
 International Journal of 

Molecular Sciences

Article

Chrysin Inhibits TNFα-Induced TSLP Expression through
Downregulation of EGR1 Expression in Keratinocytes

Hyunjin Yeo 1,†, Young Han Lee 1,† , Sung Shin Ahn 1, Euitaek Jung 1, Yoongho Lim 2 and Soon Young Shin 1,*

����������
�������

Citation: Yeo, H.; Lee, Y.H.; Ahn, S.S.;

Jung, E.; Lim, Y.; Shin, S.Y. Chrysin

Inhibits TNFα-Induced TSLP

Expression through Downregulation

of EGR1 Expression in Keratinocytes.

Int. J. Mol. Sci. 2021, 22, 4350.

https://doi.org/10.3390/ijms22094350

Academic Editor: Kenji Izuhara

Received: 25 March 2021

Accepted: 16 April 2021

Published: 21 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Biological Sciences, Sanghuh College of Lifesciences, Konkuk University, Seoul 05029, Korea;
jini1606@konkuk.ac.kr (H.Y.); yhlee58@konkuk.ac.kr (Y.H.L.); wendy713@konkuk.ac.kr (S.S.A.);
mylife4sci@konkuk.ac.kr (E.J.)

2 Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 05029, Korea;
yoongho@konkuk.ac.kr

* Correspondence: shinsy@konkuk.ac.kr; Tel.: +82-2-2030-7946
† H.Y. and Y.H.L. contributed equally.

Abstract: Thymic stromal lymphopoietin (TSLP) is an epithelial cell-derived cytokine that acts as
a critical mediator in the pathogenesis of atopic dermatitis (AD). Various therapeutic agents that
prevent TSLP function can efficiently relieve the clinical symptoms of AD. However, the down-
regulation of TSLP expression by therapeutic agents remains poorly understood. In this study,
we investigated the mode of action of chrysin in TSLP suppression in an AD-like inflammatory
environment. We observed that the transcription factor early growth response (EGR1) contributed to
the tumor necrosis factor alpha (TNFα)-induced transcription of TSLP. Chrysin attenuated TNFα-
induced TSLP expression by downregulating EGR1 expression in HaCaT keratinocytes. We also
showed that the oral administration of chrysin improved AD-like skin lesions in the ear and neck of
BALB/c mice challenged with 2,4-dinitrochlorobenzene. We also showed that chrysin suppressed
the expression of EGR1 and TSLP by inhibiting the extracellular signal-regulated kinase (ERK) 1/2
and c-Jun N-terminal kinase (JNK) 1/2 mitogen-activated protein kinase pathways. Collectively, the
findings of this study suggest that chrysin improves AD-like skin lesions, at least in part, through the
downregulation of the ERK1/2 or JNK1/2-EGR1-TSLP signaling axis in keratinocytes.

Keywords: atopic dermatitis; chrysin; 2,4-dinitrochlorobenzene; early growth response 1; thymic
stromal lymphopoietin

1. Introduction

Atopic dermatitis (AD), also known as atopic eczema, is a chronic inflammatory
skin disease characterized by the development of recurrent eczematous lesions and in-
tense pruritus [1]. The prevalence of AD is constantly growing worldwide over the past
30 years, and nowadays, AD affects about 10% of adults and up to 20% of children [2].
AD is associated with multiple comorbid chronic disorders, such as asthma, allergic rhini-
tis, respiratory infection, mental disorders, metabolic syndrome, gastrointestinal prob-
lems, and cardiovascular disease [3]. A recent cohort study has revealed a variety of
clinical forms of AD in adult-onset and childhood-onset types, which may be a crucial
factor in determining the appropriate therapeutic medications [4]. AD treatment com-
prises several types of therapies, such as topical versus systemic application and small
molecule inhibitors versus biological agents. Topical therapy includes the application of
corticosteroids, antihistamine, and immunosuppressants (e.g., calcineurin inhibitors and
phosphodiesterase inhibitors) [5]. Systemic administration comprises immunosuppressant-
modulators (e.g., cyclosporine), anti-metabolites (e.g., methotrexate and azathioprine),
cytokine signaling inhibitor (e.g., JAK kinase inhibitor), antibiotics, and biological agents
(e.g., targeted monoclonal antibodies) [6–9]. Topical steroids and immunosuppressants
have been used as the primary agents; however, their value is limited by local side effects
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and insufficient efficacy [10]. Oral steroids or immunosuppressants may be used in adults
with severe chronic symptoms, but their use is often unsatisfactory due to considerable
long-term side effects [11]. Various herbal medicines have been reported to have beneficial
effects in the treatment of AD; however, there is not enough evidence to support the use of
herbal medicine [10]. Therefore, new systemic therapies with fewer side effects and more
efficacious are needed to treat moderate-to-severe chronic AD.

The cause of AD has not been identified in sufficient detail; however, the onset of
AD is known to be influenced by genetic and environmental factors, epidermal barrier
abnormalities, and impaired cutaneous immune functions [1,12]. In most cases, AD patho-
genesis is primarily driven by a milieu of pro-inflammatory cytokines produced by CD4+ T
helper (Th) lymphocytes, including Th2, Th22, and Th17 cells, as well as pro-inflammatory
immune cells, including mast cells, neutrophils, and macrophages/monocytes [13–15].
The prominent clinical features of AD include cutaneous inflammation and the chronic
itch–scratch–itch cycle, which cause persistent irritation to the skin lesions and impair the
skin barrier function. Itching is induced by the stimulation of peripheral sensory neurons
by pruritogens. Histamine secreted by mast cells can mediate acute itch in skin inflamma-
tion; meanwhile, Th2-associated cytokines, including interleukin (IL)-4, IL-13, and IL-31,
directly stimulate sensory neurons [16–18].

Thymic stromal lymphopoietin (TSLP) is an IL-17-like cytokine that has been identified
and characterized in murine thymic stromal Z210R.1 cells [19,20]. It is produced by various
cell types, including stromal cells, epithelial cells, smooth muscle cells, fibroblasts, dendritic
cells, mast cells, and epidermal keratinocytes [21]. TSLP promotes the differentiation and
growth of B cells and the activation of CD4+/CD8+ T cells and dendritic cells [19,20,22–25].
In the early stage of AD, keratinocyte-derived TSLP activates dendritic cells to induce
the release of various chemokines, which leads to the expansion of the Th2 and Th22 cell
populations and induces the release of IL-4, IL-5, IL-13, IL-22, and tumor necrosis factor
alpha (TNFα) in large quantities [26]. Ultimately, this results in the persistent activation
of Th1 and Th17 cells, impairs epidermal barrier function, accelerates skin inflammation,
and promotes the development of AD [27,28]. TSLP also potentially activates mast cells,
thus promoting the production of high levels of Th2-like cytokines [29]. TSLP directly
stimulates itch sensory neurons independent of Th2 cytokines [30]. Hence, these studies
suggest the role of TSLP as a crucial mediator of AD pathogenesis [31] and a potential drug
target [32]. Various therapeutic agents that prevent TSLP function can effectively relieve
clinical symptoms [33]. TSLP expression is regulated by various cytokines, including
pro-inflammatory cytokines, such as TNFα and IL-1, and Th2-related cytokines, such as
IL-4, IL-13, and IL-33 [34]. However, the mechanisms underlying TSLP suppression by
therapeutic agents remain poorly understood.

Chrysin (5,7-dihydroxyflavone, Figure 1A) is a flavonoid found in large quantities in
honey, propolis, mushrooms, and carrot. It exhibits multiple pharmacological and ther-
apeutic properties, including neuroprotective, anti-inflammatory, and anticancer proper-
ties [35,36]. Notably, chrysin is known to alleviate AD by inhibiting the production of multi-
ple pro-inflammatory cytokines and chemokines [37–39]. Choi et al. [37] have demonstrated
that chrysin significantly inhibits the production of cytokines, Th2 chemokines, CCL17, and
CCL22 by the downregulation of p38 MAPK, NF-κB, and STAT1 in TNFα/IFNγ-stimulated
HaCaT keratinocytes. However, despite the beneficial effects of chrysin in AD therapy, the
mechanism underlying the suppression of TSLP expression by chrysin remains unclear.
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Figure 1. Effect of chrysin on the suppression of TNFα-induced TSLP expression. (A) Chemical 
structure of chrysin (5,7-dihydroxyflavone). (B) HaCaT cells were pretreated with chrysin (20 and 
40 μM) for 30 min before stimulation with 10 ng/mL TNFα. After 12 h, total RNA was isolated, 
and the levels of TSLP mRNA were measured using RT-PCR. GAPDH mRNA was used as an 
internal control. Minus (-), vehicle treatment; Plus (+), TNFα treatment. (C) HaCaT cells were 
treated as in (B), and total RNA was isolated. TSLP mRNA levels were quantified using 
quantitative real-time PCR with SYBR Green-based fluorescent probes. The relative expression 
was normalized to the GAPDH mRNA levels. The relative TSLP mRNA level in the untreated cells 
was designated 1. Data are expressed as mean ± SD (n = 3); *** P < 0.001 by Dunnett’s multiple 
comparisons test. Minus (-), vehicle treatment; Plus (+), TNFα treatment. (D) HaCaT cells were 
pretreated with chrysin (20 and 40 μM) for 30 min and then stimulated with 10 ng/mL TNFα for 
24 h. The quantity of TSLP protein was measured using Western blot analysis. The band intensity 
corresponding to each TSLP protein was normalized to the GAPDH level using ImageJ v1.52a 
software. Data are expressed as mean ± SD (n = 3). NS, not significant; *** P < 0.001 by Dunnett’s 
multiple comparisons test. Minus (-), vehicle treatment; Plus (+), TNFα treatment. 
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downregulating mitogen-activated protein kinase (MAPK)-mediated EGR1 expression in  
HaCaT keratinocytes. In addition, we demonstrated that the oral administration of 
chrysin suppressed EGR1 and TSLP expression in AD-like skin lesions in BALB/c mice.  

2. Results 
2.1. Chrysin Inhibits TNFα-Induced TSLP Expression in HaCaT Keratinocytes 

Previous studies have shown that chrysin alleviates AD-like skin lesions in a mouse 
model [37] and reverses the NF-κB-mediated inhibition of C-C motif chemokine ligand 
(CCL) 5 [39]. TSLP plays a key role in AD progression, and TSLP upregulation is 
considered a hallmark of AD pathogenesis [31,32]. TNFα is a pro-inflammatory cytokine 
that promotes inflammation by inducing the production of various other inflammatory 
cytokines and chemokines [40]. TNFα production was enhanced in a mouse model of 2.4-
dinitrobenzene (DNCB)-induced contact allergy [41], and TNFα induced TSLP expression 
in skin keratinocytes [42]. To investigate whether chrysin modulates TSLP expression, we 
used TNFα as a positive signal to induce TSLP expression. As reported in a previous study 
[42], the TSLP mRNA levels were enhanced upon TNFα stimulation, as shown using 

Figure 1. Effect of chrysin on the suppression of TNFα-induced TSLP expression. (A) Chemical
structure of chrysin (5,7-dihydroxyflavone). (B) HaCaT cells were pretreated with chrysin (20 and
40 µM) for 30 min before stimulation with 10 ng/mL TNFα. After 12 h, total RNA was isolated, and
the levels of TSLP mRNA were measured using RT-PCR. GAPDH mRNA was used as an internal
control. Minus (−), vehicle treatment; Plus (+), TNFα treatment. (C) HaCaT cells were treated as in
(B), and total RNA was isolated. TSLP mRNA levels were quantified using quantitative real-time
PCR with SYBR Green-based fluorescent probes. The relative expression was normalized to the
GAPDH mRNA levels. The relative TSLP mRNA level in the untreated cells was designated 1. Data
are expressed as mean ± SD (n = 3); *** p < 0.001 by Dunnett’s multiple comparisons test. Minus (−),
vehicle treatment; Plus (+), TNFα treatment. (D) HaCaT cells were pretreated with chrysin (20 and
40 µM) for 30 min and then stimulated with 10 ng/mL TNFα for 24 h. The quantity of TSLP protein
was measured using Western blot analysis. The band intensity corresponding to each TSLP protein
was normalized to the GAPDH level using ImageJ v1.52a software. Data are expressed as mean ± SD
(n = 3). NS, not significant; *** p < 0.001 by Dunnett’s multiple comparisons test. Minus (−), vehicle
treatment; Plus (+), TNFα treatment.

In this study, we attempted to elucidate the role of chrysin in TSLP suppression
in keratinocytes. We found that chrysin inhibited TNFα-induced TSLP expression by
downregulating mitogen-activated protein kinase (MAPK)-mediated EGR1 expression in
HaCaT keratinocytes. In addition, we demonstrated that the oral administration of chrysin
suppressed EGR1 and TSLP expression in AD-like skin lesions in BALB/c mice.

2. Results
2.1. Chrysin Inhibits TNFα-Induced TSLP Expression in HaCaT Keratinocytes

Previous studies have shown that chrysin alleviates AD-like skin lesions in a mouse
model [37] and reverses the NF-κB-mediated inhibition of C-C motif chemokine ligand
(CCL) 5 [39]. TSLP plays a key role in AD progression, and TSLP upregulation is con-
sidered a hallmark of AD pathogenesis [31,32]. TNFα is a pro-inflammatory cytokine
that promotes inflammation by inducing the production of various other inflammatory
cytokines and chemokines [40]. TNFα production was enhanced in a mouse model of
2.4-dinitrobenzene (DNCB)-induced contact allergy [41], and TNFα induced TSLP expres-
sion in skin keratinocytes [42]. To investigate whether chrysin modulates TSLP expression,
we used TNFα as a positive signal to induce TSLP expression. As reported in a previous
study [42], the TSLP mRNA levels were enhanced upon TNFα stimulation, as shown using
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reverse transcription (RT)-PCR (Figure 1B). However, chrysin pretreatment abrogated the
ability of TNFα to induce TSLP mRNA expression. The changes in TSLP mRNA levels were
measured using quantitative real-time PCR (Q-PCR) with TSLP-specific SYBR Green-based
fluorescent probes. TNFα increased the TSLP mRNA level by 17.9 ± 2.52-fold compared
to that in the control; however, upon treatment with 20 and 40 µM chrysin, the TSLP
mRNA levels decreased by 7.40 ± 1.45- and 2.97 ± 0.397-fold, respectively, compared to
the levels in the control (Figure 1C). Chrysin consistently suppressed TNFα-induced TSLP
accumulation in a dose-dependent manner (Figure 1D). These data suggest that chrysin
inhibits TNFα-induced TSLP expression at the mRNA level.

2.2. The Chrysin Response Element Is Located between the −369 and +18 Positions in the
TSLP Promoter

To elucidate the effect of chrysin on the inhibition of TNFα-induced TSLP ex-
pression, we established a series of TSLP promoter deletion constructs: −1384/+18,
−1338/+18, −1214/+18, −1017/+18, and −369/+18. These constructs harbored the
luciferase reporter gene. Each of these promoter-reporters was transiently transfected
into HaCaT cells, and the luciferase activity was measured following TNFα stimulation.
As shown in Figure 2A, TNFα-induced TSLP promoter–reporter activity was persistently
repressed in cells transfected with the shortest construct (−369/+18), suggesting that
the chrysin response element is located between the −369 and +18 positions.
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plasmids. At 48 h post-transfection, the cells were treated with 10 ng/mL TNFα in the absence or 
presence of 40 μM chrysin. After 8−12 h, the cells were harvested, and the luciferase reporter 
activities were measured. The schematic diagram shows the set of deletion constructs of the TSLP 

Figure 2. Effect of chrysin on the inhibition of TNFα-induced TSLP promoter activity. (A) HaCaT cells
were transfected with 0.2 µg of a set of 5′-deletion constructs of TSLP promoter-reporter plasmids.
At 48 h post-transfection, the cells were treated with 10 ng/mL TNFα in the absence or presence of
40 µM chrysin. After 8−12 h, the cells were harvested, and the luciferase reporter activities were
measured. The schematic diagram shows the set of deletion constructs of the TSLP promoter–reporter
plasmid. Data are expressed as mean ± SD (n = 3). NS, not significant; ** p < 0.01; *** p < 0.001 by
Sidak’s multiple comparisons test. (B) Nucleotide sequence of the 5’-regulatory region of human
TSLP spanning between the positions −369 and +18. The EGR1-binding sequence and NF-κB sites
are underlined. The TATA box (−29/−22) is indicated using the box.
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To identify the chrysin response elements, we analyzed the transcription factor-
binding sites between the−369 and +18 positions using MatInspector program (Genomatix
Software, Munich, Gertmany). The nuclear factor kappa B (NF-κB)-binding site was found
to overlap with a putative early growth response 1 (EGR1)-binding sequence (EBS) located
in the region between positions −206 and −187 (Figure 2B).

2.3. Chrysin Inhibits the DNA-Binding Activity of EGR1

Previous studies have shown the role of NF-κB in mediating TNFα-induced TSLP
expression in human airway smooth muscle cells [43] and IL-1β-induced TSLP expression
in intestinal epithelial cells [44]. The transcription factor EGR1 mediates IL33-induced
TSLP expression in keratinocytes [45]. However, the role of EBS in the −369/+18 region of
the TSLP promoter remains elusive. We focused on the role of EGR1 in chrysin-mediated
TSLP suppression. To determine whether EGR1 transactivates the EBS in the −369/+18
construct, we co-transfected the −369/+18 construct and an expression plasmid for EGR1
(pcDNA3.1/Egr1) and measured the luciferase reporter activity. Exogenous EGR1 ex-
pression increased the promoter–reporter activity of the −369/+18 construct in a plasmid
concentration-dependent manner (Figure 3A), suggesting that the putative EBS in the
−369/+18 construct could be a functional cis-acting element for EGR1 that participates in
TNFα-induced TSLP transcription.
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Dunnett’s multiple comparisons test. Expression of EGR1 post-transfection was confirmed using 
Western blotting (bottom panels). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used 
as an internal control. (B) HaCaT cells were treated with or without 10 ng/mL TNFα for 1 h in the 
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Figure 3. Chrysin inhibits the DNA-binding activity of EGR1. (A) HaCaT cells were co-transfected
with the pTSLP-Luc(−369/+18) reporter plasmid at increasing concentrations of the EGR1 expression
plasmid. After 48 h, the cells were harvested, and the luciferase activities were measured (top
graph). Bars represent means ± SD (n = 3). NS, not significant; *** p < 0.001 by Dunnett’s multiple
comparisons test. Expression of EGR1 post-transfection was confirmed using Western blotting
(bottom panels). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an internal
control. (B) HaCaT cells were treated with or without 10 ng/mL TNFα for 1 h in the presence
or absence of chrysin (20 and 40 µM). Nuclear extracts (3 µg) were prepared and incubated with
a biotinylated EGR1-binding oligonucleotide probe (50 fmole) in the absence or presence of an
unlabeled competitor (2500 fmole). The samples were separated by electrophoresis in non-denaturing
6% polyacrylamide gels and incubated with streptavidin-conjugated horseradish peroxidase. Protein–
DNA complexes were visualized using a Western blotting detection kit (top panel). The intensity of
the protein–DNA complexes was measured using ImageJ v1.52a software (bottom graph). ** p < 0.01;
*** p < 0.001 by Dunnett’s multiple comparisons test 2.4. Minus (−), vehicle treatment; Plus (+), TNFα
or competitor treatment.
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To determine whether chrysin affects the binding of EGR1 to the putative EBS in the
−369/+18 region, we performed the electrophoretic mobility shift assay (EMSA). Nuclear
extracts from HaCaT cells treated with TNFα in the presence or absence of chrysin were
incubated with a biotinylated EBS oligonucleotide probe, and the DNA-binding proteins
were analyzed using streptavidin-conjugated horseradish peroxidase. Unlabeled EBS
competitors were administered at a fifty-fold excess (2.5 pmol) concentration to indicate
the specific reaction of the DNA–protein complex formation. Figure 3B shows that TNFα
promoted the formation of the DNA–protein complex; however, the concentration of this
complex was significantly (p < 0.01) reduced upon chrysin pretreatment, suggesting that
EGR1 interacts with the putative EBS in the −369/+18 region of the TSLP promoter.

2.4. Chrysin Downregulates EGR1 Expression to Inhibit TNFα-Induced TSLP Expression

To further confirm whether EGR1 is required for TNFα-induced TSLP expression, we
silenced EGR1 expression by expressing the control scrambled shRNA (shCT) or EGR1
shRNA (shEgr1) in HaCaT cells. The knockdown of EGR1 expression was confirmed
using RT-PCR (Figure 4A) and Q-PCR (Figure 4C). The TSLP mRNA expression-inducing
potential of TNFα was significantly (p < 0.001) inhibited in HaCaT/shEgr1 cells compared
to HaCaT/shCT cells, as revealed by RT-PCR (Figure 4B). The decrease in TSLP mRNA
levels by shEgr1 expression was quantitated using Q-PCR analysis. TNFα-induced TSLP
mRNA expression increased 9.50 ± 0.755-fold in HaCaT/shCT cells but only 1.80 ± 0.300-
fold in HaCaT/shEgr1 cells (Figure 4D). These data suggest that EGR1 plays a critical role
in TNFα-induced TSLP transcription.
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Isuppression of TNFα-induced EGR1 expression. (A,B) HaCaT transfectants expressing scrambled
(shCT) or EGR1 shRNA (shEgr1) were treated with 10 ng/mL TNFα for 30 min (A) or 12 h (B). Total
RNA was isolated, and EGR1 (A,C) or TSLP mRNA expression (B,D) was measured using RT-PCR
(A,B) and quantitative real-time PCR (C,D). The GAPDH mRNA level was measured as an internal
control. RT-PCR product intensities were measured using the ImageJ v1.52a software. Data are
presented as mean ± SD (n = 3). NS, not significant; *** p < 0.001 by Sidak’s multiple comparisons
test. (E) HaCaT cells expressing scrambled (shCT) or short-hairpin EGR1 shRNA (shEgr1) were
incubated with 0.5% serum for 24 h, followed by treatment with 10 ng/mL TNFα for 1 h in the
presence or absence of chrysin. The cell lysates were immunoblotted using anti-EGR1 antibodies.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an internal control. The band
intensity corresponding to each EGR1 protein was normalized to the GAPDH level using ImageJ
v1.52a software. *** p < 0.001 by Dunnett’s multiple comparisons test. Minus (−), vehicle treatment;
Plus (+), TNFα treatment.

Then, we determined whether chrysin affects EGR1 expression. Serum-starved HaCaT
cells were treated with 10 ng/mL TNFα for 1 h in the presence or absence of chrysin, and
the EGR1 levels were measured using immunoblotting. TNFα-induced EGR1 accumulation
was significantly (p < 0.001) abrogated after chrysin pretreatment (Figure 4E). These results
suggested that chrysin downregulated EGR1 expression to suppress TSLP transcription.

2.5. Oral Administration of Chrysin Attenuates 2,4-Dinitrochlorobenzene (DNCB)-Induced
AD-Like Skin Lesions in BALB/c Mice

DNCB has been widely used as an inducer of AD-like skin lesions in mouse mod-
els [46]. Chrysin was shown to attenuate DNCB-induced skin lesions [37]. To confirm
the effect of chrysin on in vivo TSLP suppression, we induced AD-like skin inflamma-
tion by topical sensitization with SDS and DNCB (Figure 5A). The ear skin subjected
to repeated DNCB applications exhibited typical signs of AD-like skin lesions, such as
superficial erosion; however, the signs of DNCB-induced skin erosion were substantially
attenuated by the oral administration of chrysin (25 mg/kg) compared to those in the
DNCB-challenged group (Figure 5B). Skin edema is a typical sign of skin inflammation
in mouse models. We monitored ear swelling by measuring the ear thickness throughout
the experimental period of 21 days. DNCB-challenged mice exhibited ear swelling in a
time-dependent manner; however, the oral administration of chrysin significantly reduced
the ear thickness on day 21 (Figure 5C). Hematoxylin and eosin (H&E) staining of the tissue
sections revealed that oral chrysin administration attenuated DNCB-induced epidermal
hyperplasia of the ear and neck skin tissues (Figure 5D). DNCB-induced AD-like skin
lesions are also characterized by the massive infiltration of various immune cells, including
T cells and mast cells, into the inflammatory regions [47]. We studied the effect of chrysin
on the inhibition of immune cell infiltration using toluidine blue (TB) staining [48]. DNCB
application increased the infiltration of TB-positive cells, whereas the oral administration
of chrysin substantially suppressed the DNCB-induced infiltration of TB-positive cells
(Figure 5E). These data confirmed the beneficial effect of chrysin on DNCB-induced AD-like
skin lesions in a mouse model.
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chrysin (25 mg/kg). Images were acquired on day 22 immediately after the mice were euthanized. 
(C) Ear thickness was measured using a micro caliper after DNCB challenge. Data are expressed as 
mean ± SD (n = 3). NS, not significant; ** P < 0.01; *** P < 0.001 by Sidak’s multiple comparisons 
test. (D) and (E) Paraffin-embedded ear and neck skin tissues of BALB/c mice were prepared on 
day 22, and H&E (D) and TB staining (E) were performed. The enlarged version of each image is 
provided in the dotted boxes. Scale bars, 400 μm. 
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Skin Lesions in BALB/c Mice 

We next evaluated whether the oral administration of chrysin could suppress EGR1 
and TSLP expression in AD-like skin lesions in BALB/c mice. Immunohistochemical 
analysis of the skin sections showed that DNCB increased EGR1-positive staining in the 
epidermis of the ear (Figure 6A) and neck (Figure 6C). Notably, EGR1-positive staining 
induced under DNCB challenge was substantially suppressed in response to the oral 
administration of chrysin. Similarly, immunofluorescence staining showed that the levels 
of TSLP-positive staining in the epidermis of the ear (Figure 6B) and neck (Figure 6D) 
reduced upon the oral administration of chrysin. These results support the notion that 
chrysin inhibits TSLP expression by downregulating EGR1 in inflammatory 
microenvironments.  

Figure 5. Effect of oral chrysin administration on the attenuation of skin lesions in DNCB-challenged BALB/c mice. (A) Illus-
tration of the experimental schedule for the induction of atopic dermatitis-like skin lesions and oral chrysin administration.
(B) Representative images of the ear and neck skin of BALB/c mice; untreated control (naive), DNCB + vehicle (PBS),
and DNCB + chrysin (25 mg/kg). Images were acquired on day 22 immediately after the mice were euthanized. (C) Ear
thickness was measured using a micro caliper after DNCB challenge. Data are expressed as mean ± SD (n = 3). NS, not
significant; ** p < 0.01; *** p < 0.001 by Sidak’s multiple comparisons test. (D,E) Paraffin-embedded ear and neck skin tissues
of BALB/c mice were prepared on day 22, and H&E (D) and TB staining (E) were performed. The enlarged version of each
image is provided in the dotted boxes. Scale bars, 400 µm.

2.6. Oral Administration of Chrysin Reduces EGR1 and TSLP Expression in DNCB-Induced Skin
Lesions in BALB/c Mice

We next evaluated whether the oral administration of chrysin could suppress EGR1
and TSLP expression in AD-like skin lesions in BALB/c mice. Immunohistochemical
analysis of the skin sections showed that DNCB increased EGR1-positive staining in the
epidermis of the ear (Figure 6A) and neck (Figure 6C). Notably, EGR1-positive staining
induced under DNCB challenge was substantially suppressed in response to the oral
administration of chrysin. Similarly, immunofluorescence staining showed that the levels of
TSLP-positive staining in the epidermis of the ear (Figure 6B) and neck (Figure 6D) reduced
upon the oral administration of chrysin. These results support the notion that chrysin
inhibits TSLP expression by downregulating EGR1 in inflammatory microenvironments.
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(A) and neck (C) tissue sections were prepared on day 22, and immunohistochemical staining was performed for EGR1. 
The sections were counterstained with H&E. Scale bars, 400 μm. The areas in the dashed boxes are enlarged in the bottom 
panels. (B,D) Paraffin-embedded ear (B) and neck (D) tissue sections were prepared and subjected to immunofluorescence 
staining with an anti-TSLP antibody and rhodamine red-X-conjugated secondary antibody (red). The nuclei were 
counterstained with Hoechst 33258 (blue). Scale bars, 400 μm. The areas in the dashed boxes are enlarged in the panels to 
the right. 
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We investigated the mode of action of chrysin, which is considered to inhibit EGR1 

expression and downregulate TSLP expression. MAPK pathways regulate EGR1 
expression in various cell types [49–51]. The levels of phosphorylated ERK1/2, JNK1/2, 
and p38 kinase increased rapidly within 10 min following TNFα treatment, whereas the 
total quantity of each MAPK protein did not change (Figure 7A). Under these 
experimental conditions, the effect of chrysin on MAPK phosphorylation was examined. 
We observed that chrysin significantly (P < 0.001 in all cases) inhibited the TNFα-induced 
phosphorylation of ERK1/2 and JNK1/2, but not of p38 kinase (Figure 7B). These data 
suggest that while the three major MAPKs are activated by TNFα in HaCaT cells, chrysin 
selectively inhibits only the ERK1/2 and JNK1/2 MAPK pathways. 

Figure 6. Effect of chrysin on the suppression of EGR1 and TSLP expression in DNCB-challenged BALB/c mice.
(A,C) BALB/c mice either untreated (naive) or treated with DNCB + vehicle (PBS) and DNCB + chrysin. Paraffin-embedded
ear (A) and neck (C) tissue sections were prepared on day 22, and immunohistochemical staining was performed for EGR1.
The sections were counterstained with H&E. Scale bars, 400 µm. The areas in the dashed boxes are enlarged in the bottom
panels. (B,D) Paraffin-embedded ear (B) and neck (D) tissue sections were prepared and subjected to immunofluorescence
staining with an anti-TSLP antibody and rhodamine red-X-conjugated secondary antibody (red). The nuclei were coun-
terstained with Hoechst 33258 (blue). Scale bars, 400 µm. The areas in the dashed boxes are enlarged in the panels to
the right.

2.7. Chrysin Inhibits the MAPK Pathways

We investigated the mode of action of chrysin, which is considered to inhibit EGR1
expression and downregulate TSLP expression. MAPK pathways regulate EGR1 expression
in various cell types [49–51]. The levels of phosphorylated ERK1/2, JNK1/2, and p38 kinase
increased rapidly within 10 min following TNFα treatment, whereas the total quantity
of each MAPK protein did not change (Figure 7A). Under these experimental conditions,
the effect of chrysin on MAPK phosphorylation was examined. We observed that chrysin
significantly (p < 0.001 in all cases) inhibited the TNFα-induced phosphorylation of ERK1/2
and JNK1/2, but not of p38 kinase (Figure 7B). These data suggest that while the three
major MAPKs are activated by TNFα in HaCaT cells, chrysin selectively inhibits only the
ERK1/2 and JNK1/2 MAPK pathways.
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Figure 7. Effect of chrysin on the inhibition of mitogen-activated protein kinases (MAPKs). (A) HaCaT cells were treated
with 10 ng/mL TNFα for 0–60 min. (B) HaCaT cells were treated with 10 ng/mL TNFα for 10 min in the presence or
absence of chrysin at different concentrations (20 and 40 µM). Whole-cell lysates were prepared, and Western blotting was
performed using phospho-specific and total MAPK protein antibodies. The band intensities of the phosphorylated proteins
were normalized relative to those of total proteins, using ImageJ v1.52a software. Data are expressed as mean ± SD (n = 3)
in the graphs. NS, not significant; *** p < 0.001 by Dunnett’s multiple comparisons test. Minus (−), vehicle treatment; Plus
(+), TNFα treatment.

2.8. MAPK Pathways Are Involved in TNFα-Induced EGR1 and TSLP Expression in
HaCaT Keratinocytes

To determine the potential relationship between MAPK activation and TNFα-
induced EGR1 expression, we used pharmacological inhibitors of the MAPK pathway.
Pretreatment with the MAPK kinase inhibitor U0126, p38 kinase inhibitor SB203580, or
JNK inhibitor SP600125 significantly (p < 0.001 in all cases) decreased TNFα-induced
EGR1 accumulation, as revealed in the Western blot analysis (Figure 8A). Findings
from the RT-PCR (Figure 8B) and real-time PCR (Figure 8C) analyses indicated that
TNFα-induced TSLP mRNA expression was significantly inhibited by all three MAPK
inhibitors (p < 0.001 in all cases). These data suggest that all three MAPKs mediate
TNFα-induced TSLP expression via EGR1, but chrysin selectively inhibits only the
TNFα-induced ERK1/2 and JNK1/2 pathways to downregulate TSLP expression.
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= 3). *** P < 0.001 by Dunnett’s multiple comparisons test. Minus (-), vehicle treatment; Plus (+), 
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Figure 8. Effect of mitogen-activated protein kinase inhibition on the expression of TNFα-induced
EGR1 and TSLP. (A) HaCaT cells were pretreated with SB203580 (20 µM), U0126 (10 µM), or SP600125
(20 µM) for 30 min, followed by treatment with 10 ng/mL TNFα for 1 h. Whole-cell lysates were pre-
pared, and Western blotting was performed using anti-EGR1 antibodies. Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) was used as an internal control. The band intensity corresponding to EGR1
was normalized to the GAPDH level using the ImageJ v1.52a software. The graphical data show
mean ± SD values (n = 3). *** p < 0.001 using Dunnett’s multiple comparisons test. (B,C) HaCaT cells
were pretreated with SB203580 (20 µM), U0126 (10 µM), or SP600125 (20 µM) for 30 min, followed by
treatment with 10 ng/mL TNFα for 12 h. Total RNA was isolated, and the levels of TSLP mRNA
were measured using RT-PCR (B) and quantitative real-time PCR (C). GAPDH mRNA was used as
an internal control. Data are expressed as mean ± SD (n = 3). *** p < 0.001 by Dunnett’s multiple
comparisons test. Minus (−), vehicle treatment; Plus (+), TNFα or inhibitor treatment.

3. Discussion

Chrysin has a pharmacological property that helps alleviate the clinical symptoms
of AD by inhibiting the secretion of pro-inflammatory cytokines and chemokines [37–39].
TNFα is a major pro-inflammatory cytokine that is released from various immune cells and
stromal cells. It promotes the production of multiple AD-related inflammatory cytokines.
TSLP upregulation is a hallmark of AD pathogenesis. To further elucidate the molecular
action of chrysin in AD with respect to therapeutic efficacy, we focused on the effect exerted
by chrysin on TSLP suppression in TNFα-stimulated keratinocytes and in a clinically
relevant animal model with AD-like skin lesions induced upon DNCB challenge. We
showed that chrysin suppresses TSLP expression by inhibiting the MAPKs ERK1/2 and
JNK1/2 pathways and downregulating EGR1 expression in the inflammatory environment.

Various transcription factors, such as vitamin D3 receptor, NF-κB, and AP1 [43,44,52],
are involved in the transcriptional regulation of TSLP based on the stimuli applied. To
identify the cis-acting element responsible for mediating the effects of chrysin, we established
a series of TSLP promoter–reporter constructs and evaluated the effect of chrysin on TSLP
promoter activity in a luciferase activity assay. Cells transfected with the shortest reporter
construct (−369/+18) continued to exhibit chrysin activity, suggesting that the chrysin
response element is between the positions−369 and +18. We found a putative EGR1-binding
motif, EBS, between the positions −206/−187 in the −369/+18 construct. EGR1, also named
zinc finger protein 225 (Zif268), Drosophila Kr finger probe 24 (Krox24), tetradecanoyl phorbol
acetate-induced sequence 8 (TIS8), and nerve growth factor-induced clone A (NGFI-A), is an
immediate-early response gene that encodes a transcription factor containing three Cys2-His2-
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type zinc finger DNA-binding domains [53]. It regulates various cellular pathophysiological
responses, including inflammation, synaptic plasticity, female reproduction, cell proliferation,
apoptosis, and carcinogenesis [54–59].

EGR1 is expressed at high levels in damaged skin tissues [60]. EGR1 regulates the ex-
pression of genes encoding inflammation-related proteins, such as IL-33-induced TSLP [45],
IL-17-induced psoriasin [61], and IL-13-induced kallikrein-related peptidase 7 (KLK7) in
keratinocytes [62]. Recently, we demonstrated that immune cell infiltration in AD-like skin
lesions was substantially attenuated in Egr1-knockout mice, and the TNFα-induced expres-
sion of cytokines, including TSLP, IL-1β, IL-6, CXCL1, CCL2, and CCL5, was inhibited in
response to EGR1 knockdown [42]. Furthermore, the AB1711 compound, a small-molecule
inhibitor targeting the EGR1 zinc-finger DNA-binding domains, was shown to abrogate the
expression of EGR1-regulated inflammatory cytokines in keratinocytes and improve both
skin inflammation and itching in DNCB-challenged NC/Nga mice [42]. These findings
suggest that the inhibition of EGR1 transcriptional activity is a promising therapeutic
strategy for improving therapeutic efficacy in chronic skin inflammation. In this study, the
functional importance of the EBS within the TSLP promoter was analyzed via transient
transfection experiments. We observed that the transient transfection of EGR1 enhanced
the promoter-reporter activity of the −369/+18 construct. We further investigated whether
chrysin inhibits EGR1 to downregulate TSLP expression.

We found that chrysin prevented TNFα-induced EGR1 DNA-binding activity, as
observed using EMSA. In addition, chrysin inhibited TNFα-induced EGR1 expression in
HaCaT keratinocytes. We also confirmed that the oral administration of chrysin attenuated
both EGR1 and TSLP expression in vivo in the AD-like skin lesions of DNCB-challenged
mice. These findings suggest that chrysin downregulates EGR1 expression to inhibit
TSLP expression in the inflammatory microenvironment. One of the best-characterized
transcription factors that regulate EGR1 expression is the Ets-like protein-1 (ELK-1), which
is phosphorylated and activated by ERK1/2, p38 kinase, and JNK1/2 in response to
mitogens and TNFα [63]. Our data showed that chrysin inhibited the TNFα-induced
phosphorylation of ERK1/2 and JNK1/2 but not of p38 kinase, suggesting that chrysin
downregulates EGR1 expression by differentially inhibiting the MAPK signaling pathways
in HaCaT keratinocytes.

NF-κB is a transcription factor expressed ubiquitously in almost all tissues, including
skin keratinocytes. TNFα strongly activates the NF-κB signaling pathway in HaCaT ker-
atinocytes [64]. NF-κB mediates TNFα-induced TSLP expression in human airway smooth
muscle cells [43] and IL-1β-induced TSLP expression in intestinal epithelial cells [44]. We
have previously reported that chrysin inhibits NF-κB activity by targeting the inhibitor of
κB kinase, a protein encoded upstream of NF-κB and is involved in the proteolysis of the
NF-κB inhibitor IκB [39]. Choi et al. [37] also reported that chrysin inhibits TNFα/IFNγ-
induced degradation of IκB, leading to the inhibition of nuclear translocation of NF-κB in
HaCaT keratinocytes. Therefore, chrysin may downregulate TSLP expression by inhibiting
both EGR1 and NF-κB.

4. Materials and Methods
4.1. Materials

Chrysin, DNCB, TB, and H&E staining kits were purchased from Sigma-Aldrich (St.
Louis, MO, USA). TNFα was purchased from ProSpec-Tany TechnoGene, Ltd. (Ness-Ziona,
Israel). A firefly luciferase assay system was obtained from Promega (Madison, WI, USA).
Anti-TSLP antibody was obtained from Novus Biologicals (Centennial, CO, USA), and
phospho-ERK1/2 (Thr202/Tyr204), phospho-p38 (Thr180/Tyr182), and phospho-JNK1/2
(Thr183/Tyr185) antibodies were obtained from Cell Signaling Technology (Danvers, MA,
USA). Anti-GAPDH and anti-EGR1 antibodies were purchased from Santa Cruz Biotechnol-
ogy (Dallas, TX, USA). A secondary antibody conjugated to rhodamine red-X was obtained
from Jackson ImmunoResearch Laboratories (West Grove, PA, USA).
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4.2. Cells and Cell Culture

Human keratinocyte HaCaT cells were obtained from the Cell Line Service (Eppelheim,
Germany). The cells were cultured in Dulbecco’s modified Eagle’s medium supplemented
with 10% fetal bovine serum (HyClone, Logan, UT, USA) and penicillin-streptomycin
(Sigma-Aldrich).

4.3. RT-PCR

Total RNA was isolated from the HaCaT cells using a TRIzol RNA Extraction Kit (In-
vitrogen, Carlsbad, CA, USA), and cDNA was synthesized using an iScript cDNA Synthesis
Kit (Bio-Rad, Hercules, CA, USA). RT-PCR was performed using reverse transcriptase
(Promega) and gene-specific PCR primers. The PCR primers used in this study were
as follows:

• EGR1 forward, 5′-CAG CAG TCC CAT TTA CTC AG-3′;
• EGR1 reverse, 5′-GAC TGG TAG CTG GTA TTG-3;
• TSLP forward, 5′-TAG CAA TCG GCC ACA TTG CCT-3′;
• TSLP reverse, 5′-GAA GCG ACG CCA CAA TCC TTG-3;
• GAPDH forward, 5′-CCA AGG AGT AAG AAA CCC TGG AC-3′;
• GAPDH reverse, 5′-GGG CCG AGT TGG GAT AGG G-3′.

The thermal cycling conditions were as follows: denaturation at 94 ◦C for 5 min,
followed by 30 cycles of denaturation at 94 ◦C for 30 s, annealing at 58 ◦C for 30 s, and elon-
gation at 72 ◦C for 1 min. The amplified PCR products were separated by electrophoresis in
a 2% agarose gel containing ethidium bromide and visualized under UV transillumination.

4.4. Quantitative Real-Time PCR (Q-PCR)

The mRNA levels of the genes were quantified using an iCycler iQ system with
an iQ SYBR Green Supermix kit (Bio-Rad). Validated Q-PCR primers and SYBR Green-
based fluorescent probes specific for TSLP (id: qHsaCIP0030468), EGR1 (qHsaCEP0039196),
and GAPDH (id: qHsaCEP0041396) were obtained from Bio-Rad. The thermal cycling
conditions used for PCR were as follows: denaturation at 95 ◦C for 2 min, followed by
40 cycles of denaturation at 95 ◦C for 10 s and 60 ◦C for 45 s. The relative mRNA levels
of TSLP or EGR1 were normalized to those of GAPDH using the software provided by
the manufacturer.

4.5. Western Blot Analysis

HaCaT cells were lysed in ice-cold cell lysis buffer supplemented with 50 mM Tris-
HCl (pH 7.4), 1% NP-40, 0.25% Na-deoxycholate, 500 mM NaCl, 1 mM EDTA, 1 mM
Na3VO4, 1 mM NaF, 10 µg/mL leupeptin, and 1 mM PMSF. The proteins were separated
by electrophoresis in a 10% SDS-polyacrylamide gel and transferred to nitrocellulose
membranes. After treatment with the appropriate primary and secondary antibodies,
the blots were developed and observed using an enhanced chemiluminescence detection
system (GE Healthcare, Piscataway, NJ, USA).

4.6. Construction of Human TSLP Promoter-Reporter Constructs

A TSLP promoter fragment spanning nucleotides −1384 to +18 upstream of the
transcription start site was synthesized from human genomic DNA (Promega) via PCR
using the primers 5′-CGT CCA ACC TCC TTT CTC CG -3′ (forward −1384F) and 5′-TTG
GAG TCT CCC TGA TGC TCC AG-3′ (reverse, +18R). The amplified PCR products were
ligated to a T&A vector (RBC Bioscience, Taipei County, Taiwan) and digested using KpnI
and HindIII. The products were ligated at the KpnI and HindIII sites of the pGL4-basic
vector (Promega), yielding pTSLP-Luc(−1384/+18). Several deletion constructs of the
human TSLP promoter fragments were synthesized using PCR, for which the pTSLP-
Luc(−1384/+18) construct was used as the template. The forward primer sequences were
as follows:
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• −1338F: 5′-GGA CCA GAG CGA TGC AGG-3′

• −1214F: 5′-CAT GAG CCA AGC CAG GGA G-3′

• −1017F: 5′-AAA TCT GAG CCC GCC ATC TC-3′

• −369F: 5′-GGG ACA TAT GCA AGG ACT CC-3′

One reverse primer, +18R, was used to generate the deletion constructs. The am-
plified PCR products were ligated to the T&A vector and then to the pGL4-basic vector.
The insert sequence of each construct was confirmed using DNA sequencing (Macrogen,
Seoul, Korea).

4.7. Luciferase Promoter–Reporter Assay

HaCaT keratinocytes cultured in 12-well plates were transfected with 0.2 µg of each
TSLP promoter–reporter construct using Lipofectamine™ 2000 (Invitrogen) according to
the manufacturer’s instruction. After 48 h of transfection, the cells were treated with TNFα
in the presence or absence of chrysin (20 or 40 µM). After 8–12 h, the cells were harvested,
and the firefly luciferase activity was measured using the Dual-Glo™ Luciferase assay
system (Promega) following the manufacturer’s instruction. The relative luciferase activity
of the untreated cells was assigned the value 1. Luminescence was measured using a dual
luminometer (Centro LB960; Berthold Tech, Bad Wildbad, Germany).

4.8. EMSA

EMSA was performed using a LightShift Chemiluminescence EMSA kit (Thermo
Fisher Scientific, Waltham, MA, USA), according to the manufacturer’s instruction. A
biotin-labeled deoxyoligonucleotide probe corresponding to the EBS (5’-CAA AAA GGA
GGA AGG TGA GGG AA-biotin-3’) was synthesized by Macrogen. Nuclear extracts (3 µg
samples) prepared from the HaCaT keratinocytes were mixed with 50 fmole biotin-labeled
EGR1-binding oligonucleotide probes with 1 µg poly(dI-dC) (Amersham Biosciences, Pis-
cataway, NJ, USA). For the competition assay, 2.5 pmol of the unlabeled EGR1-binding
oligonucleotide was added. DNA–protein complexes were separated in non-denaturing
6% polyacrylamide gels, and the antibody-reactive bands were visualized using chemilu-
minescence, according to the manufacturer’s instructions.

4.9. Induction of AD-Like Skin Lesions in the Ear and Neck of Mice

BALB/c mice (7-week-old, male) were obtained from Orient Bio, Inc. (Seongnam,
Korea). The mice were housed in a specific pathogen-free environment at 20 ± 2 ◦C and
a relative humidity of 50% ± 10%. The mice were randomly divided into three groups
(based on the treatment administered): Group I, naive; Group II, DNCB + vehicle; and
Group III, DNCB + chrysin (n = 5 in each group). In addiion to those in the naive group,
all mice were sensitized with 4% SDS on both the neck and ear skin to disrupt the skin
barrier; after 4 h, the SDS-sensitized areas were challenged with 1% DNCB dissolved in
an acetone:olive oil mixture (1:3, v/v). The DNCB challenge was repeated once daily for
3 days. After a 4-day break, sensitization with 4% SDS followed by the application of
0.5% DNCB was repeated five times per week for 2 weeks (days 8–21). Chrysin powder
was dissolved in dimethyl sulfoxide (250 mg/mL) to prepare a stock solution and then
diluted using PBS to a final concentration of 25 mg/mL. The mice in Group III were
administered chrysin (25 mg/kg) orally from day 7 (once daily, five times per week for 2
weeks). On day 22, all mice were euthanized, and tissue sections were prepared. The animal
experiments were conducted in accordance with the guidelines for animal experiments
and procedures approved by the Konkuk University Institutional Animal Care and Use
Committee (IACUC). All experimental methods were confirmed to be in accordance with
the relevant guidelines and regulations (approval number KU19129).

4.10. Histological Analysis

Skin sections of the neck and ear with AD-like lesions were fixed in 100% acetone and
embedded in paraffin. Each section was cut (5 µm) using a microtome (Leica Microsystems,
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Wetzlar, Germany). The paraffin-embedded ear and neck skin sections were deparaffinized
by treating with xylene (three times for 10 min) and hydrated using a graded ethanol series.
After deparaffinization and rehydration, the tissue sections were stained with H&E. The
infiltrated mast cells were stained with 0.1% TB. Images of each section were captured
using a light microscope (EVOS FL Auto, Bothell, WA, USA).

4.11. Immunohistochemical and Immunofluorescence Analysis

Immunostaining of the skin sections from the ear and neck was performed as previ-
ously described [39]. Briefly, after deparaffinization with xylene (three times for 10 min)
and hydration with a graded ethanol series, the tissue sections were placed in 1 mM EDTA
(pH 8.0) at 70 ◦C for 20 min. After rinsing with PBS, the tissue sections were incubated
with 7% goat serum for 1 h to block non-specific binding of immunoglobulin (Ig). For
EGR1 immunostaining, the sections were treated overnight with primary rabbit anti-EGR1
antibodies (1:100 dilution) at 4 ◦C. After washing three times with PBS, the sections were
treated with biotinylated goat anti-rabbit IgG (1:100 dilution) at 25 ◦C for 1 h. Immunoreac-
tivity was visualized after treatment with a diaminobenzidine substrate for 5 min, followed
by counterstaining with H&E.

For TSLP immunofluorescence staining, the tissue sections were treated overnight
with an anti-TSLP antibody (1:100 dilution) at 4 ◦C. After washing, the cells were treated
with a rhodamine red-X-conjugated secondary antibody (1:300 dilution) at 25 ◦C for 1 h.
The nuclei were counterstained with Hoechst 33258 solution for 10 min. After extensive
washing with PBS, the slides were mounted using the ProLong Gold Antifade reagent
(Invitrogen). Fluorescent images were captured using an EVOS FL fluorescence microscope
(Advanced Microscopy Group; Bothell, WA, USA).

4.12. Statistical Analysis

Data are expressed as mean ± standard deviation. Statistical analysis was performed
using one-way analysis of variance, followed by Dunnett’s or Sidak’s multiple comparisons
test using GraphPad Prism (version 9.0.1; GraphPad Software, Inc., La Jolla, CA, USA).
Statistical significance was set at p < 0.05.

5. Conclusions

To the best of our knowledge, this is the first study to demonstrate that chrysin
suppresses TSLP expression by downregulating ERK1/2- and JNK1/2-dependent EGR1
expression in the skin inflammatory microenvironment. We believe that the results of this
study will improve our understanding of the mode of action of chrysin and its therapeutic
efficacy in AD.
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Abbreviations

AD atopic dermatitis
CCL C-C motif chemokine ligand
DNCB 2,4-dinirochlorobenzene
EBS EGR1-binding sequence
EGR1 early rrowth response 1
shEgr1 EGR1 shRNA
EMSA electrophoretic mobility shift assay
ERK Extracellular signal-regulated kinases
GAPDH glyceraldehyde 3-phosphate dehydrogenase
H&E hematoxylin and eosin
Ig immunoglobulin
IKK inhibitor of κB kinase
IL interleukin
JNK c-Jun N-terminal kinase
MAPK mitogen-activated protein kinases
NF-κB nuclear factor-κB
Q-PCR quantitative real-time PCR
RT-PCR reverse-transcription polymerase chain reaction
shCT scrambled shRNA
TB toluidine blue
Th2 T helper cell 2
TNFα tumor necrosis factor-alpha
TSLP thymic stromal lymphopoietin
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