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Abstract: To address power transmission line (PTL) traversing complex environments leading to
data collection being difficult and costly, we propose a novel auto-synthesis dataset approach for
fitting recognition using prior series data. The approach mainly includes three steps: (1) formulates
synthesis rules by the prior series data; (2) renders 2D images based on the synthesis rules utilizing
advanced virtual 3D techniques; (3) generates the synthetic dataset with images and annotations
obtained by processing images using the OpenCV. The trained model using the synthetic dataset
was tested by the real dataset (including images and annotations) with a mean average precision
(mAP) of 0.98, verifying the feasibility and effectiveness of the proposed approach. The recognition
accuracy by the test is comparable with training by real samples and the cost is greatly reduced to
generate synthetic datasets. The proposed approach improves the efficiency of establishing a dataset,
providing a training data basis for deep learning (DL) of fitting recognition.

Keywords: synthesis dataset; prior series data; fitting recognition; YOLOX; Blender; inspection robot

1. Introduction

A power transmission line (PTL) system is the infrastructure of a country, necessary
for industrial development and people’s livelihood [1]. The key components of a PTL
system consist of PTLs, fittings, towers, etc. Once one of these components of a PTL system
fails, it would cause significant economic loss [2], therefore it is necessary to carry out
planned inspections for early fault detection and maintenance [3]. At present, the inspection
methods mainly include two kinds: human inspection and robot inspection [4].

With the development of inspection technology, people strive to develop advanced
inspection robots to replace humans. There are mainly three types of advanced inspection
robots: flying-mode robots (e.g., UAVs), walking-mode robots (e.g., dual-arm inspection
robots), and hybrid-mode robots (e.g., flying–walking PTL inspection robots—FPTLIR) [5].
The flying-mode robots fly in the air and can cross obstacles with a flexible inspection view.
The walking-mode robots walk along the PTLs with a stable inspection view. The hybrid-
mode inspection robots can fly in the sky and walk along the PTLs, with the advantages
of the previous two kinds of robots. However, the key technology of inspection robots to
identify and position various fittings on the PTLs is the primary support for autonomous
inspection, defect detection, and power maintenance [6,7]. Object detection methods based
on deep learning (DL) can automatically extract features without processing complex
images [8], showing a great potential in image recognition [9]. Moreover, the influences
of light intensity, target scale, and environment on image recognition can be effectively
reduced. DL has two research directions on image recognition: one-stage detection and
two-stage detection. The representative methods of one-stage detection have YOLO series,
SSD, etc. The representative methods of two-stage detection have R-CNN, Fast R-CNN,
Faster R-CNN, etc.
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Many research efforts to detect fittings using DL have been reported in recent decades [10,11].
The SSD-based mode could achieve automatic multi-level feature extraction to identify
aerial images with complex backgrounds [12]. Exact region-based convolutional neural
network (Exact R-CNN) and cascade mask extraction and exact region-based convolutional
neural network (CME-CNN) were proposed in the literature [13]. These methods could
solve the accuracies of existing detection methods limited by the complex background
interference and small target detection. Rahman et al., [14] used YoloV4 to identify porcelain
insulators on the towers and achieve good performance.

It is well known that training a DL model needs a large dataset. However, the
volume of the dataset is often inadequate while training DL models for fitting recognition.
The volume of a dataset is one of the key factors affecting the accuracy of a model [15].
These methods on the expanding dataset can be mainly divided into two categories. One
is to expand using the real dataset. Song et al., [16] investigated the impacts of data
augmentation methods on the accuracy of target recognition, in which the impacts of the
data augmentation methods were significant such as Gaussian blur, scaling, and rotation.
Chang et al., [17] focused on the training characteristics of the neural network using towers
and aerial images as a background. Images of insulator segments were randomly stitched
to simulate different lengths and types of insulators and RGB channels, lighting, and
color were randomly varied to generate the dataset. Rahman et al., [14] combined various
image processing techniques (e.g., data expansion, shimmer enhancement) to increase
the volume of the training dataset and to improve the generalization capability of the
insulator detection model. Another direction is to expand by building a synthesis dataset.
Zidek et al., [18] generated a DL training dataset from virtual 3D models. The advantage
of the approach was the swift preparation of a 2D sample training dataset from virtual
3D models to train models. The recognition accuracy was comparable with the trained
model by real samples. Chen et al., [19] proposed a sample expansion method based on
a combination of statute and 3D modeling technology. The high accuracy results were
obtained when the ratio of real samples to simulated samples was 2.0. Madaan et al., [20]
rendered synthetic wires using a ray tracing engine and overlayed them on 67 K images
from flight videos to generate a synthesis dataset, with an average precision score of 0.73
on the USF dataset. Table 1 shows the key points of these methods.

Table 1. Summary of the literature for expanding dataset.

Characteristic Core Idea Method Pros and Cons

Expanding a real dataset

Data augmentation [16]
Histogram equalization, gaussian
blur, random translation, scaling,

cutout, and rotation

Histogram equalization, random
translation, and cutout have a low

impact on network accuracy. Faster
RCNN cannot deal with the issue of

target rotation well.

Random splicing [17] —

The trained model used synthetic
samples have a good generalization
for the real images, the transparent

samples made the networks difficult
to converge.

Image processing [14]

A deep Laplacian pyramid-based
super-resolution

network and a low-light image
enhancement technique

The quality and volume of the
training dataset are improved, but the

images need to be collected.

Generating a synthesis dataset

Generating dataset using
virtual 3D models [18,21,22] Blender script

Dataset generation is easy and fast in
a single background working
condition for standard parts.

Generating dataset based on
images [19,23,24]

Mixing real and synthetic data,
Generative Adversarial Networks

(GANs)

The appropriate ratio is favorable for
neural network learning; however, it

is difficult to collect real images.

Overlaying synthetic data on
videos [20] A ray tracing engine

Semantic segmentation datasets can
be quickly generated, but the

background changes are not flexible.
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Data acquisition is hard and costly for a complex environment around PTLs and it
relies on some specialized equipment (e.g., UAVs, inspection robots). In addition, the
weather is changeable. It is challenging to include all working conditions in the data
(e.g., the image of a lake on a sunny evening with a backlight). To address these difficulties,
we propose a novel auto-synthesis dataset approach for fitting recognition using prior
series data. The synthesis rules are formulated based on prior series data (including
type and position of fitting, viewpoint position, topography, season, and irradiance). The
2D images are rendered by the synthesis rules using advanced virtual 3D techniques.
Finally, a synthetic dataset can be generated with images and annotations obtained by
processing images using OpenCV (a standard image processing technique). The various
attributes in the synthesis dataset (e.g., type and pixel coordinates of fitting, background
environment) would be adjusted and expanded. The coverage of the synthesis dataset is
more comprehensive than the real dataset. The proposed approach allows to extract the
prior series data according to the working conditions and synthesizes the dataset with the
characteristic properties of the working conditions.

The main contributions of this paper are as follows:

1. Formulating the data synthesis rules based on prior series data. The prior series data
are derived from complex working conditions; therefore, the synthesis rule possesses
the characteristics of these working conditions.

2. Integrating advanced virtual 3D technology to render 2D images. Synthetic images
would not be subject to topographic restrictions such as real images, reducing the
difficulty of acquiring image.

3. Proposing a novel auto-synthesis dataset approach for fitting recognition using prior
series data. The synthetic dataset with space–time properties generated by this
approach is used to train the DL model, making the network easier to learn important
features. The training results are biased toward identifying the fittings at the source
of the prior information, improving the accuracy rate of target recognition.

This paper is organized as follows: Section 2 describes the prior series data and the
approach for generating the synthetic dataset. Section 3 trains a DL model by the synthetic
dataset and verifies the effectiveness and feasibility of this approach by tests. Section 4
provides the discussion. Conclusions are drawn in the last section.

2. Proposed Approach

Training a DL model to identify a fitting needs a large dataset. However, it is difficult to
collect the fitting dataset on the PTLs, requiring manual upline or manipulating inspection
robots. Some fittings for a PTL system are shown in Figure 1. Moreover, the cost of collecting
the fitting dataset is more than a general dataset collection and manual annotation is time
consuming and imprecise. To address these problems, we propose a novel auto-synthesis
dataset approach based on the prior series data.

We take a section of a 35 kV PTL system in Xinjiang as our research object. The PTL
system is distributed in Yanqi and Kuerle, passing through flatland, wetland, and gobi. The
average ratio of cloudy–sunny–cloudy is 52%, 30%, 9% in these areas from 2011 to 2021,
respectively. The percentage of severe weather (unsuitable for inspection) is small at 9%.
Therefore, the impact of severe weather might be ignored. The details of the auto-synthesis
dataset approach are shown in Figure 2. The dataset can be automatically generated based
on the prior series data using Blender software and OpenCV library.
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2.1. Prior Series Data

The synthesis rules are formulated from the prior series data, which reduce the gener-
ation of inspection-independent images in the dataset and assign space–time properties
to the dataset. Therefore, the quality of the synthesized dataset can be enhanced and the
amount of non-essential features are reduced.

When a robot inspects the PTLs, the motion trajectory of the robot is planned, and
the collected images depend on this trajectory. Figure 3 illustrates the flying and walking
trajectories of the FPTLIR; therefore, the prior series data would restrict the viewpoints of
collected images on the trajectory. The images whose viewpoints are outside the trajectory
can be covered to avoid the DL model learning the unrelated features.
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In general, if there is a PTL system with j segments (a segment refers to two adjacent
towers and the PTLs between them), the set of a prior series data can be expressed as

S =
{

Si
∣∣∣i = 1, 2, 3, · · · , j

}
, (1)

where Si is the set of a prior series data for the ith segment, it can be obtained as

Si = {PmN|m = 1, 2, · · · , N ∈ N+}, (2)

where Pm denotes kinds of prior series data, PmN represents the Nth prior series data in Pm,
and the set of prior series data of each segment can be described as

Si − P1N1/P2N1/P3N1/P4N4(N1, N2, N3, N4 ∈ N). (3)

The structure of the prior series data is shown in Figure 4. Figure 5 illustrates the
meanings of prior series data. Each segment of the PTL system includes four prior series
data, namely: prior fitting series (P1), prior inspection-view series (P2), prior topography
series (P3), and prior time series (P4). Prior fitting series (P1) includes: prior information, i.e.,
insulator type (P1T), insulator position (P1P), damper type (P1TD), damper position (P1PD),
and other various fitting types and positions. Prior inspection-view series (P2) includes:
viewpoint position (P2V). Prior topography series (P3) includes: the prior information, i.e.,
topographic type (P3R). Prior time series (P4) includes: season(P4S) and irradiance(P4L).
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The prior fitting series includes the prior information of many types of fittings with a
high similarity; thus, the insulator is used as an example in these fittings.

Some sets of prior series data are shown in Table 2. The four prior series data are
independent in that all series data have derived prior information. In addition, they are
also interrelated in that multiple series data can influence the synthetic dataset property.
For example, the position relationship between the insulator and viewpoint is influenced
by the prior fitting series(P1) and the prior inspection-view series(P2). The background
of images is determined by the prior topography series(P3) and the prior time series(P4).
Insulator type, insulator-viewpoint position relationship, and background are the three key
parameters for constituting the synthetic dataset.

Table 2. Example of the set of prior series data.

Tower Number Date Time Set of Prior Series Data

1#

2 January 10:00 S1-P1 1/P2 1/P3 1/P4 1
15:00 S1-P1 1/P2 1/P3 1/P4 2

3 March
13:00 S1-P1 1/P2 1/P3 1/P4 3
18:00 S1-P1 1/P2 1/P3 1/P4 4

2# 4 June
9:00 S2-P1 2/P2 1/P3 2/P4 5
11:00 S2-P1 2/P2 1/P3 2/P4 6

2.1.1. Prior Fitting Series

The prior fitting series includes the insulator position P1P and the insulator type P1T.
The insulator position includes the position coordinate and the direction of the insulator.

The voltage of the PTL system of our study is 35 kV. The PTL system is composed of
several tension segments. Two tension towers are constituted into one tension segment and
tangent towers are constructed between the tension segments. Furthermore, angle towers to
substitute tension towers are used for PTL system steering with an angle of 0◦ to 90◦. Angle
towers and tension towers are equipped with suspension insulator strings and tension
insulator strings, and the horizontal angle of the tension insulator string is β (0◦ < β < 90◦).
Each tangent tower also has suspension insulator strings with three or four pieces.

Insulators can be divided into disk insulators and bar composite insulators. The
component of disk insulator includes a steel cap, an insulator, and a steel foot. The insulator
of disk insulators is available in various materials: porcelain, tempered glass, and rubber.
The bar composite insulators are composed of an umbrella sleeve, a core bar, and metal at
both ends.

2.1.2. Prior Inspection-View Series

The prior inspection-view series includes the viewpoint position P2V of the robot,
which includes the position coordinates and the direction of the viewpoint.

The inspection-view is related to the inspection mode of the robot. The inspection
robots include three modes: flying-mode, walking-mode, and hybrid-mode. The flying-
mode robot performs the fixed-point air inspection paralleling the detection objects, and
the walking-mode robot walks along the PTLs with a fixed inspection viewpoint. The
hybrid-mode robot has the view of the walking-mode robot and the flying-mode robot.
The view angle relationship is shown in the upper left of Figure 5.

2.1.3. Prior Topography Series

The prior topography series includes the topographic type P3R.
The PTL passes through flatland, wetland, and gobi. The flatland is mainly planted

with cotton, apricot, red date, wheat, corn, sugar beet, tomato, pepper, melon, and grape.
The main plants of the wetlands are phytoplankton and aquatic vascular plants. The main
topography of the gobi is saline and dunes.



Sensors 2022, 22, 4364 8 of 19

2.1.4. Prior Time Series

The prior time series includes the irradiance P4L and the four seasons P4S. This series
data are mainly used to constrain the season and the irradiance of the prior topography
series. Figure 6a shows the variation of average irradiance from sunrise to sunset on the
first day of every month over the decade. The strongest irradiance is 1025 W/m2. The peak
is usually at 2:00 pm each day in January, March, and June. Figure 6b depicts the daily
distribution of the average strongest irradiance over the decade. The stronger irradiance
mainly occurred around June.
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2.2. Auto-Synthesis Dataset

An auto-synthesis dataset is generated, including the following steps:

• The 3D model of the insulator pieces with the material information is imported into
Blender and the insulator pieces are assembled into insulator strings;

• A camera is created so that the coordinate system of the camera viewpoint coincides
with the world coordinate system. The position and the angle of the insulator strings
are corrected by the prior inspection-view series and the prior fitting series, and the
view angle of the camera is also adjusted;

• Background-free images are outputted, then the high dynamic range images (HDRIs)
are imported and adjusted to render images based on the prior time series and the
prior topography series;

• The background-free image is processed using standard image processing techniques
(Python OpenCV library) to generate object bounding boxes and annotate files with
basic parameters (position/dimensions);

• A synthetic dataset is generated with images and annotations. The synthetic dataset is
divided into a training set and a validation set.

Figure 7 depicts the flowchart of the auto-synthesis dataset approach.
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The insulator piece and insulator strings are shown in Figure 8. According to the
prior fitting series and national standard GB/T 7253-2005, the 3D model of the insulator
piece is drawn and imported into Blender as the basic model. Insulators include porcelain
insulators, tempered glass insulators, and composite insulators.
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The position relationship between the FPTLIR’s viewpoint and the insulator is shown
in Figure 9. The viewpoint coordinate system (or-xryrzr) coincides with the world coor-
dinate system. The insulator piece is assembled based on the Blender scripting language
and the insulator string is translated and rotated relative to the viewpoint. The movement
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of the insulator string is described by the rotation matrix given in Equation (4) and the
translation matrix given in Equation (5). The camera position remains unchanged and only
the view angle is changed.
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where

Ry Rz represents the four-dimensional rotation matrix of insulators,
β, γ is the rotation angle of each additional generated view.

Txyz =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

, (5)

where

Txyz represents the four-dimensional translation matrix of the insulators,
tx, ty, tz is the translation distance of each additional generated view.

For the walking mode of the FPTLIR, β is related to the insulator angle, 0 < β < 35◦; γ is
related to the angle of the PTL system steering, 0 < γ < 90◦. The values of ty, tz are shown in
Table 3 and relate to the tower type. tx > 0.3 m is related to the distance of the robot from the tower.

Table 3. The key parameters of the synthetic dataset.

Description Symbol Unit Value

xi axis conversion distance of insulator tx m [0.3, 30]
yi axis conversion distance of insulator ty m {1.9, 2.2, 2.3}
zi axis conversion distance of insulator tz m [0, 4.6]

Translation distance xr axis increase in flight t′x m [−30, 30]
Translation distance yr axis increase in flight t′y m [−10, 10]
Translation distance zr axis increase in flight t′z m [−10, 10]

yi axis rotation angle of insulator β ◦ [−90, 90]
zi axis rotation angle of insulator γ ◦ [−60, 60]

Irradiance E W/m2 [0, 1032]
HDRI environmental horizontal rotation angle θl

◦ [0, 360]
HDRI environmental vertical rotation angle θv

◦ [−45, 45]
xi axis conversion distance of insulator tx m [0.3, 30]
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For the flying mode of the FPTLIR, the translation matrix can be added to the transla-
tion matrix of the walking mode, whose translation matrix is described by Equation (6)

TF−xyz =


1 0 0 tx + t′x
0 1 0 ty + t′y
0 0 1 tz + t′z
0 0 0 1

, (6)

where

TF-xyz represents the four-dimensional translation matrix of the insulator in the flying mode.
t′x, t′y, t′z is the translation distance of each additional generated view relative to the walking mode.

The view angle of the camera is adjusted to ensure that the insulator is within the
output image. The view angles for rotation along the zr and xr axes are described by
Equation (7). The synthetic dataset parameters are listed in Table 3.

θz = arccos
tz

2+ty
√

tx2+ty2

tx2+ty2+tz2

θx = arctan
√

tx2+ty2

−tz
(tx ≥ 0)

θx = −arctan
√

tx2+ty2

−tz
(tx < 0)

. (7)

Blender is an open-source modeling and rendering software providing an internal
python language to control object angles, object positions, object materials, camera views,
and HDRIs. The background-free 2D images are generated based on the Eevee engine. The
environmental background of four seasons and irradiance are added in Blender based on
the HDRIs file. The images are rendered based on the Cycles engine and all images are
generated at 720 × 1280 resolution.

The bounding box (including width, height, and center coordinate of the bounding
box) of the insulator is detected using the OpenCV based on the background-free images.
It is written to the XML files that the object classification, the position and the size of the
object bounding box, and the image height/width. Figure 10 shows the image generated by
Blender and the process of generating the XML from the 2D image. The synthetic pseudo
codes are listed in Algorithm 1.
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Algorithm 1. Auto-synthesis dataset algorithm

def main():
# Parameter initialization
_init_()
# Read hdri files
hdri_folder = bpy.path.abspath("//hdri")
hdri_file = [os.path.join(hdri_folder, f) for f in os.listdir(hdri_folder) if f.endswith(".exr")]
# Synthetic dataset

for num_insulators in range(starnum_insulators, endnum_insulators):
# Assemble insulators according to the number of insulator strings

zoom(num_insulators)
for hdris in hdri_file:

for k in range(1, num_hdri):
# Counting
num_image += 1
# Loading environment
node_environment, node_background, link1 = hdri(hdris)
# Adjustment of environmental parameters
hdri_adjust()
# Mobile insulator
move()
# Adjusting ambient light
light()

# Switching the CYCLES rendering engine
bpy.context.scene.render.engine = ‘CYCLES’
bpy.context.scene.cycles.device = ‘GPU’
save(Fi0 + str(num_image) + ".png")
# Output background-free image
bpy.context.scene.render.engine = ‘BLENDER_EEVEE’
bpy.data.worlds["World"].node_tree.nodes["Background"].inputs[1].default_value = 1
clear(node_environment, node_background, link1)
save(Fi2 + str(num_image) + ".png")
# Clear nodes and cache images, unload hdri
bpy.context.scene.world.node_tree.nodes.clear()
img_remove()
hdri_reload()

#Automatic generation of annotation files
cv_label()

2.3. Dataset Evaluation

The selected HDRI scenes include flatland, wetland, gobi, and snow with an equaliza-
tion ratio. The irradiance of the images is also equal.

The costs of a generated dataset mainly include the rendering cost and the annotation
cost. Generating a synthesis dataset of 10,800 images takes 35 h, including 6.8 min of
annotation. The costs of rendering images are counted in Figure 11. The synthetic images
are rendered using the Cycles engine on the GTX 1660, rendering one image per 8.69 s
on average. The background-free images are generated using the Eevee engine on the
AMD R7 3700X CPUs, generating one background-free image per 3.07 s on average. There
are 328,000 images of 91 classes of objects in the MS COCO dataset. However, the task
of annotating this dataset is arduous. For example, it takes more than 20,000 h [25] to
determine object classes presented in images of the MS COCO and the average is 16.4 s per
annotation. However, the automatic annotation takes only 38 ms per piece, reducing time
costs compared with the manually annotated dataset.



Sensors 2022, 22, 4364 13 of 19

Sensors 2022, 22, x FOR PEER REVIEW 12 of 19 
 

 

 
Figure 10. (a) Rendered image in Blender. (b) Generating backgrounded-free image in Blender. (c) 
Drawing bounding boxes on the rendered image, processing background-free image by OpenCV to 
get the bounding box. (d) Key image parameters in the XML file. 

2.3. Dataset Evaluation 
The selected HDRI scenes include flatland, wetland, gobi, and snow with an equali-

zation ratio. The irradiance of the images is also equal. 
The costs of a generated dataset mainly include the rendering cost and the annotation 

cost. Generating a synthesis dataset of 10,800 images takes 35 h, including 6.8 min of an-
notation. The costs of rendering images are counted in Figure 11. The synthetic images are 
rendered using the Cycles engine on the GTX 1660, rendering one image per 8.69 s on 
average. The background-free images are generated using the Eevee engine on the AMD 
R7 3700X CPUs, generating one background-free image per 3.07 s on average. There are 
328,000 images of 91 classes of objects in the MS COCO dataset. However, the task of 
annotating this dataset is arduous. For example, it takes more than 20,000 h [25] to deter-
mine object classes presented in images of the MS COCO and the average is 16.4 s per 
annotation. However, the automatic annotation takes only 38 ms per piece, reducing time 
costs compared with the manually annotated dataset. 

 
Figure 11. Costs of rendering images. 

  

Figure 11. Costs of rendering images.

3. Experiments
3.1. Experiment Description

(1) Dataset: A synthetic dataset of 10,800 images with 720 × 1280 pixels is divided into a
training set and a validation set to train a DL model. A dataset of 1200 real images
with 2160 × 3840 pixels is used to test the trained DL model. The ratio of the training
set, validation set, and test set is 8:1:1. The format of these datasets is COCO2017.
Note that the format of our generated synthetic dataset is VOC format and needs to
be converted for the COCO format. The object classification is a porcelain insulator.

(2) Experimental configuration: The experiments are conducted based on the DL frame-
work YOLOX. The computer configuration is AMD R7 3700X CPU, NVIDIA GTX-1660
with 8 GB of video memory, and 16 GB RAM. The operating system is ubuntu 18.04.

(3) Defect detection criteria (evaluation criteria): Three widely used indexes are used to
quantitatively assess the performance of defect detection methods: precision (P), recall
(R), and achieved mean average precision (mAP). P is the percentage of true samples
among all the samples that the system determines to be “true”. R is the percentage of
“true” samples found among all true samples. AP represents the detection accuracy of
a single category, and mAP is the average of AP for each category.

P =
TP

TP + FP
, (8)

R =
TP

TP + FN
, (9)

AP =
∫ 1

0
P(R)dR, (10)

where TP and FP are the number of correctly and incorrectly positioned defects, respectively.
TP + FP is the total number of located defects, and TP + FN is the total number of actual defects.

3.2. Training Results with YOLOX

YOLOX is a released model for target detection, exceeding the YOLO series in 2021.
YOLOX has a fast detection speed and meets inspection robots’ performance needs.

The YOLOX network architecture has three components: backbone, neck, and head.
The backbone based on the CSPDarknet53 is used for feature extraction. The neck is
used for extracting some more complex features. The head is mainly used to predict the
classification and location of targets (bounding boxes). Figure 12 illustrates the YOLOX
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network architecture. The structure is input–backbone–neck–head–output. The input is a
640 × 640 pixel image obtained by the warpAffine conversion of a 720 × 1280 pixel image.
And the output is the object classification, classification probability, and localizations of
bounding boxes.
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The pre-trained model (YOLOX-s) is used to reduce the training time. Verification is
performed every 1 epoch. All other parameters use the default official configuration. The
model is trained with 300 epochs and the training time is 36 h 48 min. The mAP of the
validation set is shown in Figure 13. The mAPval5095 on the validation set is 97.22%.
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3.3. Comprehensive Performance Analysis

The trained model is tested on the test set with 1200 images and the images of the test
set are taken from 60 video streams of the camera shots. The position relationship of the
camera insulator is consistent with the position relationship of the viewpoint insulator. Few
images in the test set are stitched by adding insulators from cropped shooting images to the
aerial images. The graphical image annotation tool for annotating the test set is LabelImg.
Some examples of the images with annotations are shown in Figure 14.

Experiments show that R, P, and F1 are 95%, 96.18%, and 0.96, respectively, and the
mAPtest5095 reached 98.38% when the score threshold is 0.5. The evaluation process of the
YOLOX-s detection model is shown in Figure 15. The results show that the trained model
using a synthetic dataset can effectively recognize real samples.
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4. Discussions
4.1. Synthetic Dataset vs. Real Dataset

It takes 11.6 s to synthesize an image and annotation for a dataset based on virtual
synthesis techniques; this would take less time if better hardware were used. The average
time to annotate an image is 38 ms in the synthetic dataset, which is much lower than
the average annotation time of 16.4 s for the real dataset. Therefore, Synthetic datasets
are easily obtained without considering the difficulty of the generation and annotation.
However, it is costly and difficult to expand a fitting dataset of a PTLs. Once the volume of
real data increases, the time and the economic cost also substantially increase relative to the
synthetic dataset. In addition, dataset annotation can also output depth maps and instance
segmentation labels with much better speed and accuracy than manual. When generating
synthetic data, there is no human subjective error in annotation accuracy and the scale of
synthetic data would be easily expanded with scalability and operability.

4.2. Potential for the Synthetic Dataset Based on the Prior Series Data

The synthesis of the dataset can contain any pose of the model and any environment,
synthesizing some unimportant images if the dataset synthesis is not constrained. For
fitting recognition, the synthetic dataset covering too wide a range is not conducive to
DL training because the collect images with viewpoints outside the motion trajectory are
unrelated features. For example, the walking-mode robots walk along a ground wire
and the robots cannot collect images where the viewpoint is not on the trajectory. The
viewpoints of images are not on their trajectory, causing the DL model to learn unrelated
features, taking more datasets to train the network to improve accuracy. However, prior
series data can achieve better training results with a smaller dataset. The disorderly and
random datasets are endowed with space–time properties along the ground wire, showing
the great scalability and tunability.

4.3. False Detections and Omissions

The trained model is more likely to detect the round-like white objects as porcelain
insulators when the volume of the synthetic dataset is 6 K to train the DL model. When
the volume of the synthetic dataset increases to 10.8 K, this false detection is significantly
reduced and the missed detections also decrease. This false detection would also be easily
solved during the deployment of the trained model. One reason is that the viewpoint of
the test set images is not on the robot trajectory and the actual viewpoint is located in
the sky. All objects are shrunk in the image except for the PTLs, reducing the number
of round-like white objects. Second, the identifications of insulators in the video stream
are continuous and false detections are often intermittent, which would be shielded from
false detections by this feature. The trained model can more accurately detect the images
of the background with vegetation and bare soil and almost no missed detection. Some
images in the front view of insulators on the tarmac are missed detection because the series
information of these images does not belong to the prior series data. However, there are
few missed detections in the elevation view and top view directions of insulators on the
tarmac, indicating good generalization of the model.

4.4. Comparison with Other Dataset Expanding Methods

A summary of the methods on the expanding dataset is shown in Table 4. The main
comparisons with the related studies are as follows: (1) Our proposed approach of the
synthetic dataset based on the prior series data could obtain a dataset with a large number
of important features. The trained model using this synthetic dataset could identify targets
in complex backgrounds, showing good generalization and accuracy. The synthesis dataset
for these studies [18–20] contains unimportant features that may be learned by the DL
model. (2) The expanding dataset based on real images [14,16,17,20] can significantly
increase the volume of the dataset, but collecting real images is difficult, especially for the
fitting dataset. Our dataset synthesis is completely virtual; therefore, the synthetic images
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would not be subject to topographic restrictions like real images, reducing the difficulty of
generating images. (3) The trained model using the synthetic dataset for the study [18] has
great accuracy for identifying regular objects in the single-color background. Our synthetic
dataset based on prior series data could improve the recognition accuracy of the DL model
in complex backgrounds since the synthetic dataset has a lot of important features.

Table 4. Summary of the methods for expanding dataset.

Core Idea Method Recognition
Target

Data
Volume

Sensor
Type

Vehicle
Type

Performance
Metrics

Data augmentation [16] Faster RCNN Insulator — RGB Camera NVIDIA
RTX2080ti

Highest accuracy:
90.2%

Random splicing [17] cGAN Insulator 8 K Infrared camera
and RGB camera

NVIDIA
GTX1080

Highest accuracy:
85%

Image processing [14] YOLO v4 Insulator 15 K RGB Camera NVIDIA
GTX1060 AP: 82.9%

Generating dataset using
virtual 3D models [18] CNN Screw, nut,

and washer — RGB Camera
Samsung S7,

Epson Moverio
M350

Accuracy: 91% to 99%

Mixing real and simulated
samples [19] CNN Insulator 18 K RGB Camera

Omnisky
SCW4750

workstation

Best mixing ratio: 2.0
Accuracy: 97.9%

Overlaying synthetic
wires on flight videos [20] CNN Wire 68 K RGB Camera NVIDIA Jetson

TX2 AP: 73%

Generating dataset base
prior series data YOLOX Insulator 10.8 K D 435i NVIDIA

GTX1660 AP: 98%

5. Conclusions

In this study, a novel auto-synthesis dataset approach is proposed for fitting recog-
nition using the prior series data. The generated synthetic dataset by this approach is
validated on the YOLOX model. The main conclusions are as follows:

1. The synthetic dataset is generated by the Blender script using the prior series data. Per
720× 1280 pixel image and its annotation are generated in only 11.6 s. The efficiency of
synthesizing the dataset is substantially improved compared with humans collecting
images and annotating.

2. The formulation of synthesis rules based on prior series data can control the properties
of the dataset. The synthesis dataset has strong scalability, operability, and tunability.

3. Training the YOLOX model using a synthesis dataset without real samples can ob-
tain good models. The trained model achieves an mAP of 0.98 on the test set of
real samples, indicating that the trained model on the synthetic dataset has a great
generalization to recognize real samples. The research results suggest that training
the DL model using a synthesis dataset is promising.

The limitations of the proposed approach mainly focus on two aspects. One is that
the performance of our GPU device is not excellent and the time cost of generating a
dataset will be very high if the volume of dataset needed is very large. We could replace
the GPU with more excellent performance and optimize the algorithms in the future to
reduce the time cost of the generated dataset. The other is that the depth maps and instance
segmentation labels are not generated in this paper, and we will refine our program to
generate them in the following work.
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