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Abstract: Burkholderia is an important bacterial species which has different beneficial effects, such as
promoting the plant growth, including rhizosphere competence for the secretion of allelochemicals,
production of antibiotics, and siderophores. In addition, most of Burkholderia species have demon-
strated promising biocontrol action against different phytopathogens for diverse crops. In particular,
Burkholderia demonstrates significant biotechnological potential as a source of novel antibiotics and
bioactive secondary metabolites. The current review is concerned with Burkholderia spp. covering the
following aspects: discovering, classification, distribution, plant growth promoting effect, and antimi-
crobial activity of different species of Burkholderia, shedding light on the most important secondary
metabolites, their pathogenic effects, and biochemical characterization of some important species of
Burkholderia, such as B. cepacia, B. andropogonis, B. plantarii, B. rhizoxinica, B. glumae, B. caryophylli and
B. gladioli.

Keywords: secondary metabolites; plant diseases; human and animal pathogens; plant growth
promoting; biological control

1. Genus Burkholderia
1.1. Discovering, Classification and Distribution

In 1942, Burkholder described one of the first Burkholderia species, Phytomonas caryophylli [1],
later known as Pseudomonas caryophylli. In 1949, Burkholder also described another bac-
terium that caused rot in onion bulbs, as reported by vegetable growers in New York
State in the mid-1940s, and gave it the species name ‘cepacia’, which was later known
as Pseudomonas cepacia [2]. Burkholderia spp. was included for many years in the genus
Pseudomonas due to broad and vague phenotypic characteristics [3]. However, rRNA–DNA
hybridization analyses during the early 1970s indicated considerable genetic diversity
among members of this genus which was divided into five rRNA homology groups [4].
Subsequent genotypic analyses have confirmed that these five groups are only distantly
related to each other. Consequently, Pseudomonas was restricted to homology group I
containing the type species Pseudomonas aeruginosa [5]. In 1992, the seven species belonging
to rRNA homology group II (Pseudomonas solanacearum, P. pickettii, P. cepacia, P. gladioli,
P. mallei, P. pseudomallei and P. caryophylli) were transferred to the novel genus Burkholde-
ria [6]. The members of genus Burkholderia have a broad distribution occurring commonly
in soil, water, in symbiosis with plants and fungi and in association with animals and
humans [7,8]. Burkholderia are motile and gram negative (G-ve) rods that may be straight
or slightly curved. They are aerobic, catalase positive, urease positive, non-spore formers
and non-lactose fermenting [9].

PCR can be used to distinguish between the different Burkholderia species. The ribo-
somal RNA gene is highly conserved and universally distributed in all living things, and
therefore the difference in the DNA sequences between 16S and 23S rRNA genes can be
used to differentiate between different species [10].
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1.2. Species of Burkholderia

The genus Burkholderia contains about 35 validly named species (Table 1): B. alpina,
B. ambifaria, B. andropogonis, B. anthina, B. arboris, B. caryophylli, B. cenocepacia, B. cepacia,
B. contaminans, B. diffusa, B. dolosa, B. gladioli, B. glumae, B. humptydooensis, B. lata, B. latens,
B. mallei, B. metallica, B. multivorans, B. oklahomensis, B. plantarii, B. pseudomallei, B. pseudomul-
tivorans, B. puraquae, B. pyrrocinia, B. rhizoxinica, B. seminalis, B. singaporensis, B. singularis,
B. stabilis, B. stagnalis, B. territorii, B. thailandensis, B. ubonensis and B. vietnamiensis [11].
Figure 1 presents the phylogenetic tree based on the gene sequence of 16S rRNA, show-
ing the position species included in the genus Burkholderia as reported by Coenye and
Vandamme [12].

Table 1. List of species of Burkholderia mentioned in the current review.

Species of Burkholderia Author Year of Description Disease Host

1 B. alpina Weber and King 2017 - -
2 B. ambifaria Coenye et al. 2001 belongs to B. cepacia complex
3 B. andropogonis Smith (Gillis et al.) 1911, 1995 bacterial leaf stripe sorghum and corn
4 B. anthina Vandamme et al. 2002 belongs to B. cepacia complex
5 B. arboris Vanlaere et al. 2008 belongs to B. cepacia complex

6 B. caryophylli Burkholder (Yabuuchi
et al.) 1942, 1993 wilt, stem cracking and rot of

stems and roots carnation

7 B. cenocepacia Vandamme et al. 2003 cystic fibrosis humans

8 B. cepacia Palleroni and Holmes
(Yabuuchi et al.) 1981, 1993 cystic fibrosis

soft-rotting
humans
onion

9 B. contaminans Vanlaere et al. 2009 belongs to B. cepacia complex
10 B. diffusa Vanlaere et al. 2008 belongs to B. cepacia complex
11 B. dolosa Vermis et al. 2004 belongs to B. cepacia complex

12 B. gladioli Severini (Yabuuchi
et al.) 1931, 1993

a. Scabdisease
b. severe pulmonary infections
c. soft rot

- gladiolus corms
- humans
- mushroom

13 B. glumae Kurita and Tabei
(Urakami et al.) 1967, 1994 panicle blight rice

14 B. humptydooensis Vanlaere et al. 2009 melioidosis disease humans and
animals

15 B. lata Vanlaere et al. 2009 belongs to B. cepacia complex
16 B. latens Vanlaere et al. 2008 belongs to B. cepacia complex
17 B. mallei Zopf (Yabuuchi et al.) 1885, 1993 glanders disease animals
18 B. metallica Vanlaere et al. 2008 belongs to B. cepacia complex
19 B. multivorans Vandamme et al. 1997 belongs to B. cepacia complex
20 B. oklahomensis Glass et al. 2006 melioidosis humans

21 B. plantarii Azegami et al.
(Urakami et al.) 1987, 1994 seedling blight rice

22 B. pseudomallei Whitmore (Yabuuchi
et al.) 1913, 1993 melioidosis disease humans and

animals
23 B. pseudomultivorans Peeters et al. 2014 belongs to B. cepacia complex
24 B. puraquae Martina et al. 2018 belongs to B. cepacia complex

25 B. pyrrocinia
Imanaka et al.
(Vandamme et al.),
(Storms et al.)

1965, 1997, 2004 cystic fibrosis humans

26 B. rhizoxinica Partida-Martinez et al. 2007 rice seedling blight, associated
with Rhizopus microsporus rice

27 B. seminalis Vanlaere et al. 2008 belongs to B. cepacia complex
28 B. singaporensis Wang et al. 2003 - -
29 B. singularis Vandamme et al. 2017 respiratory system disease humans
30 B. stabilis Vandamme et al. 2000 belongs to B. cepacia complex
31 B. stagnalis De Smet et al. 2015 B. stagnalis
32 B. territorii De Smet et al. 2015 belongs to B. cepacia complex



Metabolites 2021, 11, 321 3 of 17

Table 1. Cont.

Species of Burkholderia Author Year of Description Disease Host

33 B. thailandensis Brett et al. 1998 melioidosis disease humans and
animals

34 B. ubonensis Yabuuchi et al. 2000 - -
35 B. vietnamiensis Gillis et al. 1995 cystic fibrosis humans

Figure 1. Phylogenetic tree of genus Burkholderia based on 16S rRNA gene sequence. This phylogenetic tree is in agree with
Coenye and Vandamme [12].

2. Plant Growth Promoting Effect of Burkholderia Spp.

Burkholderia spp. involve diverse mechanisms of action for promoting the plant
growth, including rhizosphere competence for secretion of allelochemicals, production
of antibiotics and siderophores such as iron chelating compounds [13–15]. Ornibactins is
considered the predominant siderophores produced by Burkholderia spp. [16].

Pandey et al. [17] reported that the plant growth promoting activity of MSSP strain
of genus Burkholderia was determined by some factors such as: 1-aminocyclopropane-1-
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carboxylic acid deaminase production [18], nitrogen fixation, phosphate solubilization,
production of indol acetic acid (IAA), siderophores, and hydrogen cyanide (HCN) [17].
In addition, the same strain showed also an antagonistic activity against different phy-
topathogens [19].

Karakurt and Aslantas [20] reported that the application of B. gladioli increased the
annual shoot diameter of some apple cultivars. Burkholderia spp. strain PsJN is considered
an effective plant growth-promoting bacterium since it promotes the growth of potatoes,
vegetables and grapevines by producing a high level of 1-aminocyclopropane-1-carboxylic
acid deaminase which able to reduce the level of inhibitory hormone ethylene [21]. In
addition, Compant et al. [15] studied the growth promoting effect of Burkholderia sp.
strain PsJN on Vitis vinifera and concluded that all inoculated plants with this strain have
performed better than those non-bacterized and the relative fresh weights of roots and
aerial parts were significantly increased compared to the non-bacterized plants.

Karakurt and Aslantas [20] evaluated the effects of some different strains of B. gladioli
on the growth and the leaf nutrient content of Starking Delicious, Granny Smith, Starkrim-
son Delicious, Starkspur Golden Delicious and Golden Delicious apple cultivars grafted
on semi-dwarf rootstock and observed an increase of leaf number and area as well as the
number of annual shoots and their diameters. Furthermore, the latter authors also reported
that the application of B. gladioli has increased the manganese content and did not affect
the concentration of sodium and calcium in the leaves [20].

3. Use of Burkholderia Spp. as Biocontrol Agent

Most of Burkholderia species can be used potentially as biocontrol agents against
phytopathogenic fungi, bacteria, protozoa and nematodes in many different crops such
as: corn, sweet corn, cotton, grapevine, pea, tomato and pepper [22,23]. On the other
hand, some Burkholderia species were commercialized and effectively used as biocontrol
agents in agriculture [24]. Recently, many researchers have conducted different studies for
evaluating the antagonistic effect of Burkholderia spp. for controlling plant diseases since
these bacteria are known as producer of many bioactive metabolites such as bacteriocins,
alkaloids, lipopeptides and polypeptide [25].

In particular, Holmes et al. [26] studied the capacity of B. cepacia in degradation of chlo-
rinated aromatic substrates in certain synthetic pesticides. Some other strains of Burkholderia
produce enzymes able to degrade non-nutritive substrates, such as trichloroethylene (TCE),
a major ground water contaminant used in the dry cleaning industry and in degreasing sol-
vents [27]. Other species such as B. bryophila and B. megapolitana showed antifungal activity
against some phytopathogens as well as plant growth-promoting properties [28]. Another
study has been conducted by Barka et al. [21] reported that strain PsJN of Burkholderia has
showed a biocontrol effect against Botrytis cinerea and proved also its growth promoting
effect on the grapevine [21].

In addition, several strains of B. gladioli showed an effective in vitro antagonistic ac-
tivity against a wide range of fungal and bacterial species [29–31]. The above-mentioned
species could completely inhibit the conidial germination of Penicillium digitatum and Botry-
tis cinerea, as reported by Walker et al. [32]. In addition, the metabolites produced by B. glad-
ioli caused a significant inhibition of Penicillium expansum, as reported by Elshafie et al. [29].
Apparently, a growth suppression of some pathogenic fungi by B. gladioli strains was more
efficient when the bacterial cultures were used than the culture filtrates and this verified
the synergic effect of several bioactive substances [29]. However, the antagonizing activity
of B. gladioli explained by the combination between competition for nutrients, space and
production of antifungal metabolites [30].

Several recent studies showed antimicrobial activity of B. gladioli pv. agaricicola against
some serious phytopathogens [29–34]. In particular, the pathovar agaricicola showed antag-
onizing activity against wide range of important phytopathogenic fungi, including Botrytis
cinerea, Aspergillus flavus, Aspergillus niger, Penicillium digitatum, Penicillium expansum, Scle-
rotinia sclerotiorum and Phytophthora cactorum [29]. In the same context, Elshafie et al. [30]
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reported that four studied strains of B. gladioli pv. agaricicola (ICMP: 11096, 11097, 12220 and
12322) have exerted antifungal activity against above mentioned phytopathogenic fungi by
producing diffusible metabolites and extracellular hydrolytic enzymes. The same authors
have attributed this bioactivity to the production of two bioactive fatty acids identified as
methyl stearate and ethanol 2-butoxy phosphate with mass spectrum m/e 298 and 398,
respectively [30].

Another recent study reported that the application of B. gladioli pv. agaricicola strain
ICMP 12322 was able to enhance the disease protection and improve the consistency of
biological control against tomato-wilt disease caused by Verticillium dahliae [34].

4. Induction of Plant Systemic Resistance (ISR)

The microbial community in soil can play a vital role in stimulation the plant growth
and also can suppress the deleterious effect of other soil microorganisms [35]. In particular,
Rhizobacteria can reduce the activity of pathogenic microorganisms not only through the
microbial antagonism, but also by inducing the plant to defend itself. This phenomenon,
named “induced systemic resistance” (ISR), was first described by Van Peer et al. [36].
ISR can be triggered by some specific strains of plant growth promoting bacteria (PGPB)
through the production of some plant signaling molecules [37].

Some endophytic bacterial strains belonging to the genus Burkholderia and Bacillus
are considered effective biological control agents [38]. The beneficial effects of Burkholderia
spp. in agricultural could be explained by induction of plant resistance against abiotic
stresses through ISR and others mechanisms [23]. B. phytofirmans strain PsJN-grapevine
interaction, a host defense reaction coinciding with phenolic compounds accumulation
and strengthening of cell walls in the exodermis and in several cortical cell layers [39].
Sharma and Nowak [40] and Bordiec et al. [41] reported the biocontrol effect of strain PsJN
against Verticillium dahliae and Botrytis cinerea, the causal agents of wilt disease and grey
mould, respectively.

5. Burkholderia’ Diseases on Human and Animals

Several species of Burkholderia have been reported as rich of virulence factors such as:
presence of a flagella, reactive oxygen species resistance and resistance to several antimi-
crobial drugs [42]. These above mentioned traits of Burkholderia enable them to be adapted
perfectly in their different ecological niches [42]. Many species of Burkholderia are known as
phytopathogens [43,44] however there are other species belong to Burkholderia have demon-
strated some opportunistic infection to animal and human. In particular, B. pseudomallei
and B. mallei were considered as pathogens for animals and humans and they are both
resistant to a number of antibiotics [45]. B. mallei is responsible for glanders disease, which
mostly affected animals, such as horses, mules, donkeys and rarely humans [46]. Whereas,
B. pseudomallei is the causal agent of melioidosis, the disease in tropical countries [47].
On the other hand, B. cepacia complex (Bcc) has a natural occurrence in the environment
and has both beneficial and detrimental effects on plants, however it is considered an
opportunistic human pathogen. Bcc causes severe lung infections in cystic fibrosis patients
and it is often resistant to common antibiotics and able to degrade natural and man-made
pollutants [48–50].

6. Microbial Secondary Metabolites

Most of living organisms, such as invertebrates, plants and microorganisms, are lack-
ing the immune system, hence they have developed the capacity to produce bioactive
secondary metabolites including some toxic substances against other harmful microorgan-
isms. These natural products act as specific defense systems against other organisms [51,52].
Secondary metabolites are compounds that are not required for the growth or reproduction
but play a vital role in inhibiting the growth of harmful organisms with which they compete
and can also inhibit their biologically important processes [53].
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Microbial secondary metabolites (MSM) are the most promising source of novel
natural products; hence their discovery and characterization are the objective of many
researches for controlling important phyto- and human pathogens [53–55].

In addition, MSM are low-molecular-mass products of secondary metabolism, usually
produced during the late growth phase of microorganisms and their production arises from
intracellular intermediates (amino acids, sugars, fatty acids, etc.). MSM are very important
for the human health and economics of our society [53,54].

There are thousands of important known MSM, among them penicillin, which was
discovered in 1940, obtained from Penicillium moulds, such as P. chrysogenum and P. rubens,
which began the era of antibiotics. The penicillin has been recognized as one of the greatest
advances in therapeutic medicine [56].

Aspergillus terreus has been reported to produce biological drugs known as statins. The
statins are class of drugs that inhibit HMG-CoA reductase and lead to lower cholesterol
level [57]. On the other hand, a new substance named lovastatin, with a similar structure
of statin, has been extracted from Monascus purpureus and Monascus ruber [58].

6.1. Secondary Metabolites Produced by Genus Burkholderia

Bacterial secondary metabolites (BSM) are considered one of the most promising
sources among the novel bioactive pharmaceutical compounds. In particular, Actinobacteria
are considered the major source of bioactive BSM, such as different antibiotics, which
usually used for human being and animals [59]. Generally, the majority of discovered
antimicrobials substances have been isolated from Actinomycetes especially from genus
Streptomyces Waksman and Henrici. Among the most important common antibiotics:
tetracycline and aminoglycoside or glycopeptide [60].

Several Burkholderia species, considered as beneficial bacteria in the natural environ-
ment, have the ability to produce compounds with antimicrobial activity [61] and can
be used as biocontrol agents for phytopathogenic fungi and able to inhibit the growth of
other bacteria, protozoa and nematodes in many different crops, such as corn, sweet corn,
cotton, grapevine, pea, tomato, and pepper [22]. In general, Burkholderia demonstrate sig-
nificant biotechnological potential as a source of novel antibiotics and bioactive secondary
metabolites [62,63].

In particular, genus Burkholderia showed high ability to produce several extracellular
hydrolytic enzymes such as chitinase, protease, cellulase, amylase and glucanase [64],
which may have important applications in both pharmaceutical industry [29,65]. On
the other hand, genus Burkholderia produced also a wide range of secondary metabolites
such as pyrrolnitrin, phenazine, cepabactin, and other bioactive diffusible and volatile
compounds [34,66–69].

In the current review, the most important species of genus Burkholderia were reported
as following: B. cepacia Palleroni and Holmes (Yabuuchi et al.), B. andropogonis Smith
(Gillis et al.), B. plantarii Azegami et al. (Urakami et al.), B. rhizoxinica Partida-Martinez et al.,
B. glumae Kurita and Tabei (Urakami et al.), B. caryophylli Burkholder (Yabuuchi et al.), and
B. gladioli Severini (Yabuuchi et al.).

6.1.1. Burkholderia cepacia

B. cepacia produces a bioactive compound called 3-chloro-4- (2′nitro-3′cloro-phenyl)
pyrrole pyrrolnitrin [25,70] (Figure 2A) which showed antimicrobial activity against some
pathogenic fungi, yeast and Gram-positive (G+ve) bacteria as reported by Arima et al. [71,72].
Arima et al. [71] reported the molecular formula of pyrrolnitrin C10H6O2N2Cl2 and ob-
served that this compound is a pale-yellow crystal and can loss its bioactivity if exposed to
sun light or acidic conditions. Pyrrolnitrin is well solubilized in different organic solvents
such as methanol, ethanol, butanol, acetone, ethyl acetate, etc., whereas it is slightly solubi-
lized in water [71]. Rahman et al. [70] reported that the antifungal activity of B. cepacia is
due to the chemical toxicity nature of pyrrolnitrin, which can penetrate the cell membrane
and leads to the protoplasmic dissolution and disintegration and finally inhibit the cell
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growth. On the other hand, the same authors explained that the vacuolar appearance of
the mycelium may be due to the antibiotic metabolites [70].

Figure 2. Secondary metabolites produced by Burkholderia cepacia. Where (A) 3-chloro-4-(2′nitro-
3′cloro-phenyl) pyrrole pyrolnitrin and (B) Cepacidine A.

Another important antifungal compound produced by B. cepacia is called cepacidine
A (Figure 2B) [73] which demonstrated a strong activity against Trichophyton spp. and
Epidermophyton spp. Cepacidine A consists of two closely related compounds, cepacidin
A1 and A2, with molecular weights of 270.29 Da and 286.29 Da, respectively, in a ratio
9:1. Furthermore, Parker et al. [74] discovered cepacina A and B, two important bioactive
compounds, produced by B. cepacia which were able to inhibit the growth of Staphylococcus
spp. and some G-ve bacteria. In particular, cepacina B is significantly more active than
cepacina A against both G+ve and G-ve [74], whereas both compounds are slightly active
against streptococci bacteria. On the other hand, Santos-Villalobos et al. [75] found that
siderophores, volatile metabolites produced by B. cepacia, were able to control the growth
of Colletotrichum gloeosporioides.

6.1.2. Burkholderia andropogonis

B. andropogonis was first described by Smith [76] as the causal agent of stripe disease
of sorghum [77]. It was named before as Pseudomonas andropogonis and then transferred
to genus Burkholderia by Gillis et al. [78]. B. andropogonis has been reported also to cause
bacterial stripe disease sudangrass, teosinte, johnsongrass, field corn, broomcorn, and
sweet corn [79].

This bacterium produces amino enol ether rhizobitoxine which is responsible for
the chlorosis of soybean [80]. The structure of rhizobitoxine, illustrated in Figure 3, was
identified by Owens et al. [81]. Rhizobitoxine, with a molecular weight of 190 Da, was able
to inhibit the ethylene biosynthesis in apple tissues [82] and reduce the defense reaction
by the host plants [83]. The capacity of rhizobitoxine to inhibit the ethylene production
may enhance the nodulation and competitiveness in Macroptilium atropurpureum and
Vigna radiata [84]. Yasuta et al. [85] reported that rhizobitoxine has significantly inhibited
1-aminocyclopropane-1-carboxylate synthase bLE-ACS2 from tomato, which considered
the key enzyme in the pathway of ethylene biosynthesis.

Furthermore, Sugawara et al. [83] explained that rhizobitoxine has strongly inhibited
the enzyme [1-aminocyclopropane-1-carboxylate (ACC) synthase] in the ethylene biosyn-
thesis pathway which would explain the early observation of rhizobitoxine inhibition of
ethylene evolution in apple tissues. On the other hand, Sugawara et al. [83] reported also
the positive role of rhizobitoxine in the symbiosis between Bradyrhizobium elkanii strains
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and their host legumes. The latter coauthors also reported that rhizobitoxine, as an analog
of cystathionine, can irreversibly inhibit β-cystathionase in bacteria and plants.

Figure 3. Chemical structure of rhizobitoxine.

6.1.3. Burkholderia plantarii

The name of this species derived from the Latin word plantarium (seedbed). B. plantarii
is responsible for root rot, seedling blight, chlorosis and reduction of root growth of rice [86].
B. plantarii was found to be distributed on the weeds in fields and in seed stored at room
temperature and it was often isolated in association with B. glumae indicating that these
two species may have similar transmission path and life cycle [86].

B. plantarii produces a compound called tropolone with molecular weight of 122 Da,
which has phenolic and acidic characteristics with antimicrobial activity and phytotoxic
effect on rice. Tropolone, identified in 1945, is a non-benzenoid aromatic compound and
has similar characteristics of phenols and acids [86]. Trust [87] reported that tropolone
showed bacteriostatic and bactericidal effect against wide range of bacterial species such
as Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi and Serratia
marcescens. The mechanism of the biological activity of this compound is based mainly on
its ability to penetrate the plasma membrane and cell wall of microbes and increasing the
cell permeability and leads to cell lysis and subsequent loss of cell contents after rupture of
the bleb [87]. Azegami et al. [86] observed that the mere addition of iron to the MA broth
culture media has greatly enhanced the growth of P. plantarii. However, the mere addition
of ferric chloride has markedly reduced the amount of dissolved tropolone [86].

Furthermore, this bacterium produces another two bioactive compounds identified
as: 2-methylene-3-imino-5-L (carboxy-L-valine)-pyrrolidine and 2-methylene-3-imino-5-L
(carboxy -L-treoninil)-pyrrolidine with molecular weights of 242.11 Da and 240.13 Da,
respectively [88]. Mitchell and Katrina [88] reported that the last two compounds are
amino acid conjugates to a new iminopyrrolidine carboxylic acid structure and this is in
keeping with the amino acid conjugation characteristic related to many natural compounds
that exhibited biological activity [88]. The last two bioactive compounds are able to inhibit
Erwinia aylovora, which is responsible for fire blight disease of pome fruit, especially for
apple and pear trees [88]. Moreover, B. plantarii strain DSM 9509 produces extracellular
rhamnolipids when grown in glucose supplemented rich medium [89]. Rhamnolipids have
been used in different applications as detergents and in the pharmaceutical industry [89].

6.1.4. Burkholderia rhizoxinica

The specific name of this species refers to its ability to produce the rhizoxin antibi-
otic (Figure 4) [90,91]. B. rhizoxinica is able to grow under aerobic and microaerophilic
conditions, but not in an anaerobic atmosphere containing CO2 [91]. Recently, it has been
reclassified as Paraburkholderia rhizoxinica Partida-Martinez (Sawana) [92]. B. rhizoxinica is
an intracellular symbiont endophytic and was isolated from the phytopathogenic fungus
Rhizopus microsporus, a common pathogen for food and feed stuff which causes rice seedling
blight [93–95]. B. rhizoxinica is now associated with the ability of Rhizopus to cause rice
seedling blight [96]. Rhizoxin is an important virulence factor for infection of plants and
has phytotoxic, antifungal and anticancer activities [91,96,97].
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Figure 4. Chemical structure of rhizoxin.

Some clinical isolates of B. rhizoxinica might have the capacity to produce cytotoxic
polyketides [98], which could aggravate the human infection due to its anti-mitotic activity
in mammalian cells [91,94].

6.1.5. Burkholderia glumae

B. glumae, the causal agent of bacterial grain rot and seedling rot of rice, was isolated
from hot and high relative humid areas [99]. B. glumae was first reported in Japan, but later
it was distributed in different countries producing rice such as: Japan, Thailand, Vietnam,
South Korea, Malaysia, Philippines, Sri Lanka, United States, Panama, Nicaragua, Costa
Rica, and Colombia [100]. The incidence of B. glumae has been increased recently due
to climate changes, as well as the deficiency of appropriate management and biocontrol
strategies [100].

B. glumae produces a range of secondary metabolites and lipase on agar media. In
particular, antibiotic production is stimulated by some substrates presented in agar such as
K+, Ca2+, Mg2+ and NH4+. Among the active metabolites produced by this bacterium is
toxoflavin (Figure 5), which plays a role in pathogenicity of this bacterium and is involved
in the rice grain rot [101].

Figure 5. Chemical structure of toxoflavin.

Toxoflavin is a bright yellow color and is highly toxic to plants, fungi, animals and
microorganisms [102]. In addition, the toxicity of toxoflavin to plants has led to severe
losses in rice crops around the world [102]. The production of this molecule is influ-
enced by temperature whereas the maximum suitable temperature is at 37 ◦C [103]. Lee
et al. [102] reported also that the toxoflavin biosynthesis process is regulated by QS mech-
anism depending on the homoserine lactone synthesized by cognate receptors TofI and
TofR, through the activation of ToxJ and ToxR as transcriptional regulators of toxoflavin
biosynthesis.

6.1.6. Burkholderia caryophylli

B. caryophylli, a parasitic endophyte infecting vascular plants, was previously classified
as Pseudomonas caryophylli (Burkholder) Starr & Burkholder, is the causal agent of wilt stem
cracking and a progressive rot of stems and roots of carnation [104]. It used to be a major
problem in carnation production in the USA [105]. B. caryophylli is a soil borne bacterium
that overwinters in the rhizosphere of soil forming close interactions with the host plant
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and soil itself. This species can survive in infected host debris and can infect many different
species of the dianthus plant [106].

B. caryophylli produces caryoynencine toxin with molecular weight of 280.31 Da [104].
Caryoynencines are unstable C18 carboxylic acids with conjugated dienetetrayne and poly-
merize structures [107]. On the other hand, caryoynencine showed potent antimicrobial ac-
tivity against G+ve and G-ve bacteria especially against the growth of methicillin-resistant
Staphylococcus aureus (MESA) [107]. In addition, some analogs of caryoynencine exhibited a
broad spectra of activity against the following pathogenic fungi: Tricophyton mentagrophytes,
T. interdigitale and T. rubrum which are the causal agents of onychomycosis and tinea pedis
in humans [107].

6.1.7. Burkholderia gladioli

B. gladioli is an aerobic G-ve rod-shaped bacterium that may cause disease in human,
plants and mushrooms [108]. This species is included in phylum Proteobacteria; class
Betaproteobacteria; order Burkholderiales; family Burkholderiaceae and genus Burkholderia.
B. gladioli can be distinguished from the other Burkholderia species because it is oxidase
negative [108].

B. gladioli was initially identified in gladiolus and successively, associated with other
plant diseases such as onions, iris, freesia, dendrobium, cymbidium, tulip, green gram
and rice [109]. Disease symptoms varied from the spotting of foliar parts to scabbing
and rotting of storage tissues [109]. In the last decade, different strains of B. gladioli have
demonstrated the ability to infect human causing severe pulmonary infections in cystic
fibrosis and other immune-compromised human patients [110,111]. B. gladioli is closely
related to a member of B. cepacia complex that includes ten closely related species which
are all plant pathogens [112].

B. gladioli is negative for indole production, nitrate utilization and lysine decorboxyla-
tion [9]. On the molecular level, two primers (GLA-f 5′-CGAGCTAATACCGCGAAA-3′

and GLA-r 5′-AGACTCGAGTCAACTGA-3′) were used for the amplification from 16S to
23S region in the B. gladioli genome [10]. The obtained amplicon by using these two above
mentioned primers in PCR assay was approximately 300bp [10].

B. gladioli contains four pathovars. Three pathovars, gladioli, alliicola and agaricicola
causing soft rots on gladiolus, onion bulbs and mushroom, respectively [7,29,113]. Whereas,
the fourth pathovar, cocovenenans causes food spoilage which can be toxic to animal and
human being consumers [114]. Differentiation of these four pathovars was made based on
hosts, molecular basis and biochemical properties [7,113–117].

B. gladioli pv. gladioli Severini (Yabuuchi et al.) is the causal agent of soft rot of stem
bases and corms [118]. On the fern Asplenium nidus (bird’s nest fern), leaf spot and blight
have been observed, causing extensive losses in many nurseries in Florida, USA [119].

B. gladioli pv. alliicola Burkholder (Starr and Burkholder) has been isolated recently
from onion in the Northeastern Slovenia infecting about 30% of onion bulbs. The internal
layers were found to have water-soaked and brown-colored lesions [120]. This pathovar
exhibited two different white-yellowish color colonies; one has a slightly wrinkled surface
where the other has a smooth surface.

B. gladioli pv. cocovenenas van Damme et al. (Gillis et al.) was isolated from a petroleum-
contaminated soil [121] and described as producer for lethal toxins (Bongkrekic acid and
toxoflavin) which are toxic to animals [114,122] and was also reported sometimes to cause
pneumonia for humans [114].

B. gladioli pv. agaricicola (Bga) Yabuuchi is considered an important pathogen for
mushroom [123] because it may cause a significant crop loss [109]. B. gladioli pv. agaricicola
causing soft rot and cavity disease on mushroom [114,124]. In particular, some strains of
this pathovar causes soft rot on a number of commercially important mushrooms, such
as Lentinula edodes, Pleurotus ostreatus, Flammulina velutipes, Pholiota nameko, Hypsizygus
marmoreus and Grifola frondosa in Japan and different cultivated Agaricus species in New
Zealand and Europe [109,124].
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Based on the proposal of Yabuuchi [6] who proposed a new genus, Burkholderia, to
include members of the “pseudomallei group”, the pathovar “agaricicola”, previously
classified as Pseudomonas gladioli pv. agaricicola [125], was subsequently transferred to the
new genus B. gladioli pv. agaricicola [114,126,127].

Secondary metabolites produced from Bga are implicated within the quorum sensing
(QS) phenomenon [124,128]. This mechanism enable the bacterial cells to communicate to
each other by responding to different signal molecules such as N-Acyl homoserine lactones
(N.AHLs) in case of G-ve bacteria [49,129,130]. In particular, recent investigations reported
that this pathovar produces N.AHLs which regulates the virulence and other biological
activities [29,124].

Regarding the volatile organic compounds (VOCs) produced by Bga, they induced
a reduction of fungal growth of Fusarium oxysporum and Rhizoctonia solani [131]. The
biochemical characterization of VOCs produced by strain ICMP 11096 from this pathovar
has identified two bioactive compounds. The first one was a liquid hydrocarbon cyclic
terpene identified as cyclohexene 1-methyl-4-(1-methylethenyl) (Figure 6A), as the more
frequent d-isomers of limonene [131]. The second one was identified as 4-flavanone (4H-1-
Benzopyran-4-one, 2, 3-dihydro-2-phenyl) (Figure 6B). The two produced VOCs could be
mainly responsible for the antifungal activity of this pathovar against phytopathogenic
and plant-associated fungi [131,132].

The chemical analysis of the main diffusible secondary metabolites of Bga by using
Liquid Chromatography-Mass Spectroscopy (LC-MS) and Nuclear Magnetic Resonance
(NMR) investigations demonstrated that the main isolated bioactive diffusible substance
is an amino lipid compound identified as ornithine lipid (Figure 6C) [31]. On the other
hand, the same authors reported that the ornithine lipid represented a major polar lipid
constituent of the whole bacterial cell.

Figure 6. Secondary metabolites produced by B. gladioli pv. agaricicola. Where (A) D-Limonene,
(B) 4-Flavanone, (C) Ornithine lipid.

In Table 2, we reported the most important secondary metabolites produced by the
above seven species of Burkholderia spp. with their related references.
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Table 2. List of secondary metabolites synthesized by some species of Burkholderia spp.

No. Species Synthesized Metabolites References

1 B. cepacia Pyrrolnitrin [26,72]
Cepacidine A [75,76]

2 B. andropogonis Rhizobitoxine [81,82]
3 B. plantarii Tropolone [87]
4 B. plantarii strain DSM 9509 Rhamnolipids [88]
5 B. rhizoxinica Rhizoxin [89,90]
6 B. glumae Toxoflavin [97,98]
7 B. caryophylli Caryoynencine [99,101]
8 B. gladioli pv. cocovenenas Bongkrekic acid and toxoflavin [108,116]

9 B. gladioli pv. agaricicola
D-Limonene [127]
4-Flavanone [128]
Ornithine lipid [32]

7. Conclusions

Genus Burkholderia is one of the most important group of plant, animal, and human as-
sociated bacteria. It is well-known for its virulence, bioactivity and microbicide properties.
This genus includes different species which occupy wide range of ecological niches, such
as B. cepacia, B. andropogonis, B. plantarii, B. caryophylli, B. glumae and B. gladioli, which are
the causal agents for different plant, animal and human diseases. The current review deals
with some important species of Burkholderia which have been manipulated in different
studies. It is worth noting to underline that the study of metabolic profile of this genus
could aid in revealing different aspects of this group related to its pathogenicity, virulence,
plant-microbe interaction and role of produced metabolites in controlling phytopathogens.
It is beyond doubt that the knowledge of synthesized secondary metabolites of this group
will also support differentiation between different species and eventually strains and patho-
vars. Detailed information has been reported here regarding some important identified
secondary metabolites from different species and pathovars of Burkholderia, their chemical
structures, biological activities and modes of action against several phytopathogens. It is
concluded that genus Burkholderia has important biological and metabolic properties and
can be exploited in promising ways as antagonising biocontrol agents, for soil bioremedia-
tion and plant growth promoting purposes. Finally, different synthesized metabolites by
Burkholderia can be used effectively in human and agro-pharmaceutical industry.
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