
metabolites

H

OH

OH

Article

Unravelling the Metabolic Reconfiguration of the
Post-Challenge Primed State in Sorghum bicolor
Responding to Colletotrichum sublineolum Infection

Fidele Tugizimana 1 , Paul A. Steenkamp 1 , Lizelle A. Piater 1 , Nico Labuschagne 2 and
Ian A. Dubery 1,*

1 Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg,
Auckland Park, Johannesburg 2006, South Africa; ftugizimana@uj.ac.za (F.T.); psteenkamp@uj.ac.za (P.A.S.);
lpiater@uj.ac.za (L.A.P.)

2 Department of Plant and Soil Science, University of Pretoria, Hatfield, Pretoria 0028, South Africa;
nico.labuschagne@up.ac.za

* Correspondence: idubery@uj.ac.za; Tel.: +27-011-559-2401

Received: 16 August 2019; Accepted: 16 September 2019; Published: 20 September 2019
����������
�������

Abstract: Priming is a natural phenomenon that pre-conditions plants for enhanced defence against
a wide range of pathogens. It represents a complementary strategy, or sustainable alternative that
can provide protection against disease. However, a comprehensive functional and mechanistic
understanding of the various layers of priming events is still limited. A non-targeted metabolomics
approach was used to investigate metabolic changes in plant growth-promoting rhizobacteria
(PGPR)-primed Sorghum bicolor seedlings infected with the anthracnose-causing fungal pathogen,
Colletotrichum sublineolum, with a focus on the post-challenge primed state phase. At the 4-leaf growth
stage, the plants were treated with a strain of Paenibacillus alvei at 108 cfu mL−1. Following a 24 h
PGPR application, the plants were inoculated with a C. sublineolum spore suspension (106 spores
mL−1), and the infection monitored over time: 1, 3, 5, 7 and 9 days post-inoculation. Non-infected
plants served as negative controls. Intracellular metabolites from both inoculated and non-inoculated
plants were extracted with 80% methanol-water. The extracts were chromatographically and
spectrometrically analysed on an ultra-high performance liquid chromatography (UHPLC) system
coupled to high-definition mass spectrometry. The acquired multidimensional data were processed
to create data matrices for chemometric modelling. The computed models indicated time-related
metabolic perturbations that reflect primed responses to the fungal infection. Evaluation of orthogonal
projection to latent structure-discriminant analysis (OPLS-DA) loading shared and unique structures
(SUS)-plots uncovered the differential stronger defence responses against the fungal infection
observed in primed plants. These involved enhanced levels of amino acids (tyrosine, tryptophan),
phytohormones (jasmonic acid and salicylic acid conjugates, and zeatin), and defence-related
components of the lipidome. Furthermore, other defence responses in both naïve and primed plants
were characterised by a complex mobilisation of phenolic compounds and de novo biosynthesis of
the flavones, apigenin and luteolin and the 3-deoxyanthocyanidin phytoalexins, apigeninidin and
luteolinidin, as well as some related conjugates.

Keywords: chemometrics; LC-MS; metabolomics; PGPR; plant priming; secondary
metabolites; sorghum

1. Introduction

The interactions between plants and pathogens are complex and dynamic molecular battles,
and the outcome is determined either by the successful establishment of the pathogen or by the
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efficiency of the host immune response mechanisms to ward off the infection [1]. In this co-evolving
molecular arms race between pathogens and host plants, one of the central ontological mechanisms by
which plants can increase their defensive efficiency and capacity is by pre-conditioning of the immune
system through interactions with some signals or microorganisms in the environment—a phenomenon
known as priming [2,3]. Plants, although autotrophic organisms, form associations with neighbouring
plants, microflora and microfauna; and as sessile organisms, these interactions are fundamentally
mediated and mostly achieved via chemical communication [4,5]. Thus, the phenomenology of
priming, known as sensitisation as early as 1933, results from the interactions between the host plants
and beneficial habitants of the rhizosphere (rhizobacteria, mycorrhizal fungi), virulent or avirulent
pathogens, or by natural or synthetic compounds that include some agrochemicals [2,3,5].

Mechanistically, priming can be described as a spatially and temporally complex, multistage
process at cellular and molecular levels. The progression consists of three main stages namely: the
priming phase, the post-challenge primed state and the transgenerational primed state [3,6]. Although
detailed molecular mechanisms still remain elusive, studies have proven priming to be a key process
in various forms of systemic plant immunity [2]. Such defence-priming comprises (i) systemic
acquired resistance (SAR), which is induced by necrotising pathogens and requires salicylic acid (SA),
pipecolic acid (PA), dehydroabietinal (DA) and azelaic acid (AzA) [7]; (ii) induced systemic resistance
(ISR), activated by mutualists such as plant growth-promoting bacteria (PGPR) and fungi in the
rhizosphere, and orchestrated by jasmonate (JA)- and ethylene (ET)-dependent mechanistic paths [2];
(iii) wound-induced resistance [8]; and (iv) β-aminobutyric acid-induced resistance (BABA-IR) [9].
The rhizobacteria-mediated ISR has received increasing attention in current research trends. Detailed
accounts of the complexity of the rhizosphere, its dense and diverse microbiome population and
molecular signalling web have been published [10,11]. Although the rhizosphere chemistry remains
largely unknown, and the establishment of plant-rhizomicrobiome mutualistic interactions is still poorly
characterised, emerging studies have reported that various PGPR species of the genera Pseudomonas,
Bacillus or Bradyrhizobium, and the plant growth-promoting fungi (PGPF) from the Trichoderma genus,
prime the whole plant for increased defence preparedness against a broad range of both below-
and above-ground pathogens and attackers [3,5,10]. The molecular mechanisms underlying the
rhizobacteria-related defence priming indicate that this induced state implies reprogramming of
cellular metabolism and regulatory machinery [3,5,6].

Current insights propose that, preceding infection, primed plants re-organise supporting
metabolic pathways by modifying the biosynthesis of sugars, tricarboxylic acids and amino acids [12],
in preparation for the activation of chemical defences based on secondary metabolism [13]. However,
the current knowledge of biochemical and molecular mechanisms of defence priming is just a tip of an
iceberg, and a detailed mechanistic and functional description of the various layers of priming events is
still limited. Biochemical and molecular networks driving successful establishment of priming phases
are still far from being completely elucidated and predictively characterised. Nonetheless, despite
these limitations (and many more uncertainties and grey areas, with regard to spatial and temporal
mechanisms of priming), this potentiation of the immune system is undoubtedly a fundamental
means that plants have evolved as an adaptive strategy: by immunologically memorising a stress
so as to amplify defensive capacity upon subsequent stresses. As such, defence priming represents
a promising and complementary alternative strategy that can provide new opportunities for plant
protection against pathogens.

Sorghum bicolor is an important grain crop for human nutrition, phytochemical neutraceuticals
and biofuel usage [13]. We have previously reported on the metabolomics of defence-related
reprogramming in sorghum plants in response to infection by the hemibiotrophic pathogen,
Colletotrichum sublineolum. Results revealed synchronised activation of a functional metabolic web
of secondary metabolites originating from the phenylpropanoid—and flavonoid pathways [14].
In the present study, an untargeted liquid chromatography coupled to mass spectrometry (LC-MS)
metabolomic approach was employed to elucidate metabolic profiles underlying the enhancement of
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sorghum defence responses when primed/pre-conditioned by a rhizobacterium, Paenibacillus alvei. In a
companion study we have recently reported on the effectiveness of the P. alvei (strain T22) as a bacterial
PGPR priming agent in the sorghum: Fusarium pseudograminearum pathosystem [15]. Thus, the current
study was designed to focus on the post-challenge primed state to unravel metabolic/molecular
reconfiguration of the sorghum primed metabolism in response to C. sublineolum infection. Considering
that the metabolome is more sensitive to alterations in both metabolic fluxes and enzyme activity than
either the transcriptome or proteome [16,17], the measurement of dynamic changes of the metabolites
would thus informatively reflect differential and functional features of the primed metabolism. Such
endeavour would pinpoint metabolic pathways involved in the rhizobacteria-induced systemic
resistance in sorghum against fungal infection, thus contributing to the increasing attempts to unravel
the biochemical and molecular mechanisms involved in defence priming.

2. Results and Discussion

2.1. Evaluation of Anthracnose Symptom Development in P. alvei Primed vs. Naïve Sorghum Plants
Challenged with the Hemibiotrophic Pathogen, Colletotrichum sublineolum

The disease phenotype assessment showed that the sorghum plants primed with P. alvei strain
T22 were more resistant to C. sublineolum infection. Following pathogen challenge, the primed
sorghum plants showed only slight symptom development and only starting at 6 days post infection
(d.p.i.) (Figure S1). The anthracnose symptoms that appeared on the primed sorghum plants
following the fungal pathogen challenge were significantly less severe, even at 9 d.p.i., compared to
the non-primed challenged plants: few leaves and plants showed symptoms, which could even be
seen as localised hypersensitive response (HR) lesions, with no spreading over the entire leaf surface
(Figure S1A). The beneficial rhizobacterium, P. alvei, has previously been shown to be an effective plant
growth-promoting and biocontrol agent in wheat and tomato plants [18,19] and the results from the
disease phenotype assessment (Figure S1B) clearly suggest that this PGPR also primed the sorghum
plants and conferred an evidently effective resistance against C. sublineolum. Thus, to gain an inclusive
overview of the metabolic reprogramming associated with chemical defences related to the priming
effects of P. alvei (T22), an untargeted LC-MS-based metabolomic analysis was performed. The focus
was on the metabolic changes as reflected in hydromethanolic extracts of sorghum seedlings during
the post-challenge primed stage.

2.2. Comparative Analysis of the Metabolomic Profiles of P. alvei (T22)-Primed and Naïve Sorghum Plants
Challenged with the Anthracnose Pathogen, Colletotrichum sublineolum

From a metabolism perspective, the metabolic shift, induced by priming effects of the P. alvei
PGPR on sorghum seedlings responding to fungal infection, may span several pathways. Hence,
an untargeted approach was opted for in this study to allow inclusive coverage of the metabolome;
however, at the same time, acknowledging the current metabolomics bottlenecks that collectively (or
separately) make it realistically impossible to achieve a truly comprehensive metabolic picture. Thus,
using an UHPLC connected in-line with a high-definition MS instrument, and acquiring data in both
positive and negative electrospray ionisation (ESI+/−) modes, allowed a non-biased, global analysis
and detection of semi-polar to nonpolar metabolites extracted with 80% methanol. Considering the
axiomatic complexity and multidimensionality of the metabolome, good chromatographic separation
was achieved (e.g., Figure 1), which is an essential preceding step before MS analyses for enhanced
signal sensitivity [16]. Furthermore, differential metabolic profiles were visually observed, as indicated
by base peak intensity (BPI) mass chromatograms (e.g., Figure 1 and Figure S2) and pointing to
metabolic changes related to the priming effects of P. alvei (T22) on sorghum plants responding to
C. sublineolum infection.
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Figure 1. Representative UHPLC-MS chromatograms of ESI(-) data (5 d.p.i.). Base peak intensity (BPI)
mass chromatograms displaying comparative chromatographic differences in different conditions:
(i) samples from non-treated plants (NT), (ii) samples from P. alvei (T22)-primed and C. sublineolum
(C.s.)-challenged plants and (iii) samples from C.s.-infected plants. Visual inspection of the
chromatograms evidently shows differential peak populations, for instance in the 4–12 min retention
time (Rt) region.

Although these chromatographic fingerprints (Figure 1 and Figure S2) provided a visual portrayal
of metabolic differences between samples from different conditions (e.g., challenged primed plants
vs. naïve plants), informative details about metabolite features/structures underlying the metabolic
reprogramming related to P. alvei (T22) priming effects can only be achieved through data mining and
comparative chemometric analyses. An unsupervised bilinear factor modelling, principal components
analysis (PCA), was performed for exploratory analyses of the collected metabolomic data: to summarise
the multidimensional data in an intelligible way (reduced dimensional space) that grasps the silent
characteristics of the data [16,20]. The computed PCA models, with no overfitting (Figure 2), allowed
descriptive evaluation of the distribution of samples so as to detect natural groupings, trends and
outliers. The graphical visualisation generated by these models yielded a natural separation/clustering
in the scores space between samples from (i) sorghum plants that were neither treated with fungal
pathogen nor P. alvei (T22) (control), (ii) naïve plants treated with C. sublineolum (C.s.), and (iii) P. alvei
(T22)-primed plants challenged with the pathogen (T22 + C.s.) (Figure 2A,B and Figure S3). Previously,
a companion study using identical extraction methods (80% methanol) and analytical conditions
(C18 reverse phase chromatography), indicated no significant differences in the metabolic profiles as
reflected in PCA scores plots of extracts from control plants and that of P. alvei-treated plants [15]; the
latter condition was therefore not included in the experimental planning and further analysis.
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Figure 2. Exploratory data analysis with unsupervised chemometric methods. (A): A PCA scores scatter
plot computed from the first two PCs of a model of ESI(+) data of all time points combined. The data
matrix is presented as an eleven-component (R1 significance) model, explaining 79.5% variation in the
Pareto-scaled data and the amount of predicted variation by the model, according to cross-validation,
is 72.7%. (B): A PCA scores scatter plot computed from the first two PCs of a model of ESI(-) data, X:
an eleven-component (R1 significance) model, explaining 73.6% variation in the Pareto-scaled data and
the amount of predicted variation by the model, according to cross-validation, is 65.9%. (C,D) are HCA
dendrograms corresponding to (A,B), respectively. The ellipse in the PCA scores plots represents the
multivariate generalisation of the 95% confidence interval (Hotellings T2), the normality area, which
is used to visually identify strong outliers. Corresponding data from the ESI(-) mode, indicating the
different time points, is shown in Figure S3.

In both ESI(−/+) modes, three clear major sample groupings related to the three conditions
mentioned (control, C.s.-inoculated plants and C.s.-challenged primed plants) are evidently seen in
the scores space (Figure 2A,B), thus reflecting differential metabolic features in those three groups.
The observed variation within groups is related to the time points or metabolite collection time, i.e.,
1–9 d.p.i., where early responses in either naïve or primed plants are closer to each other (Figure S3D).
However, in the PCA space, this time-related variation appears to be less pronounced compared to the
major variation induced by the treatment (fungal infection of primed vs. naïve plants, Figure 2A,B).
Furthermore, the responses to the fungal infection in both naïve and primed plants were clearly
characterised by a significant metabolic shift, visualised in the PCA scores plots as the samples of the
two conditions cluster separately from the control. PC analyses also showed that the samples from the
infected primed plants grouped differentially from the infected naïve plants, with no overlap between
the two groups (Figure 2A,B). This points to underlying different metabolic states related to defence
mechanisms against the fungal infection between naïve and P. alvei (T22)-primed plants.

In order to further investigate these PCA-described natural groupings in the metabolite (variable)
space, rather than the sample space, an unsupervised multivariate method, hierarchical cluster analysis
(HCA), was applied to the PCA-transformed (low-dimensional) data. As a clustering method, HCA is
based on the multivariate distance between pairs of data points—in this case, metabolite information
in each sample is expressed by a vector. This approach allows to compute, in series, clusters that show
multivariate similarity in the variable (metabolite) space [21]. Thus, agglomerative HCA models were
computed using Euclidean distance and Ward’s minimum variance as a dissimilarity and linkage
rule, respectively. The generated hierarchy of clusters, displayed as dendrograms, were evaluated
(Figure 2C,D). Two distinct major clusters were observed in the ESI(+) data, corresponding to control
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samples (blue line) differentially separated from the fungal treated (naïve and primed) samples
(Figure 2C). For the ESI(-) mode data, although control samples clustered different from treated
samples, the data from treated naïve plants (5–9 d.p.i.) formed a major cluster (green line, Figure 2D).
In both ESI modes, several time-related distinct subspaces in each major cluster were observed
(Figure 2C,D). Although HCA does not readily identify which metabolite features are responsible for
the observed sample classifications, the generated hierarchical clusters pointed to inner structures of
the data (in the metabolite space), confirming the observations from PCA results (Figure 2A,B), and
further pointing to underlying differential (dynamic) metabolism of naïve and P. alvei (T22)-primed
sorghum plants in response to fungal infection (Figure 2C,D). Both these explorative (unsupervised)
data analyses, i.e., PCA and HCA models, permitted a descriptive overview of the data, and allowed
for extracting informative sample distribution patterns and groupings. As captured by these models,
the analysed metabolite features (in both ESI modes) clearly differentiated the defence responses of P.
alvei (T22)-primed from naïve sorghum plants (Figure 2 and Figure S3) and suggests differential defence
mechanisms against the C. sublineolum infection. Such extrapolation (supported also by the disease
phenotype assessment—Figure S1) would correlate to the view that in the face of a secondary stress
challenge, primed plants deploy faster and stronger defence responses compared to naïve counterparts,
thus reflecting differential underlying metabolism [3,6].

For biochemical characterisation and interpretation of these informative metabolite profiles
described by explorative modelling (Figure 2), a supervised method namely ‘orthogonal projection to
latent structures-discriminant analysis’ (OPLS-DA) was applied. OPLS-DA allows the identification
of the metabolite features/markers underlying the discrimination between classes or groups [16,22].
The computed and validated OPLS-DA models (CV-ANOVA p-value < 0.05) used were perfect binary
classifiers. No signs of possible overfitting, as indicated by cross-validation, were found and none
of the permutated models (n = 100) performed better than the original models in separating classes
(Figure 3A and Figure S4). OPLS-DA loadings plots were thus evaluated for selection of discriminating
metabolite features/variables with unique retention time (Rt) and m/z values (Figure 3B,D).
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Figure 3. OPLS-DA modelling and variable (statistically significant discriminatory features/biomarkers)
selection. (A): A typical response permutation test plot (n = 50) for the OPLS-DA model of the
ESI(-) data, separating ‘control vs. challenged primed-plants’ at 5–9 d.p.i. (1 + 2 + 0 components,
R2X = 0.658, Q2 = 0.978, CV-ANOVA p-value = 0.00); the R2 and Q2 values of the permutated models
correspond to y-axis intercepts: R2 = (0.0, 0.308) and Q2 = (0.0, −0.347). (B): An OPLS-DA loadings
S-plot for the same model in (A); variables situated far out in the S-plot are statistically relevant and
represent prime candidate discriminating variables. The red boxes indicate the selected ions—as
discriminating variables, with high covariation and correlation. (C): A Shared and Unique Structures
(SUS) analysis: a SUS-plot comparing the metabolite features contributing to the model separating
‘control vs. challenged naïve plants’ (control vs. C.s., ESI(-) data, x-axis; 1 + 1 + 0 components;
R2X = 0.704, Q2 = 0.993, CV-ANOVA p-value = 0.00) with that of the model separating ‘control vs.
challenged primed plants’ (control vs. P. alvei (T22)+C.s., ESI(-) data, y-axis; 1 + 2 + 0 components,
R2X = 0.658, Q2 = 0.978, CV-ANOVA p-value = 0.00). Blue boxes represent shared features, green boxes
represent features linked with the response of naïve plants to the fungal infection and red boxes the
unique features due to the combination of priming and fungal infection. (D): A V-like shaped plot
(Plot/List Plot) displaying the combination of variable importance in projection (VIP) scores and p(corr)
values for the variables in S-plot in (B).

The selection of the variables was carried out with mathematical/statistical rigour, avoiding
selection bias or any false positives. An inherent high degree of inter-connectivity between metabolites in
a biological network, accentuated with untargeted analysis, necessitates the application of multivariate
variable selection methodology. As such, correlation and co-variance, confidence interval and
orthogonal variation, rather than t-statistics, is the first statistically suitable step in extracting and
identifying discriminating features/potential biomarkers [23]. Thus, evaluation of the OPLS-DA
loadings S-plots (Figure 3B) allowed the identification of statistically significant potential discriminant
features, i.e., variables that combined both high correlation and covariation [16,24].

Furthermore, considering the design of this study, investigating simultaneously different conditions
(naïve and primed sorghum plants, both responding to a fungal infection), and the sample distribution
in the multivariate (sample and metabolite) space as revealed by unsupervised modelling (e.g., Figure 2),
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another variable selection method, namely the ‘Shared and Unique Structures’ (SUS) loadings plot
was applied (Figure 3C). The SUS-plot displays shared and unique features between two different
classification models that have a common reference: the correlation from the predictive component,
Corr(tp,X), of each model is plotted against each other, allowing the identification of shared and unique
variables [24]. For instance, Figure 3C is a SUS-plot comparing the metabolite features from two
OPLS-DA models, in this case ESI(-) data of control vs. challenged naïve plants (x-axis) and control
vs. challenged primed plants (y-axis). Given that both models have the same baseline point (control),
the differential metabolites between naïve- vs. primed-plants (both responding to the fungal infection)
are extracted in the plot. The metabolite features that are of equal importance for the two models
cluster along the (latent) diagonal (blue boxes—bottom left and upper right corners) and are of little
use as biomarkers as they represent shared features. The metabolite features altered only due to the
combination of priming and fungal infection are located along the y-axis (red boxes) and represent
unique structures. In comparison, the variables located along the x-axis (green boxes) are unique
features that characterise the response of naïve plants to the fungal infection.

Thus, both OPLS-DA S-plots and SUS-plots (Figure 3B,C and Figure S4) allowed the identification
of subsets of discriminating variables that explain the differential metabolite profiles described by
explorative modelling (Figure 2). These prime candidates or potential biomarkers were further
evaluated and validated for statistical significance and performance. Different tests were applied
with the Variable Importance/Influence in Projection (VIP) > 1.0 as the initial validation check-point
(Figure S4B). VIP scoring is a metric that summarises the importance of each variable in driving the
observed group separation in a classification modelling, and a variable with a VIP score > 1.0 indicates
that it contributes more than average to the model, hence its relevance and statistical basis for its
selection [25].

However, since the VIP scoring changes with each iteration of variable selection, complementing
VIP values with stable parameters such as the p(corr) values provides a robust mathematical framework
to confidently evaluate the performance and reliability of candidate variables [26–29]. Hence, in this
study, the combination of VIP scores and p(corr) values was used and plotted (Figure 3D). Such a
V-like shaped plot enables the identification of metabolite features with high (separation) importance
to the model (VIP score > 1.0) and high predictability (high absolute p(corr) values)—these variables
are located in upper regions of the plot (Figure 3D). Additional assessment methods for variable
selection included ‘jackknife’ confidence intervals, variable trends, dot plots and descriptive statistics
(Figure S4D) [25,30] as well as manually checking the signal stability of the candidate features in the
QC samples. Thus, the selected and validated metabolite features (markers explaining the metabolic
alterations revealed by PCA and HCA models) were then annotated to the Metabolomics Standards
Initiative (MSI-level 2 annotation), as described under Materials and Methods and reported in Table 1.
Annotated metabolites are reported together with their respective fold-changes (ratios of peak intensities
in extracts from infected primed plants compared to the infected naïve, non-primed counterparts)
for the post-challenge periods of 1–3 d.p.i. and 5–9 d.p.i. Fragmentation data of the metabolites is
presented in the accompanying Table S1.
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Table 1. Summary of annotated (MSI-level 2) metabolites that contributed to the discriminating variability in the altered metabolomes as described by chemometric
models. These discriminating, putatively identified metabolites were identified based on OPLS-DA S-plots and SUS-plots, with a rigorous statistical validation. These
reported metabolites had p-values < 0.05 and VIP scores > 1.0. Fragmentation data and applicable references are reported in Table S1.

Metabolites m/z Rt (min) Adduct ESI Mode Molecular
Formula

Biochemical
Classification

Post-Challenge Period (Primed/Naïve)

1–3 d.p.i. 5–9 d.p.i.

p-Value Fold
Change p-Value Fold

Change

1 L-Tyrosine 182.0819 1.25 H pos C9H11NO3 Amino acid 7.97 × 10−7 88.41 1.68 × 10−10 0.52

2 5-Hydroxytryptophan 236.1036 2.65 NH3 neg C11H12N2O3 Amino acid 1.33 × 10−10 89.28 1.34 × 10−11 1.99

3 L-Tryptophan 205.0978 3.02 H pos C11H12N2O2 Amino acid 5.91 × 10−11 2.85 2.48 × 10−10 0.57

4 Dhurrin 329.1335 4.02 NH3 pos C14H17NO7
Cyanogenic
glucoside 7.68 × 10−27 40.50 4.91 × 10−8 24.80

5 Naringin chalcone 627.1912 2.52 HCOOH neg C27H34O14 Flavonoid 1.50 × 10−7 6.13 3.34 × 10−10 1.30

6 Naringin 625.1761 3.46 HCOOH neg C27H32O14 Flavonoid 5.17 × 10−7 5.46 3.60 × 10−10 2.08

7 Peptahydroxychalcone
4′-O-glucoside 449.1067 4.73 H neg C21H22O11 Flavonoid 1.88 × 10−15 2.29 8.14 × 10−10 1.60

8 Hesperidin 609.1809 5.00 H neg C28H34O15 Flavonoid 3.43 × 10−11 2.22 2.36 × 10−9 0.74

9
Apigenin 7-O-[beta-d-
apiosyl-(1->2)-beta-d-

glucoside]
563.1390 5.05 H neg C26H28O14 Flavonoid 4.51 × 10−4 1.09 1.03 × 10−14 4.84

10
Kaempferol 3-O-
rhamnoside-7-O-

glucoside
593.1501 5.68 H neg C27H30O15 Flavonoid 2.75 × 10−4 3.24 1.53 × 10−14 0.36

11 Cyanidin 3-O-
rhamnosylglucoside 595.1657 5.75 H pos C27H30O15 Flavonoid 1.74 × 10−14 0.34 4.06 × 10−19 0.22

12 Kaempferol-3-glucoside 447.0921 5.88 H neg C21H20O11 Flavonoid 1.97 × 10−4 3.22 2.84 × 10−14 4.94

13 Quercitrin 449.1080 5.92 H pos C21H20O11 Flavonoid 2.08 × 10−4 1.14 2.28 × 10−14 0.22

14 Apigenin 271.1544 6.02 H pos C15H10O5 Flavonoid 8.82 × 10−4 0.30 2.01 × 10−7 0.36

15 Apigeninidin 255.1533 6.10 H pos C15H11O4 Flavonoid 6.84 × 10−24 0.31 1.10 × 10−32 0.77

16 Luteolin 7-O-beta-d-
glucoside 447.0921 6.19 H neg C21H20O11 Flavonoid 8.27 × 10−5 1.12 2.95 × 10−12 0.27



Metabolites 2019, 9, 194 10 of 25

Table 1. Cont.

Metabolites m/z Rt (min) Adduct ESI Mode Molecular
Formula

Biochemical
Classification

Post-Challenge Period (Primed/Naïve)

1–3 d.p.i. 5–9 d.p.i.

p-Value Fold
Change p-Value Fold

Change

17 Apigenin 7-O-
neohesperidoside 579.1709 6.27 H pos C27H30O14 Flavonoid 1.86 × 10−11 1.00 3.06 × 10−31 0.20

18 Luteolin 287.0536 6.30 H pos C15H10O6 Flavonoid 4.25 × 10−23 0.36 0.000 0.51

19 1,2-bis-O-Sinapoyl-beta-
d-glucoside 591.1705 6.35 H neg C28H32O14 Flavonoid 1.28 × 10−29 3.17 5.02 × 10−14 10.39

20 7-O-Methylvitexin 2′′-
O-beta-l-rhamnoside 615.1680 6.39 Na pos C28H32O14 Flavonoid 4.35 × 10−13 0.31 1.09 × 10−25 0.07

21 Isovitexin 2′′-O-beta-d-
glucoside 593.1501 6.68 H neg C27H30O15 Flavonoid 7.22 × 10−3 1.96 1.08 × 10−14 3.65

22 Luteolinidin 271.0616 6.87 H pos C15H11O5 Flavonoid 8.23 × 10−3 0.36 7.68 × 10−27 0.68

23 12,13-Epoxy-9-hydroxy
-10-octadecenoate 395.2040 9.26 HCOONa neg C18H32O5 Lipid 1.52 × 10−17 50.98 5.07 × 10−4 39.73

24 Phytosphingosine 318.3009 10.52 H pos C18H39NO3 Lipid 1.29 × 10−29 267.28 0.000 27.50

25 16-Hydroxypalmitate 290.2700 10.58 NH3 pos C16H32O3 Lipid 7.30 × 10−12 217.16 1.42 × 10−19 24.76

26
(9Z)-(13S)-12,13-

Epoxyoctadeca-9,11-
dienoic acid

363.2137 11.44 HCOONa pos C18H30O3 Lipid 1.96 × 10−14 139.22 8.66 × 10−11 35.53

27 13(S)-hydroxyperoxy-
octadecatrienoic acid 309.2071 11.79 H neg C18H30O4 Lipid 1.02 × 10−10 40.98 1.84 × 10−5 28.80

28 25-Hydroxy-24-epi-
brassinolide 519.3267 13.34 Na pos C28H48O7 Lipid 9.77 × 10−14 35.74 1.47 × 10−6 28.16

29 Oleanolate 3-beta-d-
glucuronoside-28-glucoside 795.4497 15.36 H pos C42H66O14 Lipid 2.32 × 10−22 31.31 1.94 × 10−14 19.49

30 Oleanoic acid
3-O-glucuronide 655.3820 15.40 Na pos C36H56O9 Lipid 0.000 36.35 1.58 × 10−37 18.05

31 Caffeoylquinate 377.0846 3.83 Na pos C16H18O9 Phenylpropanoid 3.64 × 10−12 12.59 1.35 × 10−28 9.05

32 p-Coumaroyl quinic acid 427.0621 1.03 NaHCOONa neg C16H18O8 Phenylpropanoid 4.06 × 10−6 13.20 1.94 × 10−27 6.75
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Table 1. Cont.

Metabolites m/z Rt (min) Adduct ESI Mode Molecular
Formula

Biochemical
Classification

Post-Challenge Period (Primed/Naïve)

1–3 d.p.i. 5–9 d.p.i.

p-Value Fold
Change p-Value Fold

Change

33 Feruloyltyramine 331.1650 2.01 NH3 pos C18H19NO4 Phenylpropanoid 5.02 × 10−14 10.39 2.38 × 10−20 11.63

34 4-Coumaroylshikimate 319.1062 3.16 H neg C16H16O7 Phenylpropanoid 2.46 × 10−7 12.33 3.41 × 10−19 0.58

35 2-Coumarate 165.0554 3.25 H pos C9H8O3 Phenylpropanoid 2.16 × 10−17 8.78 2.20 × 10−20 0.58

36 1-O-Sinapoyl-beta-d-
glucose 387.1279 3.56 H pos C17H22O10 Phenylpropanoid 3.23 × 10−9 14.50 6.72 × 10−20 0.59

37 4-O-beta-d-Glucosyl-4-
hydroxycinnamate 395.0947 4.09 HCOONa pos C15H18O8 Phenylpropanoid 7.40 × 10−5 14.12 9.53 × 10−20 1.60

38 Ferulate 209.0448 4.58 H neg C10H10O5 Phenylpropanoid 9.42 × 10−6 12.13 5.37 × 10−25 0.47

39 O-Feruloylquinate 367.1017 4.88 H neg C17H20O9 Phenylpropanoid 2.38 × 10−20 11.63 9.62 × 10−23 0.49

40 Coniferyl acetate 291.0844 1.09 HCOONa pos C12H14O4 Phenylpropanoid 9.28 × 10−7 12.52 9.86 × 10−19 2.41

41 Zeatin 220.1192 2.38 H pos C10H13N5O Phytohormone 0.000 17.09 3.19 × 10−21 14.17

42 Salicylate-glucoside 299.0758 1.79 H neg C13H16O8 Phytohormone 1.43 × 10−4 9.19 2.01 × 10−17 1.66

43 6-Hydroxy-indole-3-
acetyl-phenylalanine 405.1077 2.76 HCOONa neg C19H18N2O4 Phytohormone 1.38 × 10−4 9.36 1.51 × 10−17 2.75

44 6-Hydroxy-indole-3-
acetyl-valine 335.0962 2.82 Na_Na pos C15H18N2O4 Phytohormone 3.08 × 10−6 10.71 2.83 × 10−16 4.88

45 (-)-Jasmonoyl-l-isoleucine 406.1626 4.33 HCOOK neg C18H29NO4 Phytohormone 6.08 × 10−9 8.21 2.16 × 10−17 8.78

46 12-Hydroxyjasmonic acid
12-O-beta-d-glucoside 429.1514 5.59 Na_Na neg C19H30O8 Phytohormone 1.57 × 10−6 10.73 1.14 × 10−16 2.76

47 trans-Zeatin-7-beta-d-
glucoside 399.1990 8.14 NH3 pos C16H23N5O6 Phytohormone 6.82 × 10−6 9.53 2.98 × 10−16 0.46

48 Riboflavin 419.0969 5.80 Na_Na neg C17H20N4O6 Riboflavin 1.42 × 10−19 24.76 2.84 × 10−7 18.67

49 Feruloylserotonin 351.1333 11.66 H neg C20H20N2O4 Trp pathway 1.44 × 10−3 23.73 1.09 × 10−25 15.32



Metabolites 2019, 9, 194 12 of 25

2.3. Differential Defence-Related Metabolic Changes in P. alvei Primed vs. Naïve Sorghum Plants Challenged
with the Hemibiotrophic Pathogen, Colletotrichum sublineolum

As highlighted in the introductory section, the horizontal phenomenon of priming is to potentiate
the plant immune system so as to place the plant in an alert state for strong, rapid and effective defence
responses upon subsequent or secondary stresses [6], such as pathogenic fungal infections as is the case
of this study. This implies that a primed plant wards off a pathogenic invasion more efficiently than a
naïve plant, which indicates a differential defence metabolism. Thus, for a biochemical description
of the metabolic changes revealed by chemometric analyses, i.e., a dynamic defence metabolism
differentiating naïve—and primed sorghum plants challenged with the pathogen C. sublineolum,
the annotated metabolites extracted from the S-plots and SUS-plots (Table 1) were quantitatively
assessed. These chemometrically identified and most relevant compounds in the post-challenged
primed stage spanned several metabolic pathways; including primary metabolism (amino acid
pathways), phytohormones, lipid metabolism and secondary metabolism (phenylpropanoid—and
flavonoid biosynthesis pathways) (Table 1).

2.3.1. Differential Changes in Primary Metabolism and Plant Hormones Levels

The evaluation of the SUS-plots (simultaneous, multivariate assessments of the responses of both
naïve—and primed plants to the fungal infection) allowed the identification of unique metabolite
features that differentiate the naïve vs. primed defence responses. Some of the observed predominant
differences include the changes in amino acids and phytohormones in the early phase of the fungal
infection (1–3 d.p.i.). The evaluation of the metabolic changes, following fungal infection showed that
the primed plants significantly accumulated tyrosine, tryptophan and hydroxytryptophan compared
to the infected naïve plants. The level of these metabolites remained high for the period of 1–3 d
post-secondary challenge (fungal infection) (Figure 4A).

Figure 4. Quantitative profiles of amino acids and phytohormones in samples from both naïve and
primed plants responding to the Colletotrichum sublineolum fungal infection. The integrated peak area of
each compound (extracted from MarkerLynx-XSTM-based processing) over the time period of 1–3 d.p.i.
was used for relative quantitation of the levels of the metabolites. Data represent the average of three
experiments (with three replicates in each experiment), n = 45 and p-values reported as in Table 1;
error bars = standard deviation. (A): Amino acid profiles and (B): Plant hormones profiles. H-JA-G =

hydroxyjasmonic acid-glucoside; JA-ileu = jasmonoyl-isoleucine; SA-G = salicylate-glucoside; zeatin-G
= trans-zeatin-glucoside (Table 1).

Previous studies have reported that one of the characteristics of the priming phase involves
alterations in primary metabolism including the accumulation of amino acids, which are then channelled
into different defence-related metabolic pathways when the primed plants are challenged [12,31].
Furthermore, a new understanding of the regulation of plant immunity by amino acid metabolic
pathways is emerging, pointing to different mechanistic roles of amino acids in plant defence responses
to pathogen attack [32,33]. The perturbance/enhancement of the amino acid pools in the priming
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phase corresponds with the pre-conditioning of the plants, and upon the subsequent secondary
challenge (fungal infection in this case), the deployment of these amino acids is rapid and more
intense compared to the response in the naïve plants as the relative quantitative profiles indicate in this
study (Figure 4A). In addition to being essential components of synthesis of new defence proteins,
the aromatic amino acids tryptophan, phenylalanine and tyrosine serve as precursors for a wide range
of secondary metabolites that are functionally important for plant interactions with the environment
such as deployment of anti-microbial phytoalexins [34,35].

Although the chemical nature and mechanistic details of tryptophan-derived metabolites remain
elusive in some cases, experimental evidence indicate that these compounds play crucial roles in
plant immune responses to a wide range of pathogens [12,36]. Tryptophan metabolism has been
shown to be involved in the defence responses of rice with tryptamine, 5-hydroxytryptophan and
serotonin increasing markedly in Bipolaris oryzae-infected leaves for 72 h after inoculation [37].
Tryptophan-derived secondary metabolites have also been identified to play a central role in
defence responses of Arabidopsis against necrotrophic Plectosphaerella cucumerina infection by
limiting the growth of this fungal pathogen, and against the vascular fungal pathogen, Verticillium
longisporum [36,38]. The extent of activation of tryptophan-derived metabolites and utilisation
thereof in a defence-related context was shown in a detailed metabolomics study of Arabidopsis
responding to bacterial lipopolysaccharides where a number of indole derivatives, camalexin and
indole glucosinolates were reported as biomarkers [39]. Furthermore, as mentioned above, this primary
metabolic reconfiguration also implicated a significant increase in tyrosine levels in naïve- vs. primed
plants, in response to C. sublineolum infection (Figure 4A). Defence-related accumulation of tyrosine has
previously been reported in different phythopathosystems [40,41], highlighting its functional role in
plant immune responses. Tyrosine is an upstream precursor of the plant defence cyanogenic glucoside,
dhurrin [42,43], which was found in this study to be significantly higher (relatively 40× and 24×, in the
post-challenge periods of 1–3 d.p.i. and 5–9 d.p.i, respectively, (Table 1) in primed plants compared to
the naïve counterparts.

Chemometric analyses and relative quantitation also revealed a significant accumulation of plant
hormones (zeatin and/or the glycosylated forms such as zeatin-glucoside, salicylate-glucoside and
hydroxyjasmonic acid glucoside) as a differentiating characteristic of the defence responses of primed
plants (Figure 4B and Table 1). Phytohormones coordinate multiple physiological and biochemical
processes in plants via the regulation of gene expression. These include control of growth and
development, regulation of cellular activities such as cell division and differentiation, organogenesis,
and importantly, responses to abiotic and biotic stresses [44–46]. The elaborate web of crosstalk between
various phytohormones, such as defence signalling hormones (e.g., salicylic acid and jasmonates)
and growth regulators (e.g., cytokinins), either through synergistic or antagonistic interactions, plays
a crucial role in fine-tuning trade-off between growth and defence in plants [47,48]. Most studies
on the role of phytohormones in plant-pathogen interactions have focused on salicylic acid (SA),
jasmonic acid (JA), abscisic acid (ABA) and ethylene (ET), elucidating and describing underlying
regulatory and signalling mechanisms of these hormones and their essentiality in plant responses to
biotic stresses. The topic has been extensively reviewed [49,50], however, it suffices to point out that JAs
coordinate the ISR-response activated by mutualists such as PGPR and fungi in the rhizosphere [51,52].
Thus, the observed higher levels of glycosylated JA and JA-ileu (Figure 4B) in the P. alvei-treated
plants (compared to naïve plants) responding to the fungal infection confirm the primed state thereof,
and conferred readiness for a stronger defence response to the C. sublineolum infection.

Furthermore, the cytokinin (CK), zeatin, and its glycosylated form (trans-zeatin-glucoside) were
found to be unique features (exhibiting increased levels) differentiating the responses of naïve- and
primed plants to fungal inoculation (Figure 4B and Table 1). The physiological roles and functional
mechanisms of altered CK homeostasis in stress responses are still largely unclear. Most of the studies
on CKs have been done in model systems such as Arabidopsis thaliana [53,54], hence, the current
limited understanding and knowledge about the dynamics and regulatory mechanisms of these
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molecules in crop plant-pathogen interactions. CKs are an important class of phytohormones affecting
numerous developmental processes (such as cell proliferation and differentiation, nutrient status and
circadian clocks), and zeatin and its derivatives have been reported to be the most important group of
isoprenoid CKs [55,56]. Recent reports have shown that the zeatin-type CKs enhance resistance against
pathogens in Arabidopsis and tobacco plants, associated with increased cell membrane integrity.
Transgenic Arabidopsis plants with stabilised high levels of CKs exhibited increased resistance against
infection by the hemibiotrophic pathogen Verticillium longisporum [57]. CKs have also been shown to
regulate stomatal conductance of wheat seedlings, pointing to the role of these hormonal molecules in
plant-environment interactions [58]. Furthermore, the activation of (zeatin-type) CK signalling has
been observed in Arabidopsis plants primed with a PGPR, B. subtilis [59]. Although the role of CKs in
plant immune responses is still poorly understood, these emerging experimental evidences indicate
that CKs are involved in the regulation of plant defences against a wide range of pathogens, often via
crosstalk with SA or JA [48,60].

Thus, these quantitative observations, namely (i) higher levels of amino acids, tyrosine, tryptophan,
5-hydroxytryptophan (Figure 4A) and their downstream derivatives (indole-acetyl conjugates, and
defence-related secondary metabolites, namely dhurrin and feruloyl-serotonin, Table 1), and (ii) higher
levels of zeatin (and its glycosylated derivative) as well as the increased levels of JA- and SA-related
compounds (Figure 4B and Table 1), evidently reflects a stronger and more efficient defence response
deployed by primed sorghum plants against infection by C. sublineolum. It can thus be correctly
postulated that the priming of the sorghum plants by rhizobacterium P. alvei (T22), potentiated the
plants to rapidly launch defence mechanisms, involving reprogramming of primary metabolite pools
and a web of crosstalk between regulatory pathways, for immediate strong reactions (as early as
1–3 d.p.i.) to block the fungal invasion and further proliferation.

Plant-pathogen interactions are highly complex chemical battles, where both the host and pathogen
vie for sustainable survival, and the outcome is determined by the directional shift of these chemical
communications [5]. This may be either towards successful proliferation of the pathogen or effective
immune responses of the host. Furthermore, the establishment and maintenance of the biotrophic
stage (which is about 72 h post-infection) is crucial for successful development of the hemibiotrophic
Colletotrichum spp., and for an effective infection thereafter [61–63]. Thus, this strong defence-related
metabolic reprogramming observed in primed plants (compared to naïve plants) as early as 1–3 d.p.i.
(Figure 4 and Table 1), pinpoints the molecular preparedness and impetus of the primed plants to
quickly halt the successful invasion and establishment of a C. sublineolum infection. This postulation is
also supported by the symptomatology results: no significant anthracnose disease development was
observed in the primed plants even in the later stage of infection period (Figure S1).

2.3.2. Defence Responses in Colletotrichum sublineolum-Challenged (Primed vs. Naïve) Sorghum
Plants: Differential Changes in the Lipidome and Phenolics

The relative quantitative evaluation of the chemometrically-derived biomarkers revealed a
significant reprogramming of the lipidome as another characteristic of primed plant responses to
the fungal infection. Following C. sublineolum inoculation (1–3 d.p.i.), a number of the lipidome
components (such as hydroxypalmitate, epoxy-hydroxy-octadecenoate and phytosphingosine) were
found to be significantly accumulated in P. alvei-primed plants compared to naïve sorghum plants
(Figure 5A and Table 1). Generally the plant lipidome is structurally diverse, comprising fatty
acids, glycolipids, phospholipids, sphingolipids, sterol lipids and waxes [64,65]. In addition to being
structural components of the plasma—and intracellular membranes, lipidome components are involved
in diverse biological functions including storage of carbon and energy, signal transduction and stress
responses [65,66].
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Figure 5. Quantitative profiles of lipids and flavonoid metabolites in samples from both naïve and
primed plants responding to the Colletotrichum sublineolum infection. (A): Lipid profiles; EHOD =

epoxy-9-hydroxy-10-octadecenoate; HP = 16-hydroxypalmitate; EODDA = epoxyoctadeca-9-11-dienoic
acid; HEB = hydroxy-24-epi-brassinolide; OGG = oleanolate-glucoronoside-28-glucoside.
(B): Flavonoid profiles; apigenin-N = apigenin 7-O-neohesperidoside; cyanidin-RG = cyanidin 3-O-
rhamnosylglucoside; luteolin-G = luteolin 7-O-glucoside. In both (A) and (B) data represent the average
of three experiments, n = 45 with p-values reported in Table 1. The integrated peak area of each
compound (extracted from MarkerLynx-XSTM-based processing) over the time period of 1–3 d.p.i. (A)
and 5–9 d.p.i. (B) were used.

Fatty acids and hydroxy fatty acids, such as those identified in this study namely hydroxypalmitate
and epoxy-hydroxy-octadecenoate (Figure 5A and Table 1), have been found to be resistance-related
compounds that particularly prevent pathogen penetration and proliferation by strengthening cell wall
and membrane [65,67]. These fatty acids and hydroxy derivatives are some of the major constituents
of cutin and waxy polyester matrices, forming a protecting film that controls the fluxes of gases and
water, and prevents easy entry of harmful substances and pathogens into the host [67,68]. On the other
hand, the 4-phytosphingosine (t18:0, also found to be increased in this study—Figure 5A) is one of the
plant sphingolipids and that are initially essential membrane components [69,70]. An increased level
of free phytosphingosine has been observed in A. thaliana infected with Pseudomonas syringae, pointing
to a positive role of t18:0 in the defence responses to pathogens [71]. Experimental evidences have also
indicated regulatory effects of phytosphingosisne-1-phosphate on stomatal aperture in Arabidopsis
plants [72]. Furthermore, the sphingolipid content has been shown to modulate defence responses in
Arabidopsis plants infected with hemibiotrophic and necrotrophic pathogens [73].
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Thus, the elevated levels of these lipid components in primed plants vs. naïve plants, particularly
hydroxy fatty acids and phytosphingosine (Figure 5A and Table 1) which have been reported to be
resistance-related compounds, further confirm the preconditioning effect of P. alvei (T22) on the immune
system of sorghum plants. Another lipid component that was found to be increased in the primed
plants challenged with C. sublineolum was 13(S)-hydroxyperoxyoctadecatrienoic acid (13(S)-HPOT,
Figure 5A). This metabolite is one of the essential intermediates in the biosynthetic pathway of JA.
The first step of JA biosynthesis begins in the chloroplast membrane, with lipases cleaving lipids
to generate linolenic acid, which is then oxygenated by 13-lipoxygenases to form 13(S)-HPOT. The
latter is a substrate of multiple downstream enzymatic reaction steps that lead to the formation of
JA [66,74]. Given that JA is an essential regulatory signalling molecule in PGPR-induced ISR, the
higher level of 13(S)-HPOT in primed plants than in non-primed (Figure 5A) also corroborates the
strong and rapid defence responses in primed sorghum against C. sublineolum. In addition to these
metabolic reconfigurations that significantly differentiated the deployed defence mechanisms of primed
compared to naïve plants, a reprogramming of phenolic profiles was also observed in both naïve and
primed plants as a response to the fungal infection (Figure 5B and Table 1). The major components
of this accumulated complex of phenolic compounds were the 3-deoxyanthocyanidin phytoalexins
(luteolinidin, apigeninidin), luteolin and apigenin and some of the corresponding conjugates (Figure 5B
and Table 1).

However, the quantitative analyses indicate that the levels of these defence-related flavonoids
(particularly phytoalexins) were relatively higher as a result of the infection in naïve plants compared
to primed plants (Figure 5B). This could be explained by the fact that the latter showed an early
stronger response (as inferred from Figures 4 and 5A) that might negatively impact on the biotrophic
establishment of the fungus—i.e., a quicker and stronger blocking of pathogen penetration and
invasion, and hence a less quantitative deployment of phytoalexins. Furthermore, the released
active forms of these phytoalexins are toxic to both the fungus and plant cells that synthesised
them [75,76]. It is therefore possible that the economy and logic of survival would dictate the less
costly option, if available, and the release of toxins when necessary to be the last resort. However,
targeted and absolute quantitative methods of these phytoalexins (in the similar scenario—comparative
analyses of naïve and primed sorghum responses to the hemibiotrophic infection) would provide more
experimental and confirmatory evidence in regards to this observation.

In our previous report on the defence-related metabolic reprogramming in both naïve and
P. alvei-primed S. bicolor plants in response to Fusarium pseudograminearum inoculation, the activation of
both the early phenylpropanoid and flavonoid metabolic pathways as part of the induced systemic
resistance response was observed [15]. This metabolic reconfiguration spans several metabolite classes
including amino acids, phytohormones, lipids and phenolics. Although these classes of metabolites are
similar to the ones identified in this study, there were some differences in timing, specific metabolites
and levels of these metabolites. For instance, in response to F. pseudograminearum, discriminatory
changes in amino acids were observed in lysine, histidine conjugates and glutamate [15]; whereas in
response to C. sublineolum, alterations were observed mostly in tyrosine and tryptophan (Figure 4).
Furthermore, indications of hormonal reprogramming involved gibberellins and hydroxyabscisic acid
in regards to F. pseudograminearum infection [15], were not observed in this study. Pathogen-related
metabolic changes were also observed in the phenolics and lipids involved in (naïve/primed) sorghum
responses to the fungal infection [15] (Table 1). These differences suggest pathogen-specific spatial and
temporal regulation of the sorghum defensome to the fungal infection. Thus, the emerging picture
from the results of this study evidently demonstrates that the priming of sorghum by P. alvei, strain
T22, pre-conditioned the plants to rapidly launch dynamic defence responses which span a range of
primary and secondary metabolic pathways (Figure 6). Following the fungal infection (secondary
challenge), the primed plant showed enhanced and quicker reprogramming of primary metabolite
pools, modulation of resistance-related components of the lipidome, and a web of crosstalk between
phytohormone pathways, for immediate strong reactions (as early as 1–3 d.p.i) to block the fungal
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invasion and prevent further proliferation. This was indicated by: (i) higher levels of amino acids,
(Figures 4A and 6) and their downstream derivatives (Table 1); (ii) higher levels of zeatin (and its
glycosylated derivative) as well as the increased levels of JA- and SA-related compounds (Figure 4B,
Figure 6 and Table 1); and (iii) the elevated levels of the lipid components in primed plants (vs. naïve
plants), including hydroxy fatty acids and phytosphingosine (Figure 5A, Figure 6 and Table 1).

Moreover, the defence responses of both primed and naïve plants against the fungal infection were
characterised by altered phenylpropanoid and flavonoid pathways, involving the de novo biosynthesis
of the 3-deoxyanthocyanidin phytoalexins (luteolinidin and apigeninidin), luteolin and apigeninidin
and some of the associated conjugates (Figure 5B, Figure 6 and Table 1). These observations from this
study (depicted in Figure 6) correlate and contribute to the ongoing efforts in uncovering the underlying
molecular mechanisms involved in priming events, with a focus on the post-challenge primed stage.
As pointed out in the introduction, various studies have reported evidence that different priming
stimuli induce metabolic reprogramming characterised by modulation in primary metabolism (during
the priming phase): alterations in tricarboxylic acids fluxes and changes in amino acid and sugar
biosynthesis, as well as potentiation of secondary metabolite biosynthesis [12,31,77]. This re-organised
metabolism would serve to pre-condition the sorghum plants to launch a rapid and more effective
defence response upon pathogen (secondary) challenge. Some of the metabolic changes observed
during the post-challenge primed state (upon interaction with a pathogen) include such changes in
phenolic metabolites and production of phytoalexins of various chemical classes [6,12].

Figure 6. A contextual summary of results obtained in this study: A schematic diagram of comparative
metabolic changes in PGPR primed and naïve sorghum plants during a post-challenge stage with the
hemibiotrophic fungal pathogen, C. sublineolum. Following the rhizobacterium (P. alvei) application
(24 h), sorghum plants were inoculated with C. sublineolum (blue = naïve plants and orange = primed
plants). The primed plants showed a strong resistance to the fungal infection (symptomatology results),
which was metabolically characterised by increased levels of aromatic amino acids, lipid components
and phytohormones in the early phase of the post-challenge primed period: 1–3 d.p.i. Other metabolic
changes observed during the post-challenge primed stage spanned different metabolic pathways
particularly those involved in phenylpropanoid—and flavonoid synthesis.

3. Materials and Methods

3.1. Preparation of Sorghum Seedlings and Colletotrichum sublineolum Spore Suspensions

Sorghum [Sorghum bicolor (L.) Moench] seeds of a South African cultivar, NS 5655 (referred to
as sweet, abbreviated herein as SWT) (Agricol, Pretoria, South Africa) was used. The cultivar is a
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grain sorghum hybrid of the malting class, and classified as GM (no condensed tannins, no dark testa).
NS 5655 has a rating of ‘3’ (on a 1–9 scale with 1 being the most resistant) in displaying resistance
against head smut, leaf disease and root rot (Capstone Seeds, Howick, South Africa). The cultivar is
recognised by the Registrar of Plant Improvement, Department of Agriculture, Forestry and Fisheries,
South Africa. Surface sterilisation of the seeds, germination and cultivation were as previously
described [14]. The experimental plan was designed to monitor and compare the responses of primed
and non-primed sorghum seedlings to C. sublineolum infection over time points of 1, 3, 5, 7 and 9-days
post-infection (d.p.i.). The seedlings were planted in replicas of at least 10 plants per time point. Plants
were grown under the same environmental conditions to minimise biological variability due to factors
not related to the priming and fungal infection. The experimental design included three independent
biological replicates.

An isolate of C. sublineolum (PPRI 7183) pathogenic on sorghum, was obtained from the National
Collection of Fungi, Plant Protection Institute, Agricultural Research Council, Pretoria, South Africa.
The fungus was grown and maintained on potato dextrose agar (PDA) and growth of the fungus for
spore production was on 20% aqueous V8 vegetable juice media (pH 3.9) [14]. Harvested spores were
diluted and the concentration was determined using a haemocytometer and light microscope at 400×
magnification, and adjusted to 106 spores mL−1.

3.2. Plant Growth Promoting Rhizobacteria Preparation and Inoculation of the Sorghum Seedlings

A PGPR, Paenibacillus alvei (strain T22), (obtained from the collection of Prof. N. Labuschagne,
Department of Plant and Soil Science, University of Pretoria, South Africa) was tested for possible
priming effects on the sorghum plants responding to C. sublineolum infection. This PGPR has
previously been reported to successfully colonise tomato and wheat roots, and enhanced the growth
of these plants [18]. The production of siderophores, indole-acetic acid and related compounds,
and phosphate solubilisation were some of the elucidated mechanisms by which this bacterial isolate
enhanced plant growth [18,78]. Pure bacterial cultures were prepared on Nutrient agar and used to
inoculate sterile Nutrient broth medium (Biolab, Merck, Johannesburg, South Africa). The cultures
were incubated for 48 h on a rotary shaker at 25 ◦C and 150 rpm. After the incubation, the PGPR
concentration was determined and adjusted to 108 cfu mL−1. The PGPR suspensions were applied to
the vermiculite surrounding the plant roots at the 4-leaf growth stage. Control plants did not receive
the PGPR treatment.

3.3. Secondary Challenge: Inoculation of Sorghum Seedlings with C. Sublineolum

To investigate the metabolomic reprogramming that describes the post-challenge primed state,
the design of this study focussed on the simultaneous investigation of different conditions (naïve and
primed sorghum plants, both responding to a fungal infection) in comparison to a non-treated control
group. Following the 24 h PGPR application, the leaves of the PGPR-primed and naïve sorghum
plants were treated by spraying with the fungal spore suspension (106 spores mL−1, prepared as
described [14]) until run-off, using a hand sprayer. Following inoculation, treated plants were incubated
for 24 h at 30 ◦C in an incubator to provide 100% relative humidity. Subsequent to the 24 h incubation
period, the plants were returned to the original initial conditions: with cycles of 12 h fluorescent
light (≈85 µmol m−2 s−1) and 12 h darkness, and the temperature kept at 22–27 ◦C. Post-treatment
harvesting was performed at 1, 3, 5, 7 and 9 d.p.i. and 1, 5, 9 d.p.i. for the non-treated plants (negative
controls) [14]. Leaves were frozen with liquid Nitrogen for quenching of metabolic activity and stored
at −80 ◦C until metabolite extraction.

3.4. Metabolite Extraction and Analyses by Ultrahigh Performance Liquid Chromatography-High
Definition-Mass Spectrometry (UHPLC-HD-MS)

Metabolites were extracted from the PGPR-treated and naïve plants using 80% cold
aqueous-methanol, in a ratio of 1:15 (w/v), at 4 ◦C. Homogenisation, concentration and reconstitution
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were as previously described [14]. Reconstituted samples were filtered through 0.22 µm nylon syringe
filters and kept at −20 ◦C until analysed. The methanol used was LC-grade (Romil Pure Chemistry,
Cambridge, UK) and ultrapure water. The quality control (QC) samples were pooled samples prepared
from mixed aliquots of equal volume from all samples.

Analytical separation of the extracts was performed on a Waters Acquity HSS T3 C18
chromatography column (150 mm × 2.1 mm ×1.8 µm) thermostatted at 60 ◦C, on a Waters Acquity
UHPLC coupled in tandem to a Waters SYNAPT G1 Q-TOF mass spectrometer (Waters Corporation
Milford, CT, USA). Analyses were conducted with a binary solvent system consisting of 0.1% aqueous
formic acid (Sigma-Aldrich, Munich, Germany) (solvent A) and 0.1% formic acid in acetonitrile (Romil
Pure Chemistry, Cambridge, UK) (solvent B) at a flow rate of 0.4 mL min−1. Conditions for the
gradient elution were: 0–1 min 2% B, 14 min 70% B, 15–17 min 95% B, 18 min 2% B, with the column
allowed to calibrate for 2 min before the next injection. The total chromatographic run time was
20 min and the injection volume was 2 µL. The LC eluents were detected and further analysed by
mass spectrometry on a SYNAPT G1 Q-TOF MS system in V-optics operated in both ESI(+/−) modes.
Leucine encephalin (50 pg mL−1), [M + H]+ = 55.2766 and [M − H]− = 554.2615, served as a reference
calibrant, producing an average intensity of 350 counts scan−1 in centroid mode, and giving typical
mass accuracies between 1–3 mDa. Instrumental settings and conditions of the mass spectrometer were
as previously described [14]. The data were acquired with different collision energies (MSE) 0–30 eV
to generate increased fragmentation of the molecular ions so as to obtain as much fragment-based
structural information as possible of the detected compounds [79].

The software used to control the hyphenated system and perform all data manipulation was
MassLynx-XSTM 4.1 (Waters Corporation Milford, USA). To account for any analytical variability,
each sample was analysed in triplicate. The QC samples were used to condition the LC-MS system,
and to assess the reliability and reproducibility of the analysis: 6 QC runs at the beginning and end of
the batch and 6 QC injections every 10 injections. Randomisation was applied in sample acquisition
order. Blanks were injected to monitor background noise or any solvent-related contamination.

3.5. Data Analysis: Data Set Matrix Creation and Chemometric Analyses

The MarkerLynx-XSTM application manager of the MassLynx-XSTM 4.1 software (Waters
Corporation, Manchester, UK) was used for data pre-processing (matrix creation), producing a matrix
with rows representing the individual mass spectra, and columns representing retention time (Rt)-m/z
variable pairs, with integrated and normalised peak areas. MarkerLynx software parameters were set
to process the 1–15 min Rt range of the chromatograms and m/z domain of mass range 100–1000 Da.
The Rts were allowed to differ by ±0.2 min and the m/z values by ±0.05 Da. The mass tolerance used
was 0.01 Da, and the intensity threshold was 100 counts. Only data matrices that had noise levels less
than 50% (MarkerLynx cut-off) were retained for downstream chemometric and statistical analyses.
The MarkerLynx-generated data matrices were imported into SIMCA software, version 14 (Umetrics,
Umeå, Sweden) for chemometric analyses: employing mostly two unsupervised methods, PCA and
HCA, and a supervised modelling, OPLS-DA. For variable selection, OPLS-DA-generated loadings
S-plots and SUS-plots were evaluated. A nonlinear iterative partial least squares algorithm (within the
SIMCA software) [80] was used to manage the missing values, with a correction factor of 3.0 and a
default threshold of 50%. A seven-fold cross-validation (CV) method [81] was applied as a tuning
procedure in computing the chemometric models, and only the components positively contributing to
increase the prediction ability of the model (R1 significant components) were considered. Moreover,
model validations were rigorously and consistently applied, and only statistically (chemometrically)
satisfactory models were examined and used in data mining.

3.6. Metabolite Annotation: Putative Identification of Chemometrically Selected Metabolites

The data matrices from MarkerLynx-based data processing were exported to the Taverna
workbench for PUTMEDID_LCMS Metabolite ID Workflows [82,83]. The Taverna workflows allow
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for integrated, automated and high-throughput annotation and putative metabolite identification
from LC-ESI-MS metabolomic data. The Taverna Metabolite ID procedure consists of three main
workflows: (i) Pearson-based correlation analysis (List_CorrData), (ii) metabolic feature annotation
(annotate_Massmatch)—allowing for grouping together ion peaks with similar features such as Rt,
and annotating features with the type of m/z ion (molecular ion, isotope, adduct, others) believed to
originate from the same compound. The elemental composition/molecular formula (MF) of each m/z
ion is then automatically calculated; and (iii) metabolite annotation (matchMF-MF) of the calculated
MF (from the output file from workflow ii) is automatically compared and matched to the MF from a
pre-defined reference file of metabolites.

The following steps were performed for confidence in metabolite annotation: (i) the calculated
molecular formula of a selected metabolite candidate was manually searched against databases and
bioinformatics tools, mainly the Dictionary of Natural Products (DNP), Chemspider, the Plant Metabolic
Network—PlantCyc, Knapsack and the Kyoto Encyclopedia of Genes and Genomes (KEGG) [84] (ii)
structural confirmation through inspection of fragmentation patterns by examining the MS1 and MSE

spectra of the selected metabolite candidate; and (iii) comparative assessment with/against annotation
details of metabolites in sorghum, reported in literature, particularly in [83,84]. Metabolites were
annotated to MSI level 2 as classified by the Metabolomics Standard Initiative [85].

4. Conclusions and Perspectives

The priming phenomenon temporally involves different stages; the priming stage, a post-challenge
primed state and a transgenerational primed state. Detailed molecular mechanisms underlying each
stage remain elusive. Thus, the main focus of this study was to characterise the underlying metabolic
reprogramming related to the priming effects of a PGPR, the rhizobacterium P. alvei (T22), in sorghum
plants responding to an infection with a hemibiotrophic fungal pathogen, C. sublineolum. By employing
an LC-MS untargeted metabolomics approach of hydromethanolic-extracted metabolites, the study
revealed strong defence-related metabolic reprogramming observed in primed plants compared to
naïve plants as early as 1–3 d.p.i., pointing to the molecular preparedness of the primed plants to rapidly
halt the invasion and establishment of C. sublineolum. Evaluation of SUS-analyses pointed out that the
differential stronger defence responses against the fungal infection observed in P. alvei (T22)-primed
sorghum plants were mostly characterised by increased levels of aromatic amino acids, phytohormones
and defence-related components of the lipidome. Thus, the study showed that the PGPR-induced
priming of the sorghum plants potentiated the latter to speedily launch defence mechanisms. These
involved reprogramming of aspects of primary metabolism, reconfiguration of the cellular lipidome
and an intricate web of crosstalk between different phytohormone pathways for immediate strong
reactions to halt the fungal invasion. Furthermore, other defence responses in both naïve and primed
plants involved an altered metabolism that spans a number of metabolic routes, with the centrality of
both phenylpropanoid and flavonoid pathways. These changes included a complex mobilisation of
phenolic compounds and de novo biosynthesis of 3-deoxyanthocyanidin phytoalexins (apigeninidin,
luteolinidin), apigenin, luteolin and some of the associated conjugates.
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