Baskin JM, Wu X, Christiano R, Oh MS, Schauder CM, Gazzerro E et al. The 

leukodystrophy protein FAM126A (hyccin) regulates PtdIns(4)P synthesis at the 
plasma membrane. Nature cell biology 2016; 18: 132-138. 

 
55 Bojjireddy N, Guzman-Hernandez ML, Reinhard NR, Jovic M, Balla T. EFR3s are 

palmitoylated plasma membrane proteins that control responsiveness to G-
protein-coupled receptors. Journal of Cell Science 2015; 128: 118. 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2023. ; https://doi.org/10.1101/2023.01.05.522885doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.05.522885
http://creativecommons.org/licenses/by-nc/4.0/


 20 

56 Baird D, Stefan C, Audhya A, Weys S, Emr SD. Assembly of the PtdIns 4-kinase 
Stt4 complex at the plasma membrane requires Ypp1 and Efr3. J Cell Biol 2008; 
183: 1061-1074. 

 
57 Kitchens DL, Snyder EY, Gottlieb DI. FGF and EGF are mitogens for 

immortalized neural progenitors. J Neurobiol 1994; 25: 797-807. 
 
58 Sawada T, Jing X, Zhang Y, Shimada E, Yokote H, Miyajima M et al. Ternary 

complex formation of EphA4, FGFR and FRS2alpha plays an important role in 
the proliferation of embryonic neural stem/progenitor cells. Genes Cells 2010; 15: 
297-311. 

 
59 Belov AA, Mohammadi M. Molecular mechanisms of fibroblast growth factor 

signaling in physiology and pathology. Cold Spring Harbor perspectives in 
biology 2013; 5. 

 
60 Plotnikov AN, Schlessinger J, Hubbard SR, Mohammadi M. Structural basis for 

FGF receptor dimerization and activation. Cell 1999; 98: 641-650. 
 
61 Mashtalir N, D'Avino AR, Michel BC, Luo J, Pan J, Otto JE et al. Modular 

Organization and Assembly of SWI/SNF Family Chromatin Remodeling 
Complexes. Cell 2018; 175: 1272-1288 e1220. 

 
62 Versteege I, Sevenet N, Lange J, Rousseau-Merck MF, Ambros P, 

Handgretinger R et al. Truncating mutations of hSNF5/INI1 in aggressive 
paediatric cancer. Nature 1998; 394: 203-206. 

 
63 Masliah-Planchon J, Bieche I, Guinebretiere JM, Bourdeaut F, Delattre O. 

SWI/SNF chromatin remodeling and human malignancies. Annu Rev Pathol 
2015; 10: 145-171. 

 
64 Tan MH, Li Q, Shanmugam R, Piskol R, Kohler J, Young AN et al. Dynamic 

landscape and regulation of RNA editing in mammals. Nature 2017; 550: 249-
254. 

 
65 Ishizuka JJ, Manguso RT, Cheruiyot CK, Bi K, Panda A, Iracheta-Vellve A et al. 

Loss of ADAR1 in tumours overcomes resistance to immune checkpoint 
blockade. Nature 2019; 565: 43-48. 

 
66 Lassman AB, Sepulveda-Sanchez JM, Cloughesy TF, Gil-Gil MJ, Puduvalli VK, 

Raizer JJ et al. Infigratinib in Patients with Recurrent Gliomas and FGFR 
Alterations: A Multicenter Phase II Study. Clin Cancer Res 2022; 28: 2270-2277. 

 
67 Brien GL, Remillard D, Shi J, Hemming ML, Chabon J, Wynne K et al. Targeted 

degradation of BRD9 reverses oncogenic gene expression in synovial sarcoma. 
eLife 2018; 7. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2023. ; https://doi.org/10.1101/2023.01.05.522885doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.05.522885
http://creativecommons.org/licenses/by-nc/4.0/


 21 

 
68 Michel BC, D'Avino AR, Cassel SH, Mashtalir N, McKenzie ZM, McBride MJ et 

al. A non-canonical SWI/SNF complex is a synthetic lethal target in cancers 
driven by BAF complex perturbation. Nat Cell Biol 2018; 20: 1410-1420. 

 
69 Theodoulou NH, Bamborough P, Bannister AJ, Becher I, Bit RA, Che KH et al. 

Discovery of I-BRD9, a Selective Cell Active Chemical Probe for Bromodomain 
Containing Protein 9 Inhibition. Journal of medicinal chemistry 2016; 59: 1425-
1439. 

 
70 Kargbo RB. SMARCA2/4 PROTAC for Targeted Protein Degradation and Cancer 

Therapy. ACS Med Chem Lett 2020; 11: 1797-1798. 
 
71 Tassinari V, Cesarini V, Tomaselli S, Ianniello Z, Silvestris DA, Ginistrelli LC et 

al. ADAR1 is a new target of METTL3 and plays a pro-oncogenic role in 
glioblastoma by an editing-independent mechanism. Genome Biol 2021; 22: 51. 

 
72 Yang B, Hu P, Lin X, Han W, Zhu L, Tan X et al. PTBP1 induces ADAR1 p110 

isoform expression through IRES-like dependent translation control and 
influences cell proliferation in gliomas. Cellular and molecular life sciences : 
CMLS 2015; 72: 4383-4397. 

 
73 Bhat KP, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, 

Hollingsworth F et al. Mesenchymal differentiation mediated by NF-kappaB 
promotes radiation resistance in glioblastoma. Cancer Cell 2013; 24: 331-346. 

 
74 Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H et al. 

Single-cell RNA-seq highlights intratumoral heterogeneity in primary 
glioblastoma. Science 2014; 344: 1396-1401. 

 
75 Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ et al. An Integrative 

Model of Cellular States, Plasticity, and Genetics for Glioblastoma. Cell 2019; 
178: 835-849 e821. 

 
76 Parrish PCR, Thomas JD, Gabel AM, Kamlapurkar S, Bradley RK, Berger AH. 

Discovery of synthetic lethal and tumor suppressor paralog pairs in the human 
genome. Cell Rep 2021; 36: 109597. 

 
77 Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, Russell R et al. 

Glioma stem cell lines expanded in adherent culture have tumor-specific 
phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 
2009; 4: 568-580. 

 
78 Zusman E, Sidorov M, Ayala A, Chang J, Singer E, Chen M et al. Tissues 

Harvested Using an Automated Surgical Approach Confirm Molecular 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2023. ; https://doi.org/10.1101/2023.01.05.522885doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.05.522885
http://creativecommons.org/licenses/by-nc/4.0/


 22 

Heterogeneity of Glioblastoma and Enhance Specimen's Translational Research 
Value. Frontiers in oncology 2019; 9: 1119. 

 
79 Singer E, Judkins J, Salomonis N, Matlaf L, Soteropoulos P, McAllister S et al. 

Reactive oxygen species-mediated therapeutic response and resistance in 
glioblastoma. Cell Death Dis 2015; 6: e1601. 

 
80 Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries 

for CRISPR screening. Nature Methods 2014; 11: 783-784. 
 
81 Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries 

for CRISPR screening. Nat Methods 2014; 11: 783-784. 
 
82 Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient 

alignment of short DNA sequences to the human genome. Genome Biology 
2009; 10: R25. 

 
83 Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for 

differential expression analysis of digital gene expression data. Bioinformatics 
(Oxford, England) 2010; 26: 139-140. 

 
84 Hart T, Chandrashekhar M, Aregger M, Durocher D, Angers S, Moffat J et al. 

High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific 
Cancer Liabilities Screens Reveal Fitness Genes. Cell 2015: 1-12. 

 
85 Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S et al. STAR: 

ultrafast universal RNA-seq aligner. Bioinformatics (Oxford, England) 2013; 29: 
15-21. 

 
86 Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-

throughput sequencing data. Bioinformatics (Oxford, England) 2015; 31: 166-
169. 

 
87 Wickham H, Sievert C, Springer International Publishing AG. ggplot2 : elegant 

graphics for data analysis, 2016. 
 
88 Kolde R. pheatmap: Pretty Heatmaps. R package version 1.0.10. https://CRANR-

projectorg/package=pheatmap 2018. 
 
89 Ijaz H, Koptyra M, Gaonkar KS, Rokita JL, Baubet VP, Tauhid L et al. Pediatric 

high-grade glioma resources from the Children's Brain Tumor Tissue Consortium. 
Neuro Oncol 2020; 22: 163-165. 

 
90 Zhao Z, Zhang KN, Wang Q, Li G, Zeng F, Zhang Y et al. Chinese Glioma 

Genome Atlas (CGGA): A Comprehensive Resource with Functional Genomic 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2023. ; https://doi.org/10.1101/2023.01.05.522885doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.05.522885
http://creativecommons.org/licenses/by-nc/4.0/


 23 

Data from Chinese Glioma Patients. Genomics Proteomics Bioinformatics 2021; 
19: 1-12. 

 
91 Consortium GT. The GTEx Consortium atlas of genetic regulatory effects across 

human tissues. Science 2020; 369: 1318-1330. 
 
92 Cancer Genome Atlas Research Network. Comprehensive genomic 

characterization defines human glioblastoma genes and core pathways. Nature 
2008; 455: 1061-1068. 

 
93 Petralia F, Tignor N, Reva B, Koptyra M, Chowdhury S, Rykunov D et al. 

Integrated Proteogenomic Characterization across Major Histological Types of 
Pediatric Brain Cancer. Cell 2020; 183: 1962-1985 e1931. 

 
94 Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list 

enrichment analysis and candidate gene prioritization. Nucleic Acids Res 
(Research Support, N.I.H., Extramural) 2009; 37: W305-311. 

 
 
  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2023. ; https://doi.org/10.1101/2023.01.05.522885doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.05.522885
http://creativecommons.org/licenses/by-nc/4.0/


 24 

Figure 1: Functional genomic retest lethality screens in adult and pediatric brain 
tumor isolates.  
(A) Overview of functional genomic screens and data integration.  
(B) and (C) Comparisons of scoring screen hits between GBM isolates and non-GBM 
pediatric brain tumor isolates.  
(D) Comparison of screen data with GBM-enriched cell line screen hits from 
depmap.org.  
(E) Dendrogram analysis of gene expression analysis for adult and pediatric brain tumor 
isolates used in comprehensive retest screens used for this study.  Figure S1 show 
principal component analysis for these same data.  Full RNA-seq data are available in 
Table S2. 
(F) Dendrogram analysis of screen results for adult and pediatric brain tumor isolates 
used in comprehensive retest screens used for this study.  Figure S1 show principal 
component analysis for these same data. Full screen results are available in Table S1.  
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Figure 2: Integration of brain tumor screen data with functional genomic datasets 
from cancer cell lines.  
(A) Overview of machine learning models used to generate brain tumor screen hit 
networks and predictive features.  
(B) Proportions of predicted interactions feature prediction ad screen hits. 
(C) Overlap of common essential genes defined by cell line data or (F) pediatric cancer 
dependencies from Dharia et al., 2021 (scoring in >2% of isolates) with all nodes 
appearing in network models and 280 validating genes scoring in 1 or more brain tumor 
isolate.  
(D) Examples of first neighbor networks from Table S3.  Networks are centered on 
primary screen targets: central node (oval, black boarders).  Other screen hits are also 
shown as oval nodes with black boarders. 
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Figure 3: EFR3B expression predicts EFR3A requirement.  
(A) First neighbors network for EFR3A predicting that EFR3B expressing predicts 
requirement for EFR3A (key is same as Figure 2).   
(B) Cartoon of EFR3A/B adaptor function.  
(C) Expression of EFR3B from RNA-seq data (n=3) (NSC = neural stem cell).  
(D) Relative cell viability (normalized to targeting control sgCD8A) for cells nucleofected 
with CRISPR RNPs targeting EFR3A, EFR3B, or both. GSC-0131 are compared to 
GSC-0131 that were transduced with a lentiviral construct expressing EFR3B. HEATR1 
is an essential control gene. sgNTC = non-targeting control sgRNA. Measured at 9 days 
post nucleofection. 
(E) Cell line functional genomic screening data showing EFR3A dependency score vs. 
EFR3B expression. Each dot represents a cell line. Dotted blue line shows linear 
regression fit.  
(F) & (G) UMAP projections of “bulk” gene expression data from brain tissue and tumor 
samples.  
(F) UMAP projection of gene expression showing sample source.  Tumors and tissue 
samples colored by study. CBTN= Children’s brain tumor network; CGGA= Chinese 
Glioma Genome Atlas (adult); GTEX= The Genotype-Tissue Expression Project; HGG= 
High grade glioma (adult); LGG= Low grade glioma (adult); TCGA = The Cancer 
Genome Atlas. Tumor type break down can be found in Supplementary Figure S3.  
(G) UMAP projection of gene expression for EFR3B for (F). Scale bar is Log2(TPM+1). 
A key for all tumors in this plot is available in Figure S3 and Table S4. 
*indicates p<.01, student’s t-test. 
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Figure 4: FGF2 expression predicts FGFR1 requirement. 
(A) Retest results of 3 FGFR1 sgRNAs that score differentially in ATRT and DIPG 
isolates.  Controls include an sgRNA targeting olfactory receptor gene OR10A2 (non-
essential), a non-targeting control (NTC), and one targeting RPL39, a common essential 
gene.   
(B) First neighbors network for FGFR1, where FGF2 expression predicts requirement 
for FGFR1 (key is same as Figure 2).   
(C-E) Data derived from Broad and Sanger cell line screens.   
(C) Sensitivity to FGFR1 loss defined by CERES score (<-0.5 = sensitivity; >-0.2 = 
insensitivity).  
(D) FGF2 expression in units of log2 transcript count per million (TPM) for FGFR1 
sensitive and insensitive cell lines. Mann Whitney U test was used to test significance. 
*indicates p<.001.  
(E) FGF2 expression in units of log2 TPM versus FGFR1 CERES score for all Sanger 
and Broad cell lines.  Lines with CERES score <-0.5 are highlighted.  
(F) Comparisons of CERES scores for cell lines with FGFR1 mutations, FGFR1 wt, 
FGF2 expression >3 log2TPM, and FGF2 expression >5 log2TPM. Mann Whitney U 
test was used to test significance. *indicates p<.001.  
(G) FGF2 expression from patient-derived orthotopic xenograft (PDOX) models of 
pediatric brain tumors (Brabetz et al., 2018).   
(H) UMAP projections of gene expression data for FGF2 from brain tissue and tumor 
samples. Key for samples is same as Figures 3F and S3.  Scale bar is Log2(TPM+1). 
(I) Gene expression analysis of FGF2 adult and pediatric brain tumors and normal brain 
tissues from CBTN, CGGA, GTEX, and TCGA databases. Tumor lists and statistical 
test data are available in Table S4.  *indicates p<.001. Green indicates significant 
reduction in expression.  
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Figure 5: Examination of SMARCC2 requirement. 
(A) First neighbors network for ARID1A revealed associations with ARID1B, SMARCC2, 
and also SMARCB1. 
(B) Retest results showing SMARCB1 deleted/mutated ATRT isolates specifically 
require SMARCC2. Controls include an sgRNA targeting olfactory receptor gene 
OR10A2 (non-essential), a non-targeting control (NTC), and one targeting RPL39, a 
common essential gene.  
(C) Comparisons of gene effect scores among SWI/SNF subunits found in (A). 
*indicates p<.001, Mann Whitney U test, where gene effect scores for shown gene are 
compared to SMARCC2 scores.  
(D) A UMAP projection of SMARCB1 expression in adult and pediatric brain tumors. 
Key is available in Figure S3 and Table S4.  Scale bar is Log2(TPM+1). 
(E) Gene expression analysis of SMARCB1 in adult and pediatric brain tumors and 
normal brain tissues from CBTN, CGGA, GTEX, and TCGA databases. Tumor lists and 
statistical test data are available in Table S4.  *indicates p<.001. 
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Figure 6: Validation of ADAR requirement in adult and pediatric brain tumor 
isolates.  
(A) Mini-network of top gene co-dependency and gene expression correlations for the 
GSC-0131-specific screen hit ADAR. Blue expression edges indicate that expression of 
the gene to which ADAR is connected correlates with ADAR dependency score. 
(B) Heatmap of gene expression analysis of screened brain tumor isolates for a 38-
gene IFN-stimulation signature (from [52]).  IFN signature among pediatric brain tumor 
isolates is available in Figure S5. 
(C) Western blot showing MX1 protein expression in brain tumor isolates screened. 
Additional examples are shown in Figure S6.   
(D) Comparison of MX1 and ISG15 expression in pediatric brain cancers (expression of 
both are associated with ADAR requirement in (A)).  Additional MX1 expression in brain 
tumors can be found in Figure S5.  
(E) Pathway and transcription binding factor analysis of top 200 genes positively 
correlated with MX1 expression among pediatric cancers shown in (D) from  [93]. 
Analysis was performed using ToppGene [94].  
(F) Relative cell viability (normalized to targeting control sgCD8A) for lines nucleofected 
with CRISPR RNPs targeting ADAR. HEATR1 is an essential control gene. sgNTC = 
non-targeting control sgRNA. Measured at 10 days post nucleofection (n=3; *pval.<.01 
Student's t-test). 
(G) Immunofluorescence for dsRNA of pediatric isolates EPD-210 (MX1 expressed; 
ADAR sensitive) and GBM-110 (MX1 negative). 
(H) Survival of mice with EPD-210 tumors with control sgRNA or sgADAR.   
Log-rank (Mantel-Cox) test was used to evaluate significance (n=8 for each arm).  
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