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Recent experimental findings show that activation of the host immune system is required
for the success of chemo- and radiotherapy. However, clinically apparent tumors have
already developed multiple mechanisms to escape anti-tumor immunity. The fact that
tumors are able to induce a state of tolerance and immunosuppression is a major obsta-
cle in immunotherapy. Hence, there is an overwhelming need to develop new strategies
that overcome this state of immune tolerance and induce an anti-tumor immune response
both at primary and metastatic sites. Nanovectorized radiotherapy that combines ionizing
radiation and nanodevices, is one strategy that could boost the quality and magnitude of
an immune response in a predictable and designable fashion.The potential benefits of this
emerging treatment may be based on the unique combination of immunostimulatory prop-
erties of nanoparticles with the ability of ionizing radiation to induce immunogenic tumor
cell death. In this review, we will discuss available data and propose that the nanovector-
ized radiotherapy could be a powerful new strategy to induce anti-tumor immunity required
for positive patient outcome.
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INTRODUCTION
The Janus face of the immune system in carcinogenesis has long
been controversial and one of the most challenging in immunol-
ogy. With progress in biological tools such as transgenic mouse
technologies, it is now recognized that the immune system plays
a dual role in cancer. For instance, it suppress tumor progression
by identifying and destroying neoplastic cells (Dunn et al., 2002;
Schreiber et al., 2011) but also promotes tumor growth by selecting
tumor cells more adept at evading immune-mediated destruction
(Khong and Restifo, 2002; Smyth et al., 2006; Zitvogel et al., 2006;
Vesely et al., 2011) leading to the establishment of an immuno-
suppressive microenvironment that fosters carcinogenesis (Radoja
et al., 2000; Whiteside, 2008). However, the host immune system
not only impacts on cancer development but also on response to
treatment. Experimental evidence strongly supports the concept
that the activation of the immune system is essential for success-
ful chemo- and radiotherapy (Casares et al., 2005; Apetoh et al.,
2007b; Obeid et al., 2007a,b; Zitvogel et al., 2008). By improving
the quality of released signals, some conventional treatments trig-
ger a peculiar type of cell death that elicits a potent anti-tumor
immune response required for positive patient outcome (Zitvogel
et al., 2008). Called “immunogenic cell death” (ICD), this type of
tumor cell death is defined by at least three signals: calreticulin
(CRT) exposure (Obeid et al., 2007b; Zitvogel et al., 2010), release
of high mobility group box-1 (HMGB-1; Apetoh et al., 2007a,b),
and ATP (Ghiringhelli et al., 2009; Martins et al., 2012). Among
all current available treatments, only radiotherapy (Chakraborty
et al., 2004), anthracyclines (Casares et al., 2005; Mattarollo et al.,
2011), oxaliplatin (Panaretakis et al., 2009; Tesniere et al., 2010),

and cyclophosphamide (Schiavoni et al., 2011) have been
shown to generate these signals in the proper spatiotempo-
ral order leading to an in situ tumor vaccine (Ma et al., 2010;
Hannani et al., 2011).

Therefore, conventional treatments could be used not only for
their cytocidal effects but also for their ability to induce anti-
tumor immunity. This idea extends far beyond treatments that
already exhibit pro-immunogenic effects since envisioning the use
of immune response modifiers (IRM) to optimize the synergy with
the immune system offers great opportunities to provide alterna-
tive ways of tumor-specific immunity (Schiller et al., 2006; Cheever
et al., 2008). For instance, Demaria and colleagues demonstrated
significant increase in treatment efficiency when radiotherapy is
combined with anti-cytotoxic T lymphocyte antigen-4 (CTLA-4;
Demaria et al., 2005; Matsumura et al., 2008; Dewan et al., 2009;
Pilones et al., 2009), a monoclonal antibody that blocks CTLA-4
receptor well-known to be implicated in immune tolerance (Peggs
et al., 2006; O’Day et al., 2007).

In consideration of this emerging vision, the ability of
anti-cancer strategies to induce anti-tumor immunity has to
be investigated. Among new treatment approaches, internal
radiotherapy using nanoparticles (NPs) holds great promise
for the management of refractory tumors (Allard et al., 2008;
Vanpouille-Box et al., 2011b). Primarily designed to focus radi-
ation to a specific target while protecting healthy tissues from
radiation, nanovectorized radiotherapy has been shown to elicit
anti-tumor immunity in a preclinical model of glioblastoma
(Vanpouille-Box et al., 2011a). This new treatment concept is
based on the use of NPs as reservoir for radionuclides enabling
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the entrapment of alpha (α) and beta (β) emitters conferring
them different ways to directly kill tumor cells as well as dis-
tinct interactions with the microenvironment (Ting et al., 2010).
The NP itself can also be designed to have properties of an IRM
able to modify and improve the immune response through the
use of peculiar biomaterials and/or surface ligands. Therefore,
nanovectorized radiotherapy that combines ionizing radiation and
nanodevices, is one therapy that could boost the quality and mag-
nitude of an immune response in a predictable and designable
fashion. Given the novelty of nanomedicines application, only a
few studies analyzed NP’s adjuvant effect on the host’s innate and
adaptive immune response. In this review, we will discuss available
data and propose that the nanovectorized radiotherapy could be
a powerful new strategy to induce anti-tumor immunity required
for successful anti-cancer treatment.

NANOPARTICLE: A NEW KIND OF IMMUNE RESPONSE
MODIFIER
The ideal anti-cancer treatment would be the one capable of reduc-
ing and eliminating tumors without causing any damage to sur-
rounding healthy tissues. In that context, over the past two decades,
nanotechnology-based approaches have emerged as a promising
field that aims at overcoming limitations encountered in conven-
tional anti-cancer treatments. Numerous nanodevices have been
engineered using top-down or bottom-up approaches, generally
ranging in dimensions from one to a few hundred nanometers in
at least one dimension (Perry et al., 2011). NPs can be designed to
carry therapeutics drugs (chemo- or radio-therapeutics) loaded
on or within the nanocarriers by chemical conjugation or simply
by encapsulation (Figure 1; Sengupta et al., 2005; Vanpouille-Box
et al., 2011b; Vrignaud et al., 2011). Therefore, NPs have the abil-
ity to improve stability of encapsulated drug as compared to free
entities and release in a more controlled manner over time to main-
tain anti-cancer agents within a therapeutic window (Amstad and
Reimhult, 2012). Additionally, their flexible chemical properties
allow NP surface modifications to increase their blood circulation
half-life and improve their biodistribution profile. For instance,
NP can be functionalized with polyethylene glycol (PEG) in order
to generate a steric barrier on the surface preventing adherence

FIGURE 1 | Schematic nanoparticle.

of opsonins to the NP and therefore reducing their clear-
ance by the reticuloendothelial system (RES; Otsuka et al., 2003;
Yoncheva et al., 2005).

A wide range of nanodelivery systems are currently in develop-
ment. NPs can be composed of natural (Liu et al., 2011; Tavangar
et al., 2011) or synthetic (Powell et al., 2011), and degradable
(Huynh et al., 2009) or non-degradable polymers (Peek et al.,
2008). The choice of components that constitute the nanode-
vice is critical as it considerably influence the NPs properties. For
instance, the drug release profile can be tuned by the size and mate-
rial composition of the NP (Paillard et al., 2010). Additionally, the
NP is amenable to surface modifications (Brannon-Peppas and
Blanchette, 2004; Fahmy et al., 2005; Weiss et al., 2007; Beduneau
et al., 2008; Byrne et al., 2008; Hirsjarvi et al., 2011; Talekar et al.,
2011) providing them targeting properties to reach specifically an
organ or even a specific cell (Weissleder et al., 2005; Beduneau
et al., 2008; Gu et al., 2008; Talekar et al., 2011). With this unique
ability, NPs can easily be engineered to precisely synergize with
the immune system and be considered as a powerful “smart” IRM
designed to reach a specific location and to interact with specific
cells.

As a result, we will discuss each steps that could be harnessed in
NP’s designing to interact with the immune system in a predictable
fashion, that are (1) the choice of biomaterials that composed the
NPs, (2) the proper size and charge of NPs to better synergize
with the host, and (3) the possible use of ligand on NPs surface to
specifically target immune or tumor cells.

IMMUNE ADJUVANT PROPERTIES OF NANOPARTICLES COMPONENTS
The main goal of immunotherapy-based strategy is to harness
immune system not only to fight cancer by targeting and killing
tumor cells in a specific manner, but also to alert the immune sys-
tem so that the residual tumor cells are kept in check. Active forms
of immunotherapy, including cancer vaccines, represent one of
the promising strategies. These approaches aims at inducing the
activation and expansion of tumor-specific T cells, which have
proven to be the most powerful immune mechanism to clear
tumors (Porter et al., 2011).

Many efforts have focused on enhancing cross-presentation,
a process mediated by antigen presenting cells (APCs) that are
defined as cells that can process antigens of both endogenous and
exogenous origin (Trombetta and Mellman, 2005). Endogenous
antigen (such as normal cell proteins, tumor or viral antigens) are
processed in the cytosol and presented in the context of major
histocompatibility complex (MHC) class I molecules to be recog-
nized by CD8+ T cells (Figure 2; Itano and Jenkins, 2003) leading
to strong cytolytic and Th1 inflammatory responses. APCs are
also capable to internalize exogenous antigens. The latter are pro-
cessed in specialized compartments called endocytic vesicles or
endosome, and presented through MHC class II molecules to
be recognized by CD4+ T cells (Figure 3; Watts, 2004). APCs
include B cells, macrophages, and dendritic cells (DC). Because
of their wide distribution, location at critical sentinel sites (skin
and mucosal surfaces), intrinsic migratory capacity, and ability
to activate naïve T cells, DCs are considered as the most pow-
erful professional APCs (Itano and Jenkins, 2003; Trombetta
and Mellman, 2005; Delamarre and Mellman, 2011). DCs are
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FIGURE 2 | Antigen presentation via major histocompatibility

complex class I. Pathogen-derived or self-proteins within the cytosol of
antigen presenting cells (APCs) are enzymatically digested into peptides,
mainly by cytosolic proteases (proteasomes), and are then transported by
transporter associated with antigen processing molecules (TAP) into the

endoplasmic reticulum (ER). In the ER lumen, peptides bind to MHC class I
molecules, which are subsequently transported via the Golgi to the plasma
membrane. The endogenous antigen presented by MHC class I will then be
recognized by the CD8+ T cells leading to adaptive cellular immune
responses.

indeed capable of processing both exogenous and endogenous
antigens and present peptide in the context of either MHC class
I or II molecules. As DCs mature, they acquire the properties
necessary to form and transport peptide-loaded MHC class II
complexes to the cell surface (Cella et al., 1997). Antigen trans-
port to the cell surface is correlated with increased expression
of co-stimulatory molecules, such as CD80, CD86, and CD40,
molecules well-known to amplify T cell receptor (TCR) signal-
ing and promote T cell activation (Ni and O’Neill, 1997). Given
the critical role of DC in eliciting adaptive immune response,
efforts have been made to develop new strategies that target and
stimulate DCs.

Nanomedicine-based treatments represent one of the main
promising approaches since nanoscale drug delivery system could
be thought and designed from the beginning to properly inter-
act with the host immune system. For instance, some NPs are
able to entrap drug already known to induce ICD (i.e., radionu-
clide; Sun and Xie, 2011; Tang et al., 2011; Vanpouille-Box et al.,
2011a), oxaliplatin (Jain et al., 2010; Paraskar et al., 2012), and
cyclophosphamide (Salgueiro et al., 1999), and exhibit biologi-
cal effects such as endolysosomal escape (Panyam et al., 2002;
Paillard et al., 2010) and biological barrier crossing (De Jong
and Borm, 2008; Paillard et al., 2010). Among them, NPs of
poly(D,L-lactide-co-glycolide) (PLGA) hold great promise and
have been extensively studied for their ability to activate DCs

for priming antigen-specific T cell responses (reviewed in Hamdy
et al., 2011). PLGA is a Food and Drug Administration (FDA)-
approved biodegradable polymer that had been widely used in
several controlled release drug products for human use (Jain,
2000; Dinarvand et al., 2011; Jain et al., 2011). One of the
main characteristic of PLGA relies with its flexibility that allows
manipulating its physico-chemical properties. Therefore, PLGA
can shift the delivery of encapsulated drugs to either cytoplasm
(for MHC class I presentation and CD8+ T cell activation) or
to the endosome (for MHC class II and CD4+ T cells activa-
tion; Hamdy et al., 2007, 2008; Heit et al., 2007). More recently,
PLGA has been shown to activate the NOD-like receptor fam-
ily pyrin domain containing 3 [NLRP3 also known as cryopyrin,
cold-induced autoinflammatory syndrome 1 (CIAS1) or NALP3]
inflammasome (Demento et al., 2009; Sharp et al., 2009). It has
indeed been demonstrated that cellular internalization of PLGA
and polystyrene microparticles activate of the NLRP3 inflamma-
some through lysosomal damage and caspase-1 activation leading
to the production of large amount of IL-1β by DCs (Sharp
et al., 2009). The ability of NP’s components to directly influ-
ence NLRP3 inflammasome is very important since it has been
described that NLRP3 inflammasome and subsequent IL-1β secre-
tion is critical for stimulation of anti-tumor T cells responses
following chemotherapy (Ghiringhelli et al., 2009; Menu and
Vince, 2011).
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FIGURE 3 | Antigen presentation via major histocompatibility

complex class II. Exogenous antigens are derived from proteins that are
endocytosed and processed by proteases. Peptides bind to newly
synthesized MHC class II molecules in specialized antigen-processing

vesicles (MHC class II-enriched compartment), and the complexes are
externalized to the plasma membrane. CD4+ T cells will then recognize the
exogenous antigen presented by MHC class II leading to the stimulation of
CD4 T cells humoral responses.

Poly(D,L-lactide-co-glycolide) is not the only strategy that has
been investigated to achieve DC cross-presentation. The use of
pH-responsive materials that naturally foster antigen escape from
the endosome into the cytosol where MHC class I antigen pro-
cessing begins has emerged. For instance, Murthy et al. (1999) and
Jones et al. (2003) have developed synthetic polymer containing
alkyl(acrylic acid) monomers that become protonated at endoso-
mal pH levels (5.5–6.5). Once protonated, the polymers destabilize
the endosomal membrane and allow antigen to escape into the
cytoplasm (Jones et al., 2003).

Other particle materials can stimulate signaling pathways that
lead to cellular activation. Baba and colleagues have shown that
poly(gamma-glutamic acid) NPs can be used as a vaccine adjuvant.
These NPs induced DC maturation through MyD88-mediated
nuclear factor kappa B (NF-κB) activation and the p38 mitogen-
activated protein kinase (MAPK) pathways, in a manner somewhat
similar to lipopolysaccharide (LPS)-induced maturation of DC
(Uto et al., 2007, 2011a,b; Hamasaki et al., 2010). Therefore, NPs
components act as immune adjuvant simply by inducing matu-
ration of DC. This concept was also supported by Babensee and
colleagues and Elamanchili and colleagues work, showing that
exposure of bone marrow derived DC to polymers, notably PLGA,
results in DC maturation as measured by the up-regulation of cell
surface stimulatory markers such as MHC class II, CD40, CD80
and CD86 (Diwan et al., 2003; Elamanchili et al., 2004; Yoshida
and Babensee, 2004, 2006; Yoshida et al., 2007; Babensee, 2008).

Taken together, evidences clearly indicate that nanodevices for
targeted delivery of drugs or radionuclides can be composed of
biomaterials that possess different immune adjuvant properties.
Therefore, the choice of biomaterials to design NPs could provide
a potent tool to induce anti-tumor immunity.

INFLUENCE OF NANOPARTICLE SIZE AND CHARGE
ON IMMUNE SYSTEM
Another parameter to consider for immunogenic NP designing
is the size and the charge of the NP. DCs and macrophages are
both phagocytic cells. Hence, particles with dimension similar to
pathogens (≥10 μm) are generally readily phagocytosed. Studies
have shown that DCs preferentially phagocyte smaller particles in
the viral range, while macrophages more efficiently ingest bacte-
rial size particle (Gamvrellis et al., 2004). It has also been reported
that NP with a diameter <500 nm were more effective in stimu-
lating cytotoxic T lymphocytes (CTL) responses in vivo (Allsopp
et al., 1996; Nixon et al., 1996). Possible explanation relies with
the interactions of NPs with opsonins. Indeed, larger surface area
of the NP allows more opsonins bounding and therefore, a faster
degradation and rapid release of the encapsulated drug inside the
phagosome (Owens and Peppas, 2006).

Additionally, physico-chemical properties of particle surface,
particularly surface charge and surface chemistry, are known
to affect both DC uptake and maturation. For instance, pos-
itively charged cationic particles in general have greater initial
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affinity toward cell surface than negatively charged or neutral par-
ticles (Josephson et al., 1999; Foged et al., 2005; Perez-Martinez
et al., 2011).

SURFACE MODIFICATION OF NANOPARTICLES
To promote and enhance specific interactions between NP and
the microenvironment, the surface of particles can be decorated
with targeting moieties that are recognized specifically by targeted
cells. Two main strategies can be envisioning: the one that target
immune cells and the other one that target tumor cells to kills
them and therefore, to provide proper “danger signal” required for
immune system activation.

Immune cells targeting
In order to specifically enhance the maturation of DC, Palumbo
et al. (2011) bound CD40 ligand (CD40L) on NP’s surface. CD40L
is indeed transiently expressed on activated CD4+ T helper cells
and its binding with the CD40 receptor on DCs is important
for their complete maturation and transformation into compe-
tent APC (Loskog and Totterman, 2007). However, no significant
results have been reported in their studies, suggesting the com-
plexity of conferring immunogenic properties to NPs (Palumbo
et al., 2011).

In another study, Dominguez and Lustgarten (2010) engineered
immunogenic NPs to induce anti-tumor immune response. They
indeed succeeded in binding not only one ligand but two to further
stimulate the immune system. By linking anti-neu mAb directed
against a tumor antigen and anti-CD40 mAb on NP’s surface, they
generated an anti-tumor response resulting in tumor rejection
with high production of Th1-proinflammatory cytokines, a stark
reduction of regulatory T cells within the tumor and activation
of specific cytotoxic immune response (Dominguez and Lust-
garten, 2010). These recent results strongly support the potential
use of biodegradable NPs to stimulate a tumor-specific immune
response.

Tumor cell targeting
Specific tumor targeting could indirectly stimulate the immune
system if the quantity and the quality of released signal in a specific
location (i.e., the tumor) can be achieved. Many active targeting of
NPs to tumor has been extensively studied and led notably to the
development of NP conjugated with specific ligands that recognize
a tumor-surface marker.

Over the past three decades, the generation of murine mAbs
against tumor-associated antigens became a focal point of research
illustrated by numerous studies being reported during the 1980s
that dealt with NPs and mAb binding to their surface (Leserman
et al., 1980; Barbet et al., 1981; Harsch et al., 1981; Hashimoto
et al., 1983; Guidoni et al., 1984). Since then, a number of clin-
ical trials have demonstrated the feasibility of antibody-based
targeting (Bernard-Marty et al., 2006; Yoong et al., 2011; Foran,
2012; Smyth and Cunningham, 2012). Among mAb that were
studied, Trastuzumab (or Herceptin®), a mAb that binds to the
human epithelial growth factor receptor 2 (HER2), has been
bound on NP’s surface to specifically target breast cancer cells
(Hayes et al., 2006; Kirpotin et al., 2006). This targeting strat-
egy has improved therapeutic efficiency of an HER2-targeted

NPs formulation in comparison to its non-target one
(Park et al., 2002).

Although antibodies have proven to be effective targeting
agents, there are inherent issues such as decreased receptor affin-
ity due to inadequate conjugation methods, insufficient tumor
cell penetration, and non-specific binding of antibodies to cel-
lular receptors. In that context, new technologies are currently
being explored to enhance the selectivity and efficacy of ligands
while attempting to overcome the shortcomings associated with
existing targeting moiety. For example, peptides have recently
emerged as targeting agent owing to the relative simplicity of
synthesis and purification. The integrin family, particularly the
αvβ3 integrins, has been widely studied to target cancer cells with
NPs. For instance, a synthetic peptide of arginine–glycine–aspartic
acid (RGD) residues has been used as a ligand conjugated to
NPs for targeting αvβ3 integrins expressed on endothelial cells.
Recent studies are further optimizing integrin targeting by engi-
neering novel peptide moieties which bind with better affinity to
integrins that current RGD tags (Ji et al., 2012; Xu et al., 2012; Zhan
et al., 2012).

Binding bombesin (BBN) synthetic peptides on NP’s surface
is another targeting strategy in development. BBN peptides are
composed with 14 amino acids and present high affinity toward
gastrin-releasing peptide (GRP) receptors (Smith et al., 2005) that
are overexpressed in many cancer such as prostate (Markwalder
and Reubi, 1999; Nagasaki et al., 2012), breast (Chao et al., 2009),
and small-cell lung carcinoma (Moody et al., 1985; Oremek and
Sapoutzis, 2003). Promising results were reported, notably by
Chanda et al. (2009, 2010), which demonstrated that the conjuga-
tion of BBN peptides on gold NPs’ surface lead to selective uptake
of NP-BBN conjugates in prostate tumor sites.

However, NPs targeting strategies are not limited to those two
approaches. Conferring targeting properties to NPs was indeed
one of the main focuses of nanomedicine (Katsogiannou et al.,
2011; Kolhatkar et al., 2011; Talekar et al., 2011). Therefore, a
plethora of ways to generate “smart” NPs targeting a specific cell is
currently in development which highlights the extreme flexibility
of this new technology.

RADIONUCLIDES FOR NANOVECTORIZED RADIOTHERAPY
Conventional radiotherapy (X-rays) is the mainstay adjuvant
treatment of cancer. However, the radiation dose to surround-
ing normal tissues often limits its use and therefore, opened a very
challenging research area in radiation oncology: the one that aims
at reducing and destroying tumors without causing any damage
to healthy tissues.

In that context, new external photon beam radiation ther-
apy modalities have recently been emerged with the develop-
ment of three-dimensional conformal radiotherapy (3D-CRT)/
volumetric-modulated arc therapy (VMAT), helical tomotherapy,
intensity-modulated radiotherapy (IMRT), γ-rays (60Co)-knife-
therapy, cyber-knife-radiotherapy–radiosurgery with 4D-image-
guided tracking and 6D-image-guided stereotactic-radiotherapy,
that dynamically synchronize imaging, patient positioning and
treatment delivery with a dose escalation. These new approaches
allow obtaining more conformal “radio-ablative” treatment of
tumor lesions while minimizing the damage to the nearby normal
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tissues (Deb and Fielding, 2009; Teoh et al., 2011; Yu and Tang,
2011; Wen et al., 2012).

Another increasing successful radiation technique is the hadron
therapy that uses a focus beam of quark-constituted of proton
(H+), carbon ion or neutrons, allowing more precise ionizing radi-
ation delivery. Compared to photons (X-rays and γ-emissions),
proton beams are characterized by a low entrance dose while a
maximal at a user-defined depth (“Bragg peak”) and almost no
damage on the exit path. As a result, the chief advantage of pro-
ton therapy relies with its ability to precisely localize the radiation
dosage compared to other form of external beam radiotherapy
(DeLaney, 2011; Liu and Chang, 2011).

These newly developed external either photon- or especially
hadron-therapy technologies are becoming more and more com-
petitive, as for precisely target locally confined tumors, with
brachytherapy modalities as alternatives options to anyhow carried
out surgical approaches.

Radiation brachytherapy with either permanent interstitial
implantation or temporary implant has also gained large accep-
tance in the last decades particularly for the management of
prostate cancer (Alberti, 2011; Gomez-Veiga et al., 2012) and cer-
vical cancer (Beddy et al., 2011; Walsh et al., 2011). This internal
radiation approach is highly linked to the tumor type and size.
For instance, brachytherapy is usually initiated toward the ends
of external beam radiation after tumor regression has occurred
and allows high doses to be delivered to the residual disease with
relative sparing of surrounding normal tissues (Monk et al., 2007).

Another arm of brachytherapy consists in harnessing
nanomedicines, such as radiolabeled monoclonal antibodies
and/or biomaterial vectors, to generate a localized radiation
(Allard et al., 2008; Barbet et al., 2012; Memon et al., 2013). As
a result, with the identification of biological target overexpressed
in cancer, brachytherapy is no longer limited to a specific tumor.
In that context, nanovectorized radiotherapy that combines NPs
and ionizing radiation is becoming a potent new radiotherapy
approach that also overcomes non-specific radiation. Radioactive
NPs have indeed been shown to modify the radiation distribu-
tion profile of a radionuclide by avoiding its fast elimination
(Vanpouille-Box et al., 2011b) but also by maintaining radiation
to a specific location for 96 h after their injection (Vanpouille-
Box et al., 2011a). Even if few data regarding radioactive particle
loading capacity, specific radioactivity has been shown to be
compatible with clinic application (Salem et al., 2002, 2005).

Compared to the newly developed radiotherapy strategies,
nanovectorized radiotherapy presents the main advantage of being
a low-cost technology by the use of radionuclides eluted from gen-
erators easily available, such as the 188W/188Re generator (Lepareur
et al., 2011). More importantly, radioactive NPs’ formulation is
simple providing them high availability and accessibility to patient.
As a consequence, a spread of this new technology in most of clin-
ical institutions, including those of developing countries, can be
envisioned.

Radionuclides that decay by the following three general cat-
egories of decay have been studied for therapeutic potential of
nanovectorized radiotherapy: beta (β)-particles emitters (yttrium-
90, rhenium-188; Li et al., 2004; Tsai et al., 2011), alpha (α)-
particles emitters (bismuth 213, astatine-211; Sofou et al., 2004;

Couturier et al., 2005; Boskovitz et al., 2009) and auger electron-
emitters (iodine-125, gallium-67; Snelling et al., 1995). However,
the extreme toxicity of auger particles as well as concerns regarding
radioprotection limited their use (Bodei et al., 2003; Milenic et al.,
2004). Therefore, we will focus on α- and β-emitters and discuss
their main characteristics that may lead to different interactions
with the microenvironment.

ALPHA (α) vs. BETA (β) EMITTERS
Particles emitted during atomic decay can be classified as low or
high linear energy transfer (LET) radiation. The LET corresponds
to the energy released by the radiation over a certain distance
(expressed in keV/μm). At absorbed doses that are equivalent to
those of low-LET radiation, high-LET particles are more cyto-
toxic. This phenomenon is called “radiation quality.” Most of the
radionuclides used in internal radiotherapy; such as iodine-131
(Grunwald and Ezziddin, 2010; Leahy and Turner, 2011), yttrium-
90 (Kulik et al., 2008; Menda et al., 2010; Kunikowska et al., 2011),
lutetium-177 (Gains et al., 2011; Kunikowska et al., 2011), 188Re
(Kumar et al., 2007; Torres-Garcia et al., 2008), or rhenium-186
(Syed et al., 2006; van Dodewaard-de Jong et al., 2011); emit
low-LET radiation of 0.2 keV/μm in the form of β-particles as
well as internal conversion electrons (Milenic et al., 2004). High-
LET particle emitters used in internal radiotherapy only include
the α-emitters bismuth-213, bismuth-212, and astatine-211, as
well as lead-212 and actinium-225, which generate bismuth-212
and bismuth-213, respectively. These radioisotopes emit high-
LET radiation (60–230 keV/μm) that produces clusters of DNA
damage that are difficult to repair.

Linear energy transfer is intimately linked to the energy carried
by a particle and the depth it penetrates into the biological tissue.
Therefore, β-particles carry intermediate energy (0.50–2.30 MeV)
but have a long range in tissues (1–12 mm of tissue penetration).
This lengthy range reduces the need for cellular internalization
and so targeting close to or at the cell membrane is sufficient.
Additionally, the range of β-particles, as compared to the diameter
of cells, allows them to traverse clusters of cells (from 10 to 1,000
cells; O’Donoghue et al., 1995).

Alpha-particles have a high energy (5–8 MeV) and an interme-
diate path length (50–80 μm) in biological tissues that corresponds
to the diameter of several cells (2–10 cells).

Beta-emitters and alpha-emitters are produced either by
cyclotron irradiation or by reactor irradiations, incorporated into
a generator, and subsequently eluted (Haddad et al., 2008; Halime
et al., 2009; Bakht and Sadeghi, 2011; Pillai et al., 2012). For thera-
peutic application, numerous criteria have to be considered while
selecting a radionuclide. Therefore, regarding the tumor size, the
advantage of a type of radiation decay will be preferably used in a
specific application. For instance, β-particles will be more suitable
radionuclides for solid tumors because of their ability to deposit
a large amount of energy at a high dose rate. However, other
criteria have to be considered for clinical applications: (1) avail-
ability of the radionuclide at a reasonable cost, (2) proper nuclear
decay properties and absence of hindering daughter nuclides, and
(3) a physical half-life long enough to allow internal radiother-
apy. As a consequence, among all radionuclide available, only
a few are currently developed for nanovectorized radiotherapy
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FIGURE 4 | Schematic depiction of nanoparticles loaded with beta- and alpha-emitters.

(Sofou et al., 2004; Allard et al., 2008; Hamoudeh et al., 2008;
Bult et al., 2010; Vanpouille-Box et al., 2011a,b). Explanations can
mainly be ascribed to the variable pertaining to their physico-
chemical properties and to their chemistry that could be somewhat
complex according to the NP used.

It is well-established that the radiobiology of high-LET radi-
ation differs greatly from that of low-LET radiation (Goodhead
et al., 1993). For instance, increase mRNA expression of inflam-
matory mediators and cytokines [e.g., interferon-γ (IFNγ)] that
prompt immune responses has been identified in lymphocytes
after their exposure to low-LET radiation (Amundson et al., 2000,
2004; Kang et al., 2003). In this respect, we can suppose that
APCs are able to detect radiolytic products that lead to the
production of cytokines such as IFNγ, well-known to be impli-
cated in adaptive immune response (Schoenborn and Wilson,
2007). An increased expression of genes coding for CD1C, CD1D,
CD40, CD69, and IFNγ in lymphocytes after α-radiation exposure
has been reported (Turtoi et al., 2010). Turtoi and Schneeweiss
(2009) and Turtoi et al. (2010) indeed showed that a number of
rapidly modulated early response genes in α-particle-irradiated
lymphocytes that are associated with DNA repair and immune
response mechanisms. However, the current knowledge of the
biology of high-LET radiation is insufficient to make definite
conclusions.

EFFECT OF THE NANOVECTORIZED RADIOTHERAPY ON IMMUNE
SYSTEM ACTIVATION
Immunotherapies are rarely effective as monotherapy but grow-
ing evidence supports a synergy between radiotherapy and IRM
(Demaria et al., 2005; Dewan et al., 2009; Formenti and Demaria,
2009; Pilones et al., 2009; Newcomb et al., 2010). Among emerg-
ing new approaches, nanovectorized radiotherapy holds great
promises as a new powerful anti-cancer treatment that could

harness immunogenic properties of both NPs and ionizing radi-
ations. Supporting this concept, we recently demonstrated that
NPs loaded with rhenium-188, a β-emitter, are potent stim-
ulators of tumor-specific immune response resulting in tumor
rejection with high production of IFNγ cytokine, increase recruit-
ment of immune effector T cells within the tumor and memory
response in long-term survivor animals (Vanpouille-Box et al.,
2011a). Intriguingly, remarkable survival benefit was only seen
when two different types of stereotactic injections were used sug-
gesting that the distribution of NP loaded with rhenium-188
within the tumor has a direct impact on the treatment efficiency.
Therefore, the use of radionuclide within NP could provide addi-
tional advantages as compared to conventional radiotherapy where
the distribution of ionizing radiation is homogenous.

Much work remains to be done to determine the effects of both
low-LET (β-emitters) and high-LET (α-emitters) emitters on the
host immune system. Nevertheless, the capability of NPs to entrap
α- and β-radionuclides potentially provides additional means to
fine tune the microenvironment interactions (Figure 4). Further
investigations are required to better understand the interactions
between ionizing radiations and the host immune system. Nev-
ertheless, the potential benefits of nanovectorized radiotherapy
may be based on the unique combination of immune-stimulatory
NP with the ionizing radiation ability to induce an immunogenic
tumor cell death.

CONCLUSION
In summary, NPs represent a potent immune adjuvant able to
mimic, enhance, stimulate, and interact with the host immune
system especially at the level of DCs. Although PLGA’s immune
effects have been studied in some details, other biomaterials used
to produce NP may have different chemical properties that affect
immune cells. Given the considerable variety of biomaterials that
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can be used to design NPs, further investigations that aim at
identifying the immune stimulant abilities of NP’s components
are required. This could be very critical to develop personalized
nanomedicine that aims to induce anti-tumor immunity in a pre-
dictable and desirable fashion. Similar to the immune system
itself, nanodevices present tremendous flexibility and plasticity
and could be therefore considered as an IRM platform capable
to be tailored according to the desired application. Their unique
abilities to encapsulate a high payload of radionuclide; notably

high-LET α-particles and low-LET β-emitters; and to undergo
surface modifications, further support their strong potential as
a new anti-cancer strategy enable to induce effective anti-tumor
immunity.

Much remains to be learned about the effect of nanovec-
torized radiotherapy but initial data showing that the delivery
of ionizing radiation via NPs can be effective at inducing anti-
tumor immunity suggest that this new approach warrants further
investigations.
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