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Abstract Photosynthetic microorganisms have the

potential for sustainable production of chemical

feedstocks and products but have had limited success

due to a lack of tools and deeper understanding of

metabolic pathway regulation. The application of

instationary metabolic flux analysis (INST-MFA) to

photosynthetic microorganisms has allowed research-

ers to quantify fluxes and identify bottlenecks and

metabolic inefficiencies to improve strain perfor-

mance or gain insight into cellular physiology. Addi-

tionally, flux measurements can also highlight

deviations between measured and predicted fluxes,

revealing weaknesses in metabolic models and high-

lighting areas where a lack of understanding still

exists. In this review, we outline the experimental

steps necessary to successfully perform photosyn-

thetic flux experiments and analysis. We also discuss

the challenges unique to photosynthetic microorgan-

isms and how to account for them, including: light

supply, quenching, concentration, extraction, analysis,

and flux calculation. We hope that this will enable a

larger number of researchers to successfully apply iso-

tope assisted metabolic flux analysis (13C-MFA) to

their favorite photosynthetic organism.
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Introduction

Due to their ability to convert carbon dioxide directly

into desired products, metabolically engineered pho-

tosynthetic microorganisms, such as cyanobacteria

and algae, have the potential to serve as sustainable

sources of fuels, chemicals, and animal feed. Although

this direct conversion is an attractive quality because it

decouples the production of bioproducts from the food

and feed supply, metabolically engineered algae and

cyanobacteria have not yet had a significant commer-

cial success like the production of 1,3-propanediol

(Kurian 2005) or 1,4-butanediol (Yim et al. 2011) in

Escherichia coli. The latter example actually had a

relatively fast design to production phase, approxi-

mately 27 months (www.genomatica.com), due in

part, to the use of metabolic modeling and isotope

assisted flux analysis. Isotope assisted metabolic flux

analysis, or 13C-MFA (Wiechert 2001; Yang et al.

2002; Young 2014b; Young et al. 2008, 2011a;

Zamboni et al. 2009), provides an accurate snapshot of

the metabolic fluxes in the cell at the time of sampling,

allowing metabolic engineers to identify any bottle-

necks or inefficiencies and design strategies to alle-

viate them. The use of isotope tracer experiments to
C. L. Sake � A. J. Metcalf � N. R. Boyle (&)

Colorado School of Mines, Golden, CO, USA

e-mail: nboyle@mines.edu

123

Biotechnol Lett (2019) 41:35–45

https://doi.org/10.1007/s10529-018-2622-4(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-3401-6268
http://orcid.org/0000-0003-3247-4465
http://orcid.org/0000-0002-9103-0007
http://www.genomatica.com
http://crossmark.crossref.org/dialog/?doi=10.1007/s10529-018-2622-4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10529-018-2622-4&amp;domain=pdf
https://doi.org/10.1007/s10529-018-2622-4


measure metabolism dates back to the 1980s, and

these early experiments laid the groundwork for

modern 13C-MFA (Blum and Stein 1982). The first

application of MFA based on stoichiometric modeling

occurred in the 1990s as a direct precursor to modern
13C-MFA (Vallino and Stephanopoulos 2000). Early

MFA relied on NMR technology, but the introduction

of MS techniques in the early 2000s enabled labeling

from intracellular metabolites and facilitated the study

of more complex mathematical systems (Klapa et al.

1999). Despite the 30-plus years of development and

progress, 13C-MFA was not expanded to the study of

photoautotrophic metabolism until very recently. The

main challenges in applying 13C-MFA to photoau-

totrophic metabolism are discussed further in this

review, but they stem from the use of a single carbon

substrate. To accommodate for the complexities of a

single-carbon label, transient sampling methods were

developed; they were coined isotopically instationary

or nonstationary MFA (Noh et al. 2006; Noh and

Wiechert 2006; Young et al. 2011b). Prior to the

development of transient labelling techniques, photo-

synthetic organisms could only be studied in hetero-

trophic or mixotrophic conditions [e.g. (Xiong et al.

2010)]. (For a more detailed history of metabolic flux

analysis and its role in metabolic engineering, the

reader is directed to: (Villadsen et al. 2016; Woolston

et al. 2013)). Recent advances in analytical capabili-

ties and the availability of computational software

packages have facilitated the wider implementation of
13C-MFA (Kajihata et al. 2014; Kogadeeva and

Zamboni 2016; Young 2014a). Figure 1 provides a

general overview of the workflow for the application

of 13C-MFA to photoautotrophically grown microor-

ganisms. While the implementation of any study to

measure intracellular fluxes should be carefully

designed, the unique characteristics of photosynthetic

organisms and their metabolism requires special con-

sideration. In this review, we will discuss the general

workflow of a 13C-MFA experiment (further reading

for specific applications that utilize the workflow

shown in Fig. 1 include (Hendry et al. 2017b; Shastri

and Morgan 2007; Wu et al. 2015)) and the unique

challenges that must be considered when working with

cyanobacteria and algae.

Important experimental considerations

for photosynthetic microorganisms

Experimental design

Experimental design for photoautotrophic cells differs

significantly from heterotrophic cells due in a large

part to the uncoupling of carbon and energy substrates.

Heterotrophic organisms use the same substrate for

both carbon and energy; for example, when grown on

glucose, microbes break down and build up molecules

from the carbon backbone of glucose and oxidize

carbon (from the same substrate) in the TCA cycle to

provide reducing power and energy in the form of

ATP. In contrast, photoautotrophs utilize a one-carbon

substrate (CO2) as the building block for all carbon in

the cell, and the light harvesting apparatus uses

photons to regenerate reducing equivalents and ATP.

The decoupling of carbon and energy metabolism

introduces many complications in the design and

implementation of experiments to measure fluxes; the

discussion below will focus on how these are

overcome.

Carbon metabolism

Experiments to measure heterotrophic carbon fluxes

are performed when cells reach an isotopic and

metabolic steady state. Metabolic steady state occurs

when the metabolite pool sizes remain the same over

the experimental time period and isotopic steady state

occurs when the mass distribution of the isotopes

remain the same. In heterotrophic organisms, the

carbon substrate can be labelled on specific carbons to

maximize the data gained from the experiment,

however, if the substrate is a single carbon, at isotopic

steady state everything in the cell would be labelled

and no useful information would be gained by

analyzing the isotope distribution (see Fig. 2 and

(Cheah and Young 2018b) for an excellent discussion

on this). Therefore, to collect data that can actually be

used to calculate fluxes, labelling experiments must be

performed transiently. Young et al. were the first to use

this method to measure fluxes for autotrophically-

grown cells (Young et al. 2011a). Their groundbreak-

ing work illustrated that fluxes can be calculated from

transient labelling data and that the majority of central

metabolites have the most dramatic shifts in labelling

in the first 2 min after the introduction of the label.
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This also highlights the need to develop rapid

sampling because several samples must be taken in

those first 2 min. Another challenge when designing

experiments to measure autotrophic carbon fluxes is

what label to use at night. For cells grown in diurnal

light, carbon stored during the day, such as glycogen

or starch, is used to maintain the cell and in many

cases, perform cell division (Lena and Hirschie 2001;

Sweeney and Beatriz 1989; Sweeney and Hastings

1958). Therefore, to track fluxes at night, a different

label must be used, such as 18O2 or a 15N-labelled

nitrogen source, but these experiments limit the type

of information that can be gathered and again need to

be performed transiently because they are single

labelled atom substrates.

Energy

Light provides energy for the cell, so it is imperative

that any experimental design maintains a consistent

growth environment and provides light within the

appropriate wavelengths: 440–700 nm, known as

photosynthetically active radiation (PAR). Light

intensity plays an important role in growth rate for

photoautotrophs; increasing light intensity increases

growth rate up to a saturation point, after which the

cells suffer from photoinhibition (Long et al. 1994).

Therefore, the choice of what light intensity to provide

cells needs to be considered separately for each strain

grown in the lab. On top of this, the consistency of the

light in commercial incubators can be another impor-

tant variable; in our experience, even incubators which

are marketed specifically for growing photosynthetic

organisms have a large variation in light intensity

Fig. 1 Workflow for the experimental, analytical, and compu-

tational aspects of flux measurements in photosynthetic

organisms. To study photoautotrophic metabolic fluxes, tran-

sient experiments must be performed. After a bolus injection of
13CO2 (or more practically, NaH13CO3), cells must be rapidly

sampled, quenched, and extracted. Concentrated metabolite

solutions are then analyzed with LC/MS/MS, to produce a time

series of mass distributions for each metabolite. This data is then

incorporated into the model where adjustable parameters are

iteratively changed until the predicted fluxes produce simulated

data that minimizes errors when compared to experimental data
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across the chamber. To minimize this effect, we

recommend measuring PAR across the entire growth

chamber and to only use the areas where light is most

consistent. The shape of the growth vessel and depth of

the culture is yet another consideration; larger volume

culture flasks and bioreactors are prone to light

gradients throughout the culture and cells deepest in

the culture volume will have significantly less access

to light than those on the culture’s edge due to self-

shading effects. Ideally, light intensity would also be

scaled with growth so on a per cell basis it is constant,

but in practical terms this is very challenging to

achieve. The choice of light source is also extremely

important; the increased use of LEDs allow for greater

control over the quality, quantity, and wavelength of

light provided to cells (Schulze et al. 2014). Wave-

length optimization is gaining more interest, with

evidence that the spectral distribution of light signif-

icantly impacts culture behavior (Ooms et al. 2017). If

spectral distribution is optimized or altered for a given

application, it is important that it be kept constant

during flux analysis experiments, to ensure that the

culture remains at metabolic steady state. Light

sources must also be regularly checked and replaced

to ensure they are achieving desired light output.

Overall, these variables associated with the choice of

light source should be carefully considered, as light

quality can impact cell size and pigment composition,

changes that undoubtedly have metabolic

consequences.

The choice of light conditions is another critical

experimental parameter, as photosynthetic cells expe-

rience drastically different metabolism in continuous

light versus diurnal light. Cells grown in continuous

light are typically in metabolic steady state during the

mid-exponential phase of growth, therefore the exper-

iments are only transient in isotopic label. This

represents all the published work to date measuring

photoautotrophic metabolic fluxes because by provid-

ing continuous light, cells do not have to store carbon

for maintenance at night and thus have much higher

productivity. Unfortunately, this is not representative

of natural conditions; the reason diurnal growth has

not been studied using metabolic flux is that it

introduces additional complexities. Due to the

dynamic nature of diurnal growth, it is unlikely that

the cell ever truly achieves a metabolic steady state,

especially because cells have an extremely strong

circadian clock that persists in gene expression even

when grown in continuous light (de Winter et al.

2013, 2014). Although the experimental protocol to

collect data is similar to isotopic non-steady state, the

analysis of data from diurnal experiments is much

Fig. 2 Applications of INST-MFA (cases a, b, and c) versus
MFA (case c only). a Autotrophic systems. Due to the use of a

single-carbon tracer, no unique flux solution can be calculated at

isotopic steady state because all metabolites become uniformly

labeled. b Slow labeling dynamics. The labeling of some

metabolites may be too slow to achieve isotopic steady state

within the timeframe that metabolic steady state can be

maintained. Note that the fluxes (arrows) change before the

labeling has fully equilibrated. c Rapid isotopic steady state.

Although stationary MFA can be used to determine fluxes,

INST-MFA can be used in some situations to improve estimates

of exchange fluxes and pool sizes if rapid sampling is available.

Arrows represent fluxes and tanks represent pool sizes at each

time point. Figure used with permission from (Cheah and Young

2018a)

123

38 Biotechnol Lett (2019) 41:35–45



more computationally intense, because both metabolic

pool sizes and isotopic labels are changing. Despite

these challenges, it is imperative that we develop

methods that can measure diurnal fluxes so that we can

develop strategies to engineer organisms grown in this

environment.

Quenching

Metabolism is an extremely rapid process, which can

respond to environmental stimuli in fractions of

seconds. In order to ensure that biological samples

represent metabolism at the time of sampling,

metabolism must be quenched immediately upon

removal of the cells from the culture. The main

method used to quench metabolism in photosynthetic

microorganisms is to drop the temperature of the

culture to 0 �C or less as rapidly as possible (Table 1);

the approaches used to achieve this result vary and will

be discussed below. The most widely used quenching

method is cold (- 20 �C or below) methanol or

methanol/water solutions. The prominence of this

method probably stems from early quenching studies

in both E. coli (Winder et al. 2008) and S. cerevisiae

(Canelas et al. 2008; Koning and Dam 1992) which

identified cold methanol quenching as the fastest, most

efficient method to arrest metabolism without leakage

of intracellular metabolites. Unfortunately, the results

of the studies byWinder et al. (Winder et al. 2008) and

Canelas et al. (Canelas et al. 2008) have been

extrapolated to many other organisms without rigor-

ous testing of how the quenching solution may or may

not cause leakage. These studies found that 100%

methanol at- 40 �C should be used for yeast and 60%

methanol at - 48 �C should be used for E. coli. For

the flux studies shown in Table 1, there is a large

variation in methanol concentration and temperature

for quenching. In general, eukaryotes can tolerate

higher solvent and lower temperatures than prokary-

otes, which require lower solvent concentrations and

milder temperatures to prevent leakage from cold

shock (Wittmann et al. 2004). The advantage of using

a pure solvent or solvent/water solution is that cells

can be kept at - 20 �C or below without the culture/

quenching solution freezing. While cold methanol

quenching is by far the preferred method due to ease of

implementation, a few other approaches have also

been applied to photosynthetic systems. This includes

plunging the cell culture solution directly into liquid

nitrogen and chilling to freezing or just slightly below

using saline solutions. Due to the drastic temperature

change when using liquid nitrogen and the culture

solution freezing, this may cause leakage in prokary-

otic organisms. Using temperatures closer to freezing

implies that to achieve rapid arrest of metabolism, the

ratio of quenching solution to cell culture must be

higher and care must be taken to avoid the formation

of ice. Unfortunately, it is very difficult to predict a

priori what quenching method will minimize metabo-

lite leakage; there are hypotheses that attribute the

response to a combination of cell membrane/wall

composition/structures, cell surface area, and cold

shock (Zakhartsev et al. 2015), but these traits still do

not lead to predictive responses. Therefore, quenching

solutions should be evaluated for each new organ-

ism to which flux analysis is applied to minimize

metabolite leakage.

Harvesting/concentrating cells

To accurately measure intracellular fluxes, the cell

must be removed from the spent growth medium prior

to extracting intracellular metabolites; this step is

often combined with cell concentration steps. When

this step takes place in the sampling protocol can vary:

if it is rapid, it can occur prior to quenching; otherwise

it should be performed after quenching. Regardless of

when this step is performed, it is important that the

method chosen is sufficiently gentle to avoid cell

damage and metabolite leakage. There are two main

collection approaches: filtration and centrifugation

(see Fig. 1). Filtration is typically performed prior to

quenching; however, due to this, it must be done as

quickly as possible to minimize changes in metabo-

lism after sampling. This can be challenging because

the light regime also needs to be maintained during

filtration since the cells are still metabolically active.

After filtration, cells must be separated from the filter,

which can lead to loss of cells or increases in working

volume of extraction solvent if the filter and cells are

processed together. Centrifugation is typically per-

formed after quenching; therefore care must be taken

to keep the cells below 0 �C until metabolites are

extracted. In practice, we have found this step is easier

to implement, especially with rapid sampling, but the

quenching solution must be carefully selected (and

tested) to ensure no leakage of metabolites and no

precipitation of medium components. Regardless of
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what cell concentration method is chosen, it is

important to note that photoautotrophic growth typi-

cally results in much more dilute cell cultures than

heterotrophic growth; therefore, the volume required

is larger and sampling takes more time, either to draw

out the sample with a pipette or to filter it. The choice

of what cell concentration step to use depends heavily

on the organism itself and what quenching approach is

to be used.

Metabolite extraction

After quenching and concentration, intracellular

metabolites are extracted from the cell; depending

on the extraction solution chosen, different groups of

metabolites are extracted with different efficiencies

(Rabinowitz and Kimball 2007). Historically, 13C-

MFA has focused primarily on central metabolic

intermediates, so that is what the discussion here will

focus on; for specific classes of metabolites the

Table 1 Selected examples of experimental protocols for flux measurements in photosynthetic organisms

Organism Concentrating

method (C)

Quenching

method (Q)

Extraction method (E) References

Eukaryote Chlorella

protothecoides

Filtration - 70 �C MeOH 40:40:20

CH3CN:MeOH:H2O

C (Wu et al. 2014)

Q

E (Bennett et al. 2008)

Chlamydomonas

reinhardtii*
Centrifugation - 70 �C MeOH Mechanical cell disruption

with - 70 �C MeOH

C (Boyle et al. 2017)

Q

E

Phaeodactylum

tricornutum*
Centrifugation Liquid nitrogen Lyophilization followed by

hydrolysis with HCl

C (Zheng 2013)

Q

E

Prokaryote Synechocystis sp.

PCC 6803

Centrifugation - 40 �C 60%

MeOH

50% MeOH C (Young et al. Young

et al. 2011a, b)Q

E

Synechococcus

elongatus PCC

7942

Centrifugation 0 �C PBS 8:4:3 CHCl3:MeOH:H2O C (Jazmin et al. 2017)

Q

E (Folch et al. 1957)

Centrifugation - 5 �C minimal

BG-11 medium

CHCl3:MeOH C (Abernathy et al.

2017)Q

E (Ma et al. 2014)Synechococcus

elongatus UTEX

2973

Synechococcus sp.

PCC 7002

Centrifugation - 20 �C 30%

MeOH

- 20 �C 80% MeOH C (Qian et al. 2018)

Q

E

Centrifugation - 20 �C 60%

MeOH

- 20 �C 80% MeOH C (Qian et al. 2017)

Q

E (Bennette et al.

2011)

Filtration - 20 �C 80%

MeOH

- 20 �C 80% MeOH C (Bennette et al.

2011)Q

E

MeOH Methanol, PBS phosphate buffered saline

*Heterotrophic experiment
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interested reader is directed to Rabinowitz and Kim-

ball (2007). Liquid/liquid extraction with organic

solvents has been the preferred approach for microbes

and organisms listed in Table 1. In general, it is easier

to lyse the cell wall of prokaryotic organisms;

therefore, cyanobacterial metabolite extractions tend

to use milder solvents. Eukaryotic organisms have a

more robust cell wall than prokaryotes; therefore, to

achieve efficient metabolite extraction, they require

the use of harsher solvents, mechanical disruption

(such as french press or grinding), or freeze/thaw

cycles to break open the cell wall. Ideally, metabolites

would be specifically extracted from different cellular

compartments (i.e. cytosol, mitochondria, plastid),

however experimental options are extremely limited

in this regard. Intracellular compartments are mechan-

ically fragile and subcellular fractionation techniques

are time intensive (Stitt et al. 1989); therefore it is

extremely difficult both to isolate intact compartments

and to do it at temperatures that prevent metabolic

activity. There are approaches to account for com-

partmentation, such as considering compartment

specific metabolites (Allen et al. 2007), but these

approaches are typically used for steady state hetero-

trophic flux measurements. Due to the differences in

cell wall composition between organisms, just as with

the quenching step, the efficiency and efficacy of

extraction must be examined for the specific organism

being studied.

Analytical chemistry

The choice of metabolite extraction method predeter-

mines the general class of metabolites to be analyzed;

therefore, since our previous discussion focused on

central metabolic intermediates, we will again limit

our discussion to these most critical metabolites. There

are two main analytical approaches used for 13C-

MFA: nuclear magnetic resonance (NMR) and chro-

matography coupled to mass spectrometry (MS). Each

has its own distinct advantages and disadvantages.

NMR has the advantage of being non-selective and

non-destructive, meaning it is capable of detecting all

metabolites in the sample simultaneously without

altering the viability of the sample. NMR is also useful

for determining the position of labeled carbon atoms

and the structure of metabolites, which is useful for

identifying unknowns. The main disadvantage of

NMR is the low sensitivity and signal overlap among

individual metabolites. While there have been some

studies which use NMR, the majority of 13C-MFA

experiments have utilized either gas-chromatography

MS (GC/MS) or liquid chromatography MS (LC/MS

or LC/MS/MS). Heterotrophic steady state 13C-MFA

studies tend to favor GC/MS because they analyze

mainly amino acids, carbohydrates and lipids. For

isotopic nonstationary MFA (INST-MFA), LC/MS/

MS is the method of choice. The type of data that is

required from these experiments are the metabolite

pool size (concentration), parent ion mass and frag-

ment masses. Metabolite pool size measurements

verify the assumption of metabolic steady state for

INST-MFA; however they are not always directly

required for flux determination and may instead be

evaluated as adjustable parameters (Young et al.

2011a). Continuing advances in analytical chemistry

have enabled identification of larger number of

metabolites in a single run as well as higher resolution

and faster acquisition rates in mass spectrometry; this

may enable analysis of larger networks in the future

instead of focusing on central metabolism alone.

Important computational considerations

for photosynthetic microorganisms

Challenges

Extracting data from metabolic experiments and

converting the information into measured fluxes is a

computationally complex challenge. The first chal-

lenge is the inherent nonstationary behavior present in

autotrophic models. As discussed above, photoau-

totrophic mass isotopomer distributions must be

measured transiently, before isotopic steady state has

been reached. The nonlinearity imposed by this

consideration creates an ‘‘inverse problem’’—the flux

values must be calculated by fitting experimental data

to a metabolic model, as they cannot be measured

directly. Given the extensive parameter space, calcu-

lating fluxes for large networks can quickly become a

computationally intense and challenging problem

(Antoniewicz et al. 2006). However, there are several

software packages designed to solve these problems

without expert knowledge (Antoniewicz et al. 2007;

Sriram et al. 2008; Sriram and Shanks 2004; Van

Winden et al. 2002; Weitzel et al. 2013; Wiechert

2001; Young et al. 2008; Zamboni et al. 2009). One
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such package, INCA (Young 2014a), has been used to

calculate isotopically nonstationary fluxes in plants

(Ma et al. 2014), algae (Wu et al. 2014), and

cyanobacteria (Abernathy et al. 2017; Hendry et al.

2017a; Xiong et al. 2015) and is perhaps the most

widely used program for photoautotrophic fluxes.

Additionally, the high degree of compartmental-

ization in eukaryotic photoautotrophic cells can com-

plicate accurate flux measurement. Some metabolites

can be present in more than one compartment and may

participate in different reactions within each separate

compartment. It is possible to fractionate eukaryotic

cells into compartments through non-aqueous frac-

tionation (NAF) (Arrivault et al. 2014), and flux

packages can process compartmental metabolomic

data from NAF, making compartmental characteriza-

tion feasible. However, even in experiments with the

best possible outcome, the distribution is still a

gradient and not a strict stepwise separation of

intracellular organelles, complicating extraction and

analysis (Dietz 2017). Moreover, NAF has been

attempted but not achieved in algae due to the poor

separation of intracellular compartments and metabo-

lites (O’Grady 2013). NAF has the potential to

improve compartmental analysis, but it not currently

appropriate for use in photosynthetic microorganisms.

Computational methods should be used to address

compartmentalization instead.

Finally, photoautotrophic cells do not reach a

metabolic steady state under diel light patterns. As

the cell transitions between light and dark, different

transcripts and enzymes activate and deactivate

(Wagner et al. 2004; Zones et al. 2015). Shifts in

cellular metabolism can even occur after days under

constant light, due to persistent circadian rhythms (van

Alphen and Hellingwerf 2015). In order to make sense

of measured isotopic mass fractions under these

changing conditions, dynamic MFA (DMFA) should

be used, as DMFA assumes that metabolite fluxes and

pool sizes are not held constant throughout the course

of an experiment (Leighty and Antoniewicz 2011).

This approach can generate fluxes and pools even as

the metabolism shifts over time, making it invaluable

for analyzing photoautotrophic cells as their metabo-

lism shifts.

Applications

It is worth noting that computational applications

within metabolomics are not just limited to converting

mass fractions into fluxes. Three areas of particular

focus come to the fore. First, confidence and error

calculations are quite important when assessing flux.

Generally, error estimations are extracted from con-

fidence values, and various methods exist to do so

(Antoniewicz et al. 2006; Sokolenko et al. 2016).

Fortunately, software tools such as INCA, Flux-P, and

SUMOFLUX have built-in methods to calculate

confidence bounds, sensitivities, and error from the

data, giving the researcher a better understanding of

reasonable values without excessive calculation (Ben-

ton et al. 1990; Ebert et al. 2012; Kogadeeva and

Zamboni 2016; Young 2014a). Second, computational

models can help reduce some complexities in

mixotrophic or heterotrophic growth. When a cell

grows mixotrophically, it consumes carbon dioxide

and another reduced carbon source, such as glucose.

Labeling only carbon dioxide leads to incomplete

data, but labelling every carbon individually in the

other source is expensive and inefficient. Software can

be used instead to simulate the impact of specific

labels on a given network of reactions, thereby guiding

experimental design to maximize the impact of

research funding and minimize the time spent on

experiments (Young 2014a). Finally, software can

also extend the value of flux measurements, as the

measurements are used to fit and validate genome

scale models. These models are useful for experimen-

tal design, as they can test knockouts and additions in

silico, thereby providing guidance for potential

genetic engineering approaches (Yim et al. 2011).

These applications help demonstrate the importance of

computational methods within photosynthetic meta-

bolic engineering.

Experimental techniques and computational meth-

ods act in concert, and are matched in importance.

Photoautotrophic flux measurement requires rapid and

accurate sampling techniques, followed by powerful

analysis. In order to produce high-quality, repeat-

able data, collection and analysis must be well

practiced and documented. However, the effort

required for generating this data is wasted without a

thorough grounding in the computational complexities

involved. An accurate picture of photoautotrophic
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metabolic fluxes can only be reached by combining

both aspects.

Conclusion

Since the first report of the use of instationary 13C-

MFA to measure phototrophic fluxes in 2011, there

have been a handful of studies on other organisms

(Table 1). The increased complexity of experiments,

analyses, and computations has limited the widespread

use of this technology, but understanding how carbon

is directed through metabolism is imperative if we aim

to successfully engineer photocatalytic production

strains for renewable chemicals, fuels, or pharmaceu-

ticals. Here, we have presented the major steps in any
13C-MFA experiment and the major stumbling blocks

in applying this technology to photosynthetic microor-

ganisms. While challenges still exist within the field,

there are promising avenues of research for each. For

example, optimization of quenching and extraction

protocols for specific species will reduce metabolite

leakage and perhaps aide in the development of a

predictive model based on cell wall structure/compo-

sition. Improvements in computational approaches

will allow more complex analyses and result in better

models of photosynthetic metabolism. Finally,

improved models will allow for better experimental

design, as research simulations will indicate where

data collection will have the largest impact. The field

of photosynthetic flux measurement is rapidly devel-

oping and will continue to grow in importance as

usage of photosynthetic organisms increases.
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W (2013) 13CFLUX2—high-performance software suite

for 13C-metabolic flux analysis. Bioinformatics

29:143–145. https://doi.org/10.1093/bioinformatics/

bts646

Wiechert W (2001) 13C metabolic flux analysis. Metab Eng

3:195–206. https://doi.org/10.1006/mben.2001.0187

Winder CL, Dunn WB, Schuler S, Broadhurst D, Jarvis R,

Stephens GM, Goodacre R (2008) Global Metabolic Pro-

filing of Escherichia coli Cultures: an Evaluation of

Methods for Quenching and Extraction of Intracellular

Metabolites. Anal Chem 80:2939–2948. https://doi.org/10.

1021/ac7023409
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