organic compounds

H-atom parameters constrained

7 4

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Phenyl-4H-3,1-benzoxazin-4-one

R. Thilagavathy,^a Helen P. Kavitha,^a R. Arulmozhi,^b Iasmine P. Vennila^c and V. Manivannan^d*

^aDepartment of Chemistry, SRM University, Ramapuram Campus, Chennai 600 089 India, ^bDepartment of Chemistry, SRM University, Kattankulathur Campus, Kanchipuram, India, ^cDepartment of Physics, Panimalar Institute of Technology, Chennai, India, and ^dDepartment of Physics, Presidency College, Chennai 600 005, India

Correspondence e-mail: manivan_1999@yahoo.com

Received 3 December 2008; accepted 10 December 2008

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.053; wR factor = 0.187; data-to-parameter ratio = 19.7.

The title molecule, C₁₄H₉NO₂, is nearly planar with a dihedral angle of $3.72 (4)^\circ$ beteewn the plane of the phenyl ring and the 3,1-benzoxazin-4-one fragment. The molecules are arranged into stacks parallel to the b axis via $\pi - \pi$ stacking interactions [centroid-centroid distance = 4.2789(11) Å] and the crystal packing is additionally stabilized by weak intermolecular C- $H \cdots O$ interactions.

Related literature

For the biological activity of oxazin-4-ones, see: Pietsch & Gütschow (2005); Tarzia et al. (2007). For similar structures, see: Crane & Rogerson (2004); Khan et al. (2007).

Experimental

Crystal data C14H9NO2

 $M_r = 223.22$

	a = 133055(16) Å	Z = 4 Mo K radiation
	b = 3.8930 (4) Å	$\mu = 0.10 \text{ mm}^{-1}$
	c = 20.445 (2) Å	T = 295 (2) K
	$\beta = 94.946 \ (3)^{\circ}$	$0.20 \times 0.16 \times 0.16 \text{ mm}$
	V = 1055.1 (2) Å ³	
	Data collection	
	Bruker Kappa APEXII	13688 measured reflections
	diffractometer	3034 independent reflections
	Absorption correction: multi-scan	1800 reflections with $I > 2\sigma(I)$
	(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.036$
	$T_{\min} = 0.981, \ T_{\max} = 0.985$	
,	Refinement	
	$R[F^2 > 2\sigma(F^2)] = 0.053$	154 parameters
	$wR(F^2) = 0.187$	H-atom parameters constraine

$\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.28~{\rm e}~{\rm \AA}^{-3}$ 3034 reflections

Table 1

S = 1.08

Manaslinia D2 /...

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$			
$C10-H10\cdots O2^{i}$	0.93	2.51	3.294 (2)	142			
Symmetry code: (i) $-r + 1 - v - z + 1$							

Symmetry code: (i) -x + 1, -y, -z + 1.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

The authors acknowledge the management of SRM University for providing financial assistance for the pilot project.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2180).

References

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Crane, J. D. & Rogerson, E. (2004). Acta Cryst. E60, 0669-0670.
- Khan, Z. A., Khan, K. M. & Anjum, S. (2007). Acta Cryst. E63, 04226-04227.
- Pietsch, M. & Gütschow, M. (2005). J. Med. Chem. 48, 8270-8288.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Tarzia, G., Antonietti, F., Duranti, A., Tontini, A., Mor, M., Rivara, S., Traldi, P., Astarita, G., King, A., Clapper, J. R. & Piomelli, D. (2007). Ann. Chim. 97, 887-894.

supplementary materials

Acta Cryst. (2009). E65, o127 [doi:10.1107/S1600536808042050]

2-Phenyl-4H-3,1-benzoxazin-4-one

R. Thilagavathy, H. P. Kavitha, R. Arulmozhi, J. P. Vennila and V. Manivannan

Comment

Oxazin-4-one derivatives are used as inhibitors of the alpha/beta hydrolases, cholesterol esterase and acetylcholinesterase (Pietsch & Gütschow, 2005) and are potent inhibitors of the endocannabinoid-deactivating enzyme, monoacylglycerol lipase (Tarzia *et al.*, 2007).

The geometric parameters of the title molecule (Fig. 1) agree well with the earlier reported structures (Crane & Rogerson, 2004; Khan *et al.*, 2007). The plane of the phenyl ring forms a dihedral angle of $3.72 (4)^\circ$ with the benzo[*d*][1,3]oxazin-4-one moiety. The molecular structure is stabilized by weak intramolecular C–H…O interaction and the crystal packing is stabilized by weak intermolecular C–H…O and π - π stacking interactions.

Experimental

To a stirred solution of anthranilic acid (0.01 mol) in pyridine (60 ml), benzoyl chloride (0.01 mol) was added dropwise maintaining the temperature near 8° C for one hour. The reaction mixture was stirred for another 2 h at room temperature. While stirring, a solid product separated out. The whole reaction mixture was neutralized with NaHCO₃ solution. A pale yellow solid deposited was filtered, washed with water and recrystallized from ethanol to get diffraction quality crystals; yYield 78%.

Refinement

H atoms were positioned geometrically and refined using riding model with C—H = 0.93Å and $U_{iso}(H) = 1.2$ Ueq(C).

Figures

Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 2. The crystal packing viewed down the b axis. C-H···O hydrogen bonds are shown as dashed lines.

2-Phenyl-4H-3,1-benzoxazin-4-one

Crystal data	
C ₁₄ H ₉ NO ₂	$F_{000} = 464$
$M_r = 223.22$	$D_{\rm x} = 1.405 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 2312 reflections
<i>a</i> = 13.3055 (16) Å	$\theta = 1.7 - 29.5^{\circ}$
b = 3.8930 (4) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 20.445 (2) Å	T = 295 (2) K
$\beta = 94.946 \ (3)^{\circ}$	Block, pale yellow
$V = 1055.1 (2) \text{ Å}^3$	$0.20\times0.16\times0.16~mm$
Z = 4	

Data collection

Bruker Kappa APEXII diffractometer	3034 independent reflections
Radiation source: fine-focus sealed tube	1800 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.036$
Detector resolution: 0 pixels mm ⁻¹	$\theta_{\rm max} = 29.8^{\circ}$
T = 295(2) K	$\theta_{\min} = 1.8^{\circ}$
ω and ϕ scans	$h = -18 \rightarrow 17$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$k = -5 \rightarrow 5$
$T_{\min} = 0.981, T_{\max} = 0.985$	$l = -28 \rightarrow 28$
13688 measured reflections	

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.053$
$wR(F^2) = 0.187$
<i>S</i> = 1.08
3034 reflections
154 parameters
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0948P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.24$ e Å⁻³ $\Delta\rho_{min} = -0.28$ e Å⁻³

Extinction correction: none

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.54301 (13)	0.4961 (4)	0.20378 (8)	0.0439 (4)
C2	0.48811 (15)	0.6405 (4)	0.15009 (9)	0.0533 (5)
H2	0.4227	0.7175	0.1539	0.064*
C3	0.52987 (17)	0.6703 (5)	0.09133 (10)	0.0663 (6)
Н3	0.4924	0.7639	0.0551	0.080*
C4	0.62706 (19)	0.5616 (6)	0.08600 (11)	0.0718 (6)
H4	0.6554	0.5844	0.0462	0.086*
C5	0.68254 (16)	0.4204 (5)	0.13861 (12)	0.0680 (6)
H5	0.7482	0.3472	0.1345	0.082*
C6	0.64107 (13)	0.3866 (5)	0.19766 (10)	0.0549 (5)
H6	0.6787	0.2904	0.2335	0.066*
C7	0.49642 (12)	0.4637 (4)	0.26569 (8)	0.0412 (4)
C8	0.52751 (12)	0.2379 (4)	0.37481 (8)	0.0466 (4)
C9	0.42925 (12)	0.3731 (4)	0.38655 (8)	0.0412 (4)
C10	0.39216 (13)	0.3387 (4)	0.44755 (9)	0.0489 (4)
H10	0.4307	0.2312	0.4817	0.059*
C11	0.29830 (14)	0.4643 (5)	0.45710 (9)	0.0534 (5)
H11	0.2733	0.4445	0.4980	0.064*
C12	0.24090 (14)	0.6201 (5)	0.40597 (10)	0.0535 (5)
H12	0.1771	0.7027	0.4128	0.064*
C13	0.27615 (12)	0.6554 (4)	0.34535 (9)	0.0479 (4)
H13	0.2364	0.7599	0.3113	0.057*
C14	0.37202 (12)	0.5334 (4)	0.33502 (8)	0.0404 (4)
N1	0.40839 (10)	0.5770 (3)	0.27363 (7)	0.0441 (4)
O1	0.55759 (8)	0.2978 (3)	0.31294 (6)	0.0495 (3)
O2	0.58392 (10)	0.0790 (4)	0.41188 (6)	0.0698 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0438 (9)	0.0438 (8)	0.0439 (10)	-0.0068 (7)	0.0027 (7)	-0.0010(7)
C2	0.0560 (11)	0.0553 (10)	0.0484 (11)	-0.0045 (8)	0.0033 (9)	0.0046 (8)
C3	0.0816 (16)	0.0675 (12)	0.0503 (12)	-0.0070 (10)	0.0083 (11)	0.0089 (9)
C4	0.0859 (17)	0.0717 (13)	0.0618 (14)	-0.0187 (11)	0.0290 (12)	-0.0008 (10)
C5	0.0567 (12)	0.0758 (13)	0.0743 (15)	-0.0074 (10)	0.0225 (11)	-0.0052 (11)
C6	0.0443 (10)	0.0630 (11)	0.0578 (12)	-0.0049 (8)	0.0065 (9)	0.0011 (8)
C7	0.0384 (9)	0.0414 (8)	0.0422 (10)	-0.0032 (6)	-0.0053 (7)	0.0008 (6)
C8	0.0404 (9)	0.0546 (9)	0.0440 (10)	0.0025 (7)	-0.0012 (8)	0.0069 (7)
C9	0.0391 (9)	0.0418 (8)	0.0415 (9)	-0.0023 (6)	-0.0027 (7)	-0.0003 (6)
C10	0.0496 (10)	0.0531 (9)	0.0431 (10)	-0.0017 (7)	-0.0018 (8)	0.0040 (7)
C11	0.0542 (11)	0.0592 (10)	0.0476 (11)	-0.0037 (8)	0.0100 (9)	-0.0048 (8)
C12	0.0424 (10)	0.0569 (10)	0.0618 (13)	0.0010 (7)	0.0071 (9)	-0.0099 (8)
C13	0.0393 (9)	0.0531 (9)	0.0499 (11)	0.0030 (7)	-0.0047 (8)	-0.0020 (7)
C14	0.0370 (8)	0.0408 (8)	0.0423 (9)	-0.0020 (6)	-0.0019 (7)	-0.0022 (6)

supplementary materials

N1	0.0399 (8)	0.0495 (7)	0.0421 (8)	0.0008 (6)	-0.0018 (6)	0.0033 (6)
01	0.0387 (7)	0.0644 (7)	0.0447 (7)	0.0069 (5)	0.0003 (5)	0.0075 (5)
O2	0.0532 (8)	0.0981 (10)	0.0576 (9)	0.0236 (7)	0.0018 (7)	0.0257 (7)
Geometric paran	neters (Å, °)					
C1—C2		1.384 (2)	C8—	-02		1.1926 (19)
C1—C6		1.388 (2)	C8—	-01		1.3791 (19)
C1—C7		1.462 (2)	C8—	-C9		1.448 (2)
C2—C3		1.371 (2)	С9—	-C10		1.387 (2)
C2—H2		0.9300	С9—	-C14		1.393 (2)
C3—C4		1.374 (3)	C10-	C11		1.371 (2)
С3—Н3		0.9300	C10–	-H10	(0.9300
C4—C5		1.367 (3)	C11–	C12		1.381 (3)
C4—H4		0.9300	C11–	-H11	(0.9300
C5—C6		1.376 (3)	C12-	C13		1.369 (2)
С5—Н5		0.9300	C12-	-H12	(0.9300
С6—Н6		0.9300	C13–	C14		1.394 (2)
C7—N1		1.275 (2)	C13–	—Н13	(0.9300
C7—O1		1.3702 (18)	C14-	N1		1.394 (2)
C2-C1-C6		119.27 (17)	02—	-C8—C9		127.66 (16)
C2-C1-C7		119.16 (15)	01—	-C8C9		115.34 (14)
C6-C1-C7		121.56 (16)	C10-	C9C14		120.63 (15)
C3—C2—C1		120.20 (18)	C10-	—С9—С8		120.68 (15)
С3—С2—Н2		119.9	C14-	—С9—С8		118.68 (15)
С1—С2—Н2		119.9	C11–	С10С9		119.55 (16)
C2—C3—C4		119.9 (2)	C11–	C10H10		120.2
С2—С3—Н3		120.0	С9—	-C10—H10		120.2
С4—С3—Н3		120.0	C10-	C11C12		120.00 (17)
C5—C4—C3		120.64 (19)	C10-			120.0
С5—С4—Н4		119.7	C12-			120.0
C3—C4—H4		119.7	C13-			121.27 (16)
C4—C5—C6		119.9 (2)	C13-	—С12—Н12		119.4
С4—С5—Н5		120.0	C11–	C12H12		119.4
С6—С5—Н5		120.0	C12-	C13C14		119.49 (16)
C5—C6—C1		120.05 (19)	C12-	—С13—Н13		120.3
С5—С6—Н6		120.0	C14-	—С13—Н13		120.3
С1—С6—Н6		120.0	С9—	-C14N1		121.73 (14)
N1—C7—O1		124.73 (15)	С9—	-C14—C13		119.05 (15)
N1—C7—C1		122.90 (15)	N1—	-C14—C13		119.22 (15)
O1—C7—C1		112.37 (14)	С7—	N1-C14		117.80 (14)
O2—C8—O1		117.00 (15)	С7—	-O1C8		121.64 (12)
C6—C1—C2—C3	3	0.9 (2)	С9—	-C10C11C12	(0.8 (3)
C7—C1—C2—C3	3	-179.33 (15)	C10-	C11C12C13		-0.6 (3)
C1—C2—C3—C4	4	-1.0 (3)	C11-	C12C13C14		-0.3 (3)
C2—C3—C4—C3	5	0.7 (3)	C10-	C9C14N1		178.74 (14)
C3—C4—C5—C6	6	-0.1 (3)	C8—	-C9C14N1		-2.3 (2)
C4—C5—C6—C1	1	0.0 (3)	C10-	C9C14C13		-0.8 (2)
C2—C1—C6—C5	5	-0.4 (3)	C8—	-C9—C14—C13		178.16 (14)

supplementary materials

C7—C1—C6—C5	179.88 (15)	C12—C13—C14—C9	1.0 (2)
C2-C1-C7-N1	-3.3 (2)	C12-C13-C14-N1	-178.56 (14)
C6—C1—C7—N1	176.50 (15)	O1—C7—N1—C14	0.9 (2)
C2-C1-C7-O1	176.31 (13)	C1—C7—N1—C14	-179.59 (12)
C6—C1—C7—O1	-3.9 (2)	C9—C14—N1—C7	0.2 (2)
O2—C8—C9—C10	3.1 (3)	C13—C14—N1—C7	179.81 (15)
O1—C8—C9—C10	-177.93 (14)	N1-C7-O1-C8	0.1 (2)
O2—C8—C9—C14	-175.84 (17)	C1—C7—O1—C8	-179.43 (13)
O1—C8—C9—C14	3.1 (2)	O2—C8—O1—C7	176.92 (16)
C14-C9-C10-C11	-0.1 (2)	C9—C8—O1—C7	-2.1 (2)
C8—C9—C10—C11	-179.02 (15)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A	
С6—Н6…О1	0.93	2.39	2.713 (2)	101	
C10—H10···O2 ⁱ	0.93	2.51	3.294 (2)	142	
Symmetry codes: (i) $-x+1$, $-y$, $-z+1$.					

Fig. 1

Fig. 2

