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Abstract

Background: The Nuclear Pore Complex (NPC) facilitates molecular trafficking between nucleus and cytoplasm and is an
integral feature of the eukaryote cell. It exhibits eight-fold rotational symmetry and is comprised of approximately 30
nucleoporins (Nups) in different stoichiometries. Nups are broadly conserved between yeast, vertebrates and plants, but
few have been identified among other major eukaryotic groups.

Methodology/Principal Findings: We screened for Nups across 60 eukaryote genomes and report that 19 Nups (spanning
all major protein subcomplexes) are found in all eukaryote supergroups represented in our study (Opisthokonts,
Amoebozoa, Viridiplantae, Chromalveolates and Excavates). Based on parsimony, between 23 and 26 of 31 Nups can be
placed in LECA. Notably, they include central components of the anchoring system (Ndc1 and Gp210) indicating that the
anchoring system did not evolve by convergence, as has previously been suggested. These results significantly extend
earlier results and, importantly, unambiguously place a fully-fledged NPC in LECA. We also test the proposal that
transmembrane Pom proteins in vertebrates and yeasts may account for their variant forms of mitosis (open mitoses in
vertebrates, closed among yeasts). The distribution of homologues of vertebrate Pom121 and yeast Pom152 is not
consistent with this suggestion, but the distribution of fungal Pom34 fits a scenario wherein it was integral to the evolution
of closed mitosis in ascomycetes. We also report an updated screen for vesicle coating complexes, which share a common
evolutionary origin with Nups, and can be traced back to LECA. Surprisingly, we find only three supergroup-level differences
(one gain and two losses) between the constituents of COPI, COPII and Clathrin complexes.

Conclusions/Significance: Our results indicate that all major protein subcomplexes in the Nuclear Pore Complex are
traceable to the Last Eukaryotic Common Ancestor (LECA). In contrast to previous screens, we demonstrate that our
conclusions hold regardless of the position of the root of the eukaryote tree.
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Introduction

Nuclear pore complexes (NPCs) mediate molecular trafficking

between nucleus and cytoplasm [1,2]. They are composed of ,30

different proteins, called nucleoporins (Nups), that are present in

multiple copies in each pore [3,4,5]. Most Nups are constituents of

specific sub-complexes, which form the major structural units of

the pore: cytoplasmic fibrils, central core and the nuclear basket

(Figure 1a) [6,7].

The majority of Nups are conserved between mammals and

yeasts [3,4,7,8] and previous genomic studies demonstrate

extensive conservation of the NPC also in plants and eukaryotic

algae [9,10,11].

The extent of conservation of NPC components outside these

groups appears patchy however [10,11]. As Mans et al. [10]

acknowledged, this makes it difficult to unambiguously establish

the complexity of the NPC in the Last Eukaryotic Common

Ancestor (LECA), since inferences are dependent upon the

position of the root of the eukaryote tree. Bapteste et al. [11],

reporting a comparable distribution of Nups to Mans et al., noted

furthermore that proteins involved in anchoring the NPC to the

nuclear envelope were limited in their distribution. On the basis of

this observation, Bapteste et al. concluded that the NPC anchoring

system appears to have evolved multiple times independently.

This conclusion is moreover interesting in light of the recent

suggestion that the yeast-specific transmembrane Nups Pom152

and Pom34 may be intimately linked to the evolution of closed

mitosis in yeast [12]. Closed mitosis is not restricted to yeasts, as it

is also observed in a range of protists [13,14]. This raises the

question as to whether the evolutionary lability of the anchoring

system broadly correlates with the evolution of closed mitosis.

In the wider context of eukaryote origins, there is great value in

the identification of Nup homologues in either archaea or bacteria,

since this may shed light on the evolutionary origins of the nucleus.

If Nups display similarity to proteins from either or both of these

domains, the role of these proteins may provide new insights into
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the evolutionary emergence of key protein families or folds [10]. In

this respect there has also been considerable interest in the nuclear

envelope-like internal membranes observed in planctomycete

bacteria [15,16], and whether the putative pores identified from

morphological data are constructed from protein components with

similarity to eukaryote Nups. To date, no homologs to Nups have

been identified in the genome of any planctomycete.

An alternative hypothesis, in principle compatible with several

theories on eukaryote origins, is that the nucleus evolved autogenously

in the eukaryote stem lineage [17,18]. The protocoatomer hypothesis

[18] in particular addresses the evolution of the NPC in detail. In

brief, this model posits that the NPC and vesicle-coating complexes

evolved from a rudimentary membrane-bending apparatus that

generated internal structure through invagination. Devos et al.[18]

reported that an NPC subcomplex (yeast Nup84/vertebrate Nup107-

160) bears a striking resemblance to vesicle-coating complexes, both

containing proteins with a unique b-propeller/a-solenoid architec-

ture. Moreover, Sec13 is a component of both the NPC and the

COPII vesicle-coating complex [19,20]. Mans et al. [10] also noted

similarities between NPC and vesicle-coating complex components,

coming to a similar conclusion on the basis of sequence analyses.

Rapid progress in eukaryote genome sequence projects provides

an ideal opportunity to revisit these questions with the benefit of a

more comprehensive dataset. We report here the results of a

screen covering 60 eukaryote genomes (representing five super-

groups) with the aim of examining the extent to which protein

subcomplexes that comprise the NPC are conserved across

eukaryotes. We have also examined whether coatomer proteins

from the COPI, COPII and clathrin complexes are as broadly

conserved as NPC complex proteins, since an early common

origin for both the NPC and vesicle coating complexes predicts

this. Our results provide further support for a complete NPC in

LECA and, in contrast to earlier studies, we show that this

conclusion holds regardless of the position of the eukaryote root.

We conclude that at least 23 and possibly as many as 26

nucleoporins, including key components of the anchoring system,

were already present in LECA. We also report that the distribution

of Pom34, but not Pom152, correlates with the occurrence of

closed mitosis among fungi. Despite extensive searches, our screen

did not recover clear Nup homologs in either bacterial or archaeal

genomes, consistent with the view that the nuclear pore complex

evolved within the eukaryote stem, after the divergence of archaea

and eukaryotes.

Results and Discussion

Establishing the accuracy of HMMer-based identification
of Nucleoporins

In silico gene annotation by sequence similarity is expected to be

subject to a significant degree of error (and perhaps subjectivity),

and in the current case is also complicated by the great

evolutionary distances spanning the eukaryote tree. The recent

publication of nucleoporins identified in Trypanosoma brucei using

experimental proteomics and structure prediction approaches

Figure 1. NPC structure, composition and Nup conservation across eukaryotes. a) Schematic section through the nuclear pore complex.
Sub-complexes are indicated as boxes and marked in different colors to indicate their position in the pore. b) The table summarizes Nup distribution
across eukaryotic super-groups. Color-coding matches that of the subcomplexes in (a). Nucleoporins indicated with bold letters are universally
distributed across eukaryotes, as judged by presence in at least one genome from each of the five supergroups.
doi:10.1371/journal.pone.0013241.g001
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[32], provided us with a fortuitous internal control by which to test

the accuracy of our in silico screens for eukaryote Nup homologs.

As we had already completed our screen of T. brucei when the

DeGrasse et al. study [32] was published, we were able to use the

identified Nups reported therein as a blind control, in the spirit of

CASP and CAPRI community experiments to test ab initio 3D

protein structure and protein-protein docking prediction methods

(reviewed in [33,34]). Comparison of the candidates identified

using our HMMer-based approach with the results reported by

DeGrasse et al. is particularly useful in that T. brucei is an outgroup

to all sequences included in our training dataset. Table 1 compares

our predictions with those experimentally shown to be NPC

components in T. brucei. As is evident from Table 1, our

predictions accurately identified homologs for 10/10 Nups where

DeGrasse et al. concluded orthology could be established. In our

analysis, we predicted a Seh1 candidate not identified by

DeGrasse et al., which could potentially be a false positive

identification. Careful examination of the full Seh1 alignment (see

supplementary file SI4) reveals that all sequence identities are

contained within the six WD-repeat regions (though we note

considerable sequence complexity within these regions, and clear

motifs for WD repeats 1 and 3). Seh1 and Sec13 sequences can be

difficult to distinguish, though, for T. brucei, DeGrasse et al. and

our analyses independently identified the same Sec13 candidate.

While absence of Seh1 sequence identities outside of the WD-

repeat regions warrants caution, we were unable to identify any

other candidate sequences with this same repeat architecture,

suggesting this sequence may well be a Seh1 candidate, albeit a

weak one. It is also worth noting that Seh1 is known not to be

strongly associated with the Nup107-160 complex, which may

explain its absence from proteomics data. DeGrasse et al. also

identified an additional 13 proteins, seven of which carry FG

repeats. It is to be expected that comparative approaches will tend

to underestimate the components of any given complex, since the

approach is dependent upon the starting dataset. Moreover, as

FG-repeat proteins often carry no other distinguishing features, we

deemed the presence of FG-repeats alone insufficient for assigning

membership to the NPC, and such candidates were excluded from

our study (Table 1). From the perspective of the current study, the

results indicate that the HMMer-based approach used here is

conservative but accurate, as no incorrect assignments were made

in our control screen of T. brucei.

Components from all NPC subcomplexes are present in
LECA

The results of our full screen for Nups are summarised in

Figure 1, with species-level detail given in Table 2 (accession

numbers for candidates are given in supplementary Table S1). We

Table 1. Comparison of performance of HMMer-based Nup screen on Trypanosoma brucei by reference to published experimental
data [32].

Nucleoporins identified
experimentally by
DeGrasse et al. 2009

Nups also identified using
HMMer (this study) Annotation

Returned by HMMer
but excludeda E-valueb Notes

Tb10.61.2630 + Sec13 4.4e-89

2 Tb11.01.5410 Seh1 9.1e-07

Tb11.02.2120 + Aladin 1.1e-12

Tb09.160.2360 + Rae1 9.4e-32

Tb10.6k15.2350 + Nup155 5.4e-24

Tb11.02.0460 + Nup107 0.02

Tb10.6k15.3670 + Nup93 0.0012

Tb1927.4.2880 + Nup205 0.96

Tb11.03.0140 + Nup96/98 0.0012

Tb11.01.7200 + Nup62 8.2e-05

Tb927.4.5200 + Nup54 1.2e-08

Tb927.3.3180 2 2 + 0.016 FG repeats

Tb927.3.3540 2 2 + 2.1 FG repeats

Tb11.02.0270 2 2 + 0.16 FG repeats

Tb11.01.2880 2 2 + 1.1 FG repeats

Tb927.4.4310 2 2 + 3.4 FG repeats

Tb927.8.8050 2 2 + 4 FG repeats

Tb11.01.2885 2 2 + 0.0009 FG repeats

Tb11.03.0810 2 2 + 5.8

Tb10.6k15.1530 2 2 2 ND

Tb09.211.4780 2 2 2 ND

Tb09.160.0340 2 2 2 ND

Tb11.01.7630 2 2 2 ND

Tb927.7.2300 2 2 2 ND

aSequence present in HMMer hit list but excluded due to weak similarities (e.g. restricted FG repeats) to known Nups.
bND: Sequence not detected in HMMer-based screen.
doi:10.1371/journal.pone.0013241.t001
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report that homologs for 19 of 31 Nups are found in all five

supergroups (Fig. 1), significantly extending the findings of

previous studies, which were based on the analysis of fewer

genomes [10,11].

The broadest conservation is found in plants where we detect 26

candidates, suggesting that the core composition of nuclear pore

complexes in green plants is highly similar to that seen among

opisthokonts. The only genome within the Plantae for which no

Nups were recovered is the nucleomorph genome of Hemiselmis

andersenii, which derives from a red algal endosymbiont [35,36].

This result mirrors previous results indicating that the nucleo-

morph genomes of Guillardia theta and Bigelowiella natans are devoid

of nucleoporin genes, suggesting that all nucleoporin genes are

coded in the main nucleus instead [9]. That all available

nucleomorph genomes lack obvious nucleoporin homologs

suggests little hindrance to relocation or replacement of nucleo-

porin genes in these lineages.

Candidate nucleoporins were also readily identified in Amoe-

bozoa (22), Chromalveolates (25) and Excavates (23) (Figure 1,

Table 2), with nucleoporins from all key subcomplexes and

substructures (cytoplasmic fibrils, scaffold, anchoring system,

nuclear ring, central channel and nuclear basket) being detected

in members of all supergroups.

In previous studies, the conclusion that the LECA possessed a

NPC was complicated by the patchy distribution of some

nucleoporins, with only 9 nucleoporins found in any of the

supergroups other than Plantae and Opisthokonts [11] [10].

Consequently, the ability to assign a complex NPC to LECA

differed depending upon the topology of the eukaryote tree; where

Excavates were basal (see [37]), only 7 nucleoporins could be

placed in LECA [10]. If the root was placed between unikonts and

bikonts [38,39], 23 Nups could be traced back to LECA, largely

on account of candidates identified in plants [10,11]. As shown in

Table 3, our broad screen significantly expands the extent to

which Nup homologues can be identified across the eukaryote

tree. Our results increase the number of Nup candidates across all

eukaryote supergroups where genome data are available (except

Opisthokonts, where a full complement had already been

characterised in advance of all three studies). Of particular note,

we significantly expand the number of candidates in three

eukaryote supergroups where genome sequence data is still limited

(Amoebozoa, Chromalveolates and Excavates). For these super-

groups our screen expands the total number of candidate Nups

from fewer than ten in each supergroup to 22 in Amoebozoa 25 in

Chromalveolates and 23 in Excavates (Table 3).

The identification of so many new Nup candidates across

Amoebozoa, Chromalveolates and Excavates is significant because

it enables us to trace a complex NPC back to LECA regardless of

ongoing uncertainty about the position of the root of the eukaryote

tree (Figure 2), thereby providing robust evidence for the early

evolutionary origin of the NPC in the eukaryote lineage

independently of tree topology. By contrast, previous studies could

only unambiguously place a complex NPC in the common

ancestor of Opisthokonts and the Plantae. Under the unikont/

bikont rooting (Figure 2, right tree), we can trace 26 nucleoporins

back to LECA (Fig 2), with four gains in the Opisthokonts. Of

these, three are clearly lineage-specific gains: Pom121 is restricted

to vertebrates, while Pom34 and Pom152 are found only in fungi.

Nup37 is found in metazoa and some ascomycetes, suggesting

either that we have failed to find all orthologs, or that this Nup

has been subject to a series of losses in the Opisthokonts — the

recent identification of a Nup37 homolog in Aspergillus nidulans

[40] confirms these ascomycete candidates are not spurious

predictions.

It is likewise interesting that Amoebozoa appear from Figure 2

to have lost a number of Nups. However losses (as indicated on

both trees in Figure 2) should be treated with caution in that it is

difficult to distinguish between genuine loss and missing data. In

this context, it will be interesting to analyse genome data from the

anaerobic amoebozoan, Breviata anathema, which is proposed to

represent a deep-branching member of this supergroup [41,42].

A cursory examination of Table 2 indicates that we have had

only limited success in finding Nup candidates among some

parasitic lineages, and observations supporting morphologically

complex nuclear pores among excavates [32,43], underscore the

necessarily conservative nature of comparative genomic analyses.

That aside, the data nevertheless provide a clear indication that

LECA possessed between 23 and 26 Nups. Given ongoing

uncertainty concerning the structure of the eukaryote tree

[42,44], we note that, assuming the genomes screened in the

present study are correctly placed in the proposed five super-

groups, a star tree would still suggest between 19 and 22 Nups in

LECA (where 19 are found in at least one representative genome

from each supergroup and 22 is the minimum number of Nups in

any one supergroup — Figure 1). That all major subcomplexes are

represented even in the most conservative estimate (19 Nups)

suggests LECA possessed a NPC comparable in complexity to

NPCs in modern eukaryotes.

Evidence for a rudimentary NPC anchoring system in
LECA

While the NPC does not traverse the lipid bilayer of either the

inner our outer nuclear membrane, several nucleoporins are

involved in anchoring the NPC to the nuclear envelope (reviewed

in [2,6]). Among characterised Nups involved in anchoring,

Pom34 and Pom152 are thought to be restricted to fungi, whereas

Pom121 and Gp210 are vertebrate-specific (reviewed in [40]). The

apparent lack of overlap led to the suggestion that the anchoring

system may either be restricted to opisthokonts, or that it evolved

by convergence [11]. Ndc1, a known transmembrane Nup from

yeast, has recently been demonstrated to be a constituent of a

range of fungal and vertebrate NPCs [45,46,47], indicating that

parts of the anchoring system evolved before the split of

vertebrates and fungi.

Our results significantly extend this view (Figure 1 & Table 2).

We identify homologs for Gp210 across all five supergroups, with

multiple candidates across Amoebozoa, Plants, Chromalveolates

and Excavates. It therefore seems probable that the absence of

Gp210 from Fungi, where constituent Nups have been extensively

characterised [48], is the result of secondary loss. Identification of

Ndc1 homologs is somewhat more restricted; it is readily detected

in green algae and plants (Table 2), but only a single candidate is

detected among the Chromalveolates (Phytophthora infestans),

likewise among Excavates (Trichomonas vaginalis), and we found

no candidates among the Amoebozoa. As shown in Figure 2, the

distribution of Ndc1 nevertheless suggests this Nup can be placed

in LECA, under either rooting. Splitstree analyses showed the

Ndc1 dataset was noisy; a simple distance-based tree (BioNJ, JTT,

c, 100 bootstrap replicates) does not indicate recent horizontal

gene transfer from either Plantae or Opisthokonts to either of these

lineages (Supplementary Figure S1).

Bolstering the suggestion that LECA possessed an anchoring

system is the broad distribution of Nup35 (known as Nup53 in

yeast and some vertebrates [6]), which is also conserved across all

five supergroups. Nup35 is integral to NPC assembly [49,50], it

interacts directly with Ndc1 [47,49] and may also contribute to

anchoring of the NPC to the nuclear envelope via an amphipathic

a-helix [51]. We therefore suggest that Gp210 and Ndc1, possibly

Nuclear Pore Complex Evolution
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with the inclusion of Nup35, constitute the ancestral anchoring

system in LECA.

Does the distribution of integral membrane Nups shed
any light on the evolution of variant mitoses?

In stark contrast to the results for Gp210, Ndc1 and Nup35, the

other integral membrane Nups (Pom34, Pom121 & Pom152) display a

more limited distribution (Table 2). It has been noted that the non-

overlapping distribution of these three transmembrane Nups correlates

with open mitoses in vertebrates (Pom121) and closed mitoses in yeasts

(Pom34 and Pom152) [12]. In closed mitosis, the nuclear envelope

remains intact during cell division, whereas in open mitosis, the nuclear

envelope disintegrates, and envelope and NPC must be reassembled

following division [52], though there appear to be many variations

therein [13,53]. Stunningly, experimental studies have demonstrated

partial disassembly of the NPC during so-called ‘closed’ mitosis in

Aspergillus nidulans [54]. However, Pom152 remains associated with the

nuclear envelope. In a Saccharomyces cerevisiae pom34DN nup188D double

mutant, Miao et al. [12] observed disassembly of some of the same FG

repeat-containing Nups as were disassociated during closed mitosis in

A. nidulans, raising the possibility that both may be central to (partial)

pore maintenance during closed mitoses.

While a degree of caution is warranted concerning the open/

closed mitosis dichotomy [53], particularly among the Fungi (but

also in early development in Drosophila and Caenorhabditis species,

Table 3. Comparison of Nup identification in the present study with previously published screens*.

Opisthokonts Amoebozoa Plantae Chromalveolates Excavates

N M B N M B N M B N M B N M B

Gle1 x x x x x x x x x x

Aladin x x x x x x x x x x x

Cytoplasmic fibrils Nup88 x x x x x x x x x x

Nup214 x x x x x x x

Nup358 x x x

Scaffold Nup160 x x x x x x x x x

Nup133 x x x x x x x x x

Nup107 x x x x x x x x x

Nup75 x x x x x x x x x x x

Nup43 x x x x x x x x

Nup37 x x x x x

Seh1 x x x x x x x x x x x x x

Sec13 x x x x x x x x x x x x x x x

Nup205 x x x x x x x x x

Nup188 x x x x x x

Nup155 x x x x x x x x x x x x x x

Nup93 x x x x x x x x x

Nup35 x x x x x x x x x x x

Transmembrane Ndc1 x x x x x x

Pom121 x x x

Gp210 x x x x x x x x x

Pom152 x x x

Pom34 x x x

Nuclear ring Nup96-98 x x x x x x x x x x x x x

Rae1 x x x x x x x x x x x x x x x

Central channel Nup62 x x x x x x x x x x x x

Nup58 x x x x x x x x

Nup54 x x x x x x x x x

Nuclear basket Nup50 x x x x x x x x

Nup153 x x x x x x x

TPR x x x x x x x x x

Nups in supergroup 31 31 31 22 6 9 26 21 22 25 6 7 23 8 6

*N: this study; M: Mans et al. [10]; B: Bapteste et al. [11]. N.B. This table aims simply to show that our updated screen now enables a more confident assignment of a
complete NPC to the LECA than was possible based on two earlier studies. We have not performed a systematic comparison of the different methods applied across the
three studies. This table therefore does not directly compare an HMM-based approach with PSI-BLAST or blast with ancestral sequence reconstruction (such
comparisons exist, e.g. [100]). Moreover, the present study screened additional genome sequences unavailable at the time the other studies were performed. As is
evident from Table 2, screening of a number of recently published eukaryote genomes has contributed greatly to a more complete reconstruction of the NPC in the
LECA.
doi:10.1371/journal.pone.0013241.t003
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where early embryonic nuclei divide in a syncytium), our data do

shed some light on the correlations noted by Miao et al. [12].

In the case of animals, it seems that Pom121 is restricted to

vertebrates (Table 2): we find no homologs of Pom121 in diptera,

tunicate or nematode genomes analysed, nor do we find a

candidate in Monosiga brevicollis, a Choanoflagellate (sister group to

metazoa — [55]; all of these groups undergo open mitoses

[13,56]). On these data, it seems difficult to assign a general role

for Pom121 in open mitosis, though a specific role in this process

in vertebrates is of course plausible [57].

A more informative picture emerges across the fungal genomes

however. We note that Ascomycetes as a group are characterised

by closed mitoses [13], whereas among Basidiomycetes no cases of

closed mitosis have been reported, and open mitoses are well-

characterised in a number of species (reviewed in [58]).

Our initial analyses (Table 2) indicated that Pom152 was

present across all fungi, but no Pom34 homologs were present in

the two Basidiomycetes included in our screen, Ustilago maydis &

Cryptococcus neoformans, both of which exhibit open mitosis [58,59].

To further examine this pattern, we screened four additional

Basidiomycete genomes (Phanerochaete chrysosporium, Laccaria bicolour,

Coprinossis cinea & Malassesezia globosa) as well as that of the

zygomycete Rhizopus oryza, which is thought to likewise undergo

open mitosis [58]. As is clear from Table 4, all fungal genomes

screened carry both Ndc1 and Pom152 homologs, but Pom34 is

restricted to Ascomycetes. Given the broad phylogenetic distribu-

tion of ascomycete species included in our analysis [60], it seems

reasonable to conclude that Pom34 was present in the ancestor of

this group, but not in that of Basidiomycetes as suggested by the

complete absence of Pom34 homologs among those fungi.

This result suggests that Pom34, but not Pom152, is central to

this distinction, at least within dikaryote fungi. We failed to find

evidence of either Pom34 or Pom152 in the microsporidian

Encephalitozoon cuniculi, which undergoes closed mitosis [61],

indicating that if Pom34 is integral to the evolution of closed

mitosis in Fungi, this may only be limited to Ascomycetes. Having

said that, only seven Nups were detected in E. cuniculi, and the

combination of reductive adaptation to a parasitic lifestyle and

rapid sequence-level evolution for some genes [62] may compli-

cate homolog detection in this lineage. In this respect, it does seem

that at least part of the anchoring system may well have evolved

multiple times [11]. In that there appears to be a spectrum

between open and closed forms of mitosis [53], and given that

open and closed mitoses likely have a complex evolutionary history

[13] [63], experimental screens may well yield a broader diversity

of pore membrane (POM) proteins than hitherto recognised.

Complete coatomer complex components are traceable
to LECA

The observation that Nups and coatomer proteins share a

common architecture [18,64] has led to the proposal that these

also share a common evolutionary origin. This protocoatomer

hypothesis [18] is supported by the observation that vesicle coat

proteins are well conserved across eukaryotes [65,66,67,68] and

have expanded via duplication and divergence [67,69,70]. Vesicle

coat complexes are involved in movement of cargo between the

various organelles that constitute the endomembrane system, and

are one part of this evolutionarily conserved system that also

includes the evolutionarily ancient but distinct ESCRT system

[67,71].

While previous analyses leave little doubt that the COPI,

COPII, clathrin/adaptin complexes, are a feature of LECA, less

focus has been placed on patterns of conservation at the level of

individual components. We therefore screened for individual

Figure 2. NPC components are traceable to LECA. NPC pore composition in LECA based on two alternative rootings of the eukaryote tree. In
the left hand tree, Excavates are the outgroup. The right hand tree is rooted on the basis of the unikont/bikont bifurcation. Gains (+) and losses (–) in
different lineages are indicated under each scenario. Where gains and losses are equally probable, these are marked with (?).
doi:10.1371/journal.pone.0013241.g002
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protein subunits from each complex across a representative dataset

spanning five supergroups. In contrast to the overall pattern of

conservation of the NPC, the COPI, II and clathrin/AP

complexes were extremely well conserved and orthology predic-

tions were assessable using phylogenies (see Supplementary file

SI4). At the level of supergroups there are only four discernible

differences (Table 5; accession numbers are in supplementary

Table S2). Apm2, a clathrin adaptor protein medium (m)-chain

protein homolog, appears restricted to Saccharomycetes, and can

be readily attributed to gene duplication (supplementary Figure

S2). However, it remains unclear whether Apm2 is a bona fide

component of Clathrin complexes. Data to date indicate no

discernible phenotype in yeast knockouts [72], it has not been

ascribed to any AP complexes in yeast [73,74], and interaction

with Apl2p (a constituent of the AP-1 clathrin adaptor complex) is

only clearly observed when Apm2p is overexpressed [75].

Vertebrate Apl1 has likewise clearly evolved via duplication

from the more broadly distributed Apl2 (supplementary Figure

S3). Fungi also contain both Apl1 and Apl2, but these form distinct

phylogenetic clans (Figure S3), suggesting fungal Apl1 and Apl2

are paralogues that did not evolve via duplication in an early

fungal lineage. Non-Ophisthokont Apl2 sequences appear to form

two separate clans in the unrooted tree inconsistent with eukaryote

supergroups, suggesting that Apl2 and fungal Apl1 have evolved

via a complex pattern of ancient duplications and losses. The trees

are not sufficiently robust to establish all events with confidence,

but a robust minimal conclusion is that vertebrate and fungal Apl1

have separate evolutionary origins.

We find only two other instances where an entire supergroup

lacks a component; both impact COPII: the two amoebozoa

represented here (Entamoeba histolytica and Dictyostelium discoideum) lack

Sec16, a COPII constitutent, but in contrast to previous analyses

[65] we do find candidates for all other COPII components in this

group. The other supergroup-level absence is Sfb3, for which no

homologs were recovered from either Excavates or Chromalveo-

lates. In S. cerevisiae, Sfb3 is involved in vesicle budding and transport

of cargo from the ER but not vesicle fusion with the Golgi body. Its

function can be compensated for at lower temperatures by Sec24,

with which it is homologous [76]. We identified Sec24 homologs in

all Excavate and Chromalveolate genomes we screened, so in a

scenario where Excavates and Chromalveolates represent the

deepest branches of the eukaryote tree (as per Figure 2, left hand

tree), the only innovation since LECA would be a single gain of a

duplicate gene in the lineage leading to Plantae, Amoebozoa and

Opisthokonts. Under the Unikont/Bikont rooting (cf Figure 2, right

hand tree), this ‘innovation’ vanishes and is instead two losses. That

such extreme conservation of components exists at the supergroup

level is stunning.

WD-repeats are present in Bacteria and Archaea
Previous analyses report the presence of weak homologs to NPC

components in bacteria and archaea, though no published data

point to nuclear pore complex constituents in the genomes of

either domain [10,11]. Supplementary Table S3 summarizes the

results of our HMMer-based screen as applied to 49 bacterial and

archaeal genomes. We found numerous hits in both archaea and

bacteria to WD-repeat containing proteins. WD-repeat proteins

possess a characteristic b-propellor fold [77] and are important for

protein binding as they can form reversible complexes with several

proteins, allowing coordination of sequential and/or simultaneous

interactions that involve several sets of proteins at the same time.

They comprise a large family involved in a variety of essential

biological functions such as signal transduction, transcription

regulation and apoptosis [78]. While to our knowledge no WD-

repeat proteins have been characterized in Archaea, a small

number have been characterized in bacteria, including AglU,

which is required for gliding motility and development of spores in

Myxococcus xanthus [79], and the Hat protein from Synechocystis sp.

PCC6803, required for control of high affinity transport of

inorganic carbon [80].

While we detect proteins with similarity to WD-repeat

containing Nups (including in planctomycete genomes), sequence

similarity is restricted to the WD-repeat regions alone; character-

istic motifs that enable Nup identification (such as the SIEGR-

motif in Rae1) are absent. That WD-domains are consistently

identified in genomic screens of all three domains supports the

view that these are extremely ancient [10,11,77], but WD-repeat

containing nucleoporins, like other Nups, appear to be a

eukaryote-specific innovation.

Conclusions
The number of features that can be traced back to LECA is

truly stunning, and includes the nucleus and endomembrane

systems [67,68,81,82,83], linear chromosomes with telomeres

[84], mitochondria [85,86], peroxisomes [87], the cell division

apparatus, mitosis and meiosis [88,89,90,91,92], phagocytosis

[81,93,94], introns and the spliceosomal apparatus [95] and sterol

synthesis [96]. Our screen for NPC components further establishes

the view that LECA was a complex entity, and enables a complex

nuclear pore to be ascribed to LECA, building on and confirming

the conclusions of earlier studies [10,11].

However, the immense gap between eukaryote Nucleoporins

and the limited detection of related components in either bacterial

or archaeal genomes leaves us no closer to establishing how these

structures evolved. Mans et al. aptly referred to this as an ‘event

horizon’ [10,97], and we note that while the availability of

additional eukaryote genomes is leading to a successively clearer

Table 4. Distribution of anchoring nucleoporins across Fungi*.

‘Closed’ mitosis ‘Open’ mitosis

Ascomycetes Basidomycetes Zygomycetes

An Yl Ps Nc Sp Sc Kl Ca Cg Dh Gz Mg Cn Pc Um Lb Cc Ml Ro

Nucleoporin Ndc1 x x x x x x x x x x x x x x x x x x x

Pom152 x x x x x x x x x x x x x x x x x x x

Pom34 x x x x x x x x x x x x

*Species abbreviations: An: Aspergillus nidulans, Yl: Yarrowia lipolytica, Ps: Pichia stipitis, Nc: Neurospora crassa, Sp: Schizosaccharomyces pombe, Sc: Saccharomyces
cerevisiae, Kl: Kluyveromyces lactis, Ca: Candida albicans, Cg: Candida glabrata, Dh: Debaryomyces hansenii, Mg: Magnaporthe grisea, Cn: Crytpococcus neoformans, Pc:
Phanerochaete chrysosporium, Um: Ustilago maydis, Lb: Laccaria bicolor, Cc: Coprinossis cinea, Ml: Malassezia globosa, Ro: Rhizopus oryzae.
doi:10.1371/journal.pone.0013241.t004
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picture of the nature of the LECA, screens of bacteria and archaea

are not narrowing this gap. Structural screens and experimental

characterisation are generating important new functional data,

such as with the recent characterisation of structural proteins

resembling eukaryote membrane-coat proteins in Gemmata obscur-

iglobus [98,99]. However it is difficult to place such data within the

context of eukaryote stem evolution as multiple interpretations are

possible.

In the current case, the emerging picture is of an extremely well

conserved set of vesicle-coating complexes across eukaryotes, with

a similar conclusion possible for the NPC. As all these complexes

are traceable to the eukaryote root, it is not formally possible to

fully evaluate the protocoatomer hypothesis [18] using compar-

ative genomic data. While some have advocated gene phylogenies

[83], Nups show low levels of sequence conservation, complicating

attempts to examine the deep phylogeny of the related

components of vesicle coats and the NPC. Having said that, the

predictive power of the protocoatomer hypothesis is clear: a

prediction of this hypothesis is that, if the NPC dates back to

LECA, then so should at least one set of vesicle-coating complex

components. We can uncontroversially assign the entire set of

coatomer complex components from COPI, COPII and clathrin-

containing complexes to LECA.

Comparative genomic studies have the power to generate a broad

overview of evolutionary conservation, and are in this respect

helpful tools in understanding the evolution of cellular structures.

Such studies can therefore provide a valuable starting point for

focused investigation of the cell biology of a specific species. At the

same time, they are dependent upon experimental observation, but

can also suggest fruitful avenues for subsequent experimental study.

Further investigation of the evolution of variant mitoses (broadly

classified as open and closed) may well be worthwhile within the

context of the evolution of the nuclear pore complex.

Materials and Methods

Nup sequences were collected, aligned and alignments vetted as

previously described [9]. As conservation between fungi and

metazoan sequences was in some cases poor, separate fungal and

metazoan alignments were created where necessary. Alignments

were used to build local and global hmm profiles using HMMER

2.3.2 (http://hmmer.wustl.edu/) [21]. Species from which train-

ing data were derived are given in Table 2. Using hmmsearch

from the HMMER package, annotated protein sequences derived

from eukaryote genomes (given in Table 2) were screened for

nucleoporin homologs.

Candidate Nup homologs were assessed using domain infor-

mation in UniProt (http://www.uniprot.org/) and PFAM (http://

pfam.sanger.ac.uk) [22], as well as our examination of all

alignments. Sequences lacking typical motifs/domains associated

with a given Nup were removed from the analysis. All remaining

candidate Nup sequences were back-blasted (blastp) against the

non-redundant database (NCBI). Candidates that returned best

hits against other proteins were removed.

For any given eukaryote genome, where no homologs were

detected for a particular Nup, the genome was screened using

Nups from closely related species using blastp and tblastn.

Planctomycete genome sequences (Gemmata obscuriglobus, Kuenenia

stuttgartiensis, Planctomyces maris, Planctomyces limnophilus, Rhodopirellula

baltica) were additionally queried with our profile HMMs using

Genomewise from the Wise 2.2.0 package [23].

Sequences for the individual components of the COPI, COPII

and Clathrin coatomer complexes in S. cerevisiae were retrieved

from the SGD database (http://www.yeastgenome.org) using the

respective vesicle coat names as query. Sequences were used to

seed initial PSI blast searches [24] against the nr protein database

at NCBI. Sequences were evaluated by means of reciprocal blastp

searches, as above. Alignments from the obtained sequences were

generated using probcons [25] and profile hmms were created

from alignments for local and global hmm profile searches. All

profiles were calibrated to increase search sensitivity. Sequences

obtained were evaluated as described above for Nups.

As an aid in assigning orthology, phylogenetic networks

(NeighborNet [26]) were built for NPC and coatomer components

using SplitsTree [27,28]. Phylogenetic trees were constructed using

raxML 7.2.2 [29] and BioNJ [30,31]. Phylogenies were reliable for

coatomer components but not across Nups. Full Nup alignments (in

clustal format) and coatomer trees (in splitstree format) are provided

as supplementary material (supplementary File S1).

Supporting Information

Table S1 Accession numbers/gene IDs for all candidate Nups in

Table 2.

Found at: doi:10.1371/journal.pone.0013241.s001 (0.74 MB

DOC)

Table S2 Accession/gene IDs for Coatomer complex protein

homologs from Table 4.

Found at: doi:10.1371/journal.pone.0013241.s002 (0.04 MB

XLS)

Table S3 Hits for WD repeat proteins in archaeal and bacterial

genomes.

Found at: doi:10.1371/journal.pone.0013241.s003 (0.03 MB

XLS)

Figure S1 Unrooted BioNJ tree Ndc1. (JTT, c, 100 bootstrap

replicates). Trichomonas vaginalis & Phytophthora infestans are

highlighted in blue.

Found at: doi:10.1371/journal.pone.0013241.s004 (0.37 MB

DOC)

Figure S2 Neighbour-Joining tree of Apm1 and Apm2. Apm2 is

restricted to the Saccharomycetes and likely evolved via gene

duplication. The position of the Apm2 from Yarrowia lipolytica is

poorly supported and likely spurious. The tree (BioNJ, JTT, c, 100

BS replicates) was generated from protein sequence alignments.

Found at: doi:10.1371/journal.pone.0013241.s005 (0.18 MB

DOC)

Figure S3 Unrooted PhyML tree of Apl1 and Apl2. Vertebrate

Apl1 (blue) and Apl2 evolved via gene duplication. Apl1 from

fungi (dark blue) appear paralogous to vertebrate Apl1, and the

results do not support evolution by duplication and divergence

from fungal Apl2. The tree was generated from protein sequence

alignments using the phylogeny.fr server (Dereeper A, et al. 2008

Nucleic Acids Res. 36:W465-9). Branch support (approximate

likelihood ratio test: SH-like). Similar topologies were obtained

with both ML and neighbor-joining methods, and with a range of

parameters and models.

Found at: doi:10.1371/journal.pone.0013241.s006 (1.00 MB

DOC)

File S1 Alignments and phylogenies.

Found at: doi:10.1371/journal.pone.0013241.s007 (2.39 MB ZIP)
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