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Disclaimer: This guideline is designed primarily as an educational resource for medical geneticists and other health care providers
to help them provide quality medical genetic services. Adherence to this guideline does not necessarily assure a successful medical
outcome. This guideline should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and
tests that are reasonably directed to obtaining the same results. In determining the propriety of any specific procedure or test, the
geneticist should apply his or her own professional judgment to the specific clinical circumstances presented by the individual patient
or specimen. It may be prudent, however, to document in the patient’s record the rationale for any significant deviation from this
guideline.

The following are the recommendations of the American
College of Medical Genetics (ACMG) Professional Practice
and Guidelines Committee, which was convened to assist
health care professionals in making decisions regarding cyto-
genetic diagnostic testing and counseling for mental retarda-
tion (MR) and developmental delay (DD). This document re-
views available evidence concerning the value of conventional
and molecular cytogenetic testing for the identification of
chromosomal anomalies that play a role in the etiology of MR/
DD, and, based on this evidence, specific recommendations for
each method of testing are provided.

INTRODUCTION

Mental retardation (MR), defined by the World Health Or-
ganization (WHO) as an intelligence quotient (IQ) � 70, is
characterized by significantly limited cognitive functioning,
coupled with limitations in adaptive skills in two or more of the
following areas: social skills, community living, communica-
tion, home living, health, self-direction, work, and leisure.1,2

MR is generally divided into mild (IQ of 50-70), moderate (IQ
of 35-50), and severe (IQ of 20-35); those cases in which the IQ
is below 20 are occasionally defined as profound.2,3 The prev-
alence rate of MR in the general population is estimated to be
approximately 1% to 3%, with mild MR occurring 7-10 times
more frequently than moderate or severe MR.2,4,5

Global developmental delay (DD) describes significant de-
lay in two or more of the following areas: cognition, speech/
language, gross/fine motor skills, social/personal skills, and
daily living.6 DD is evidenced as age-specific deficits in learning
skills and adaptation in comparison with chronological peers.6

Because the diagnosis of MR requires accurate and valid assess-
ments of intelligence, the term DD is generally reserved for
children five years of age or younger, prior to the age at which
IQ testing can be applicable. Thus, a child with DD is not nec-
essarily destined to have MR. Several conditions, such as cere-
bral palsy, some neuromuscular disorders, or adverse environ-
mental effects, may result in early childhood learning delay,
though the child may test in the normal range for intelligence
when he or she is old enough to be accurately assessed. Like
MR, the prevalence rate of DD in the general population is
estimated to be 1 to 3%.6 –10

The etiology of MR/DD is complex and may include environ-
mental factors, Mendelian disorders, and chromosomal abnor-
malities, presenting alone or in combination. The cause of
MR/DD can be identified in 40% to 60% of cases;1 however, the
percentage of mild MR/DD cases for which a cause can be estab-
lished is 24%, which is significantly lower.11 Chromosome abnor-
malities are the single most common cause found in series of un-
selected patients with MR/DD. Rates of identifying chromosome
abnormalities range from 15% to 40% in surveys of severe MR/
DD, with substantially lower rates for mild MR/DD.11,12 Further-
more, it is estimated that approximately 5% of MR/DD can be
attributed to chromosomal abnormalities in the subtelomeric
regions.13,14 In addition, individuals with learning disabilities
and/or speech delays, with or without behavior problems, al-
though not mentally retarded, are also more likely to have chro-
mosome abnormalities, particularly 47,XXX, 47,XXY, or 47,XYY.
Chromosome abnormalities are also found in approximately 5%
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of individuals with autism, usually in association with MR/DD.15

Thus, cytogenetic studies can reveal the cause in a substantial pro-
portion of cases of MR/DD.

An accurate diagnosis for MR/DD is valuable for the patient
and the patient’s family as well as for health care providers. An
early diagnosis can elucidate the recurrence risk for parents,
especially those carrying chromosome rearrangements. Ther-
apeutic strategies can be investigated more easily, appropriate
counseling and intervention issues can be addressed, and im-
portant diagnostic and treatment information can be provided
to schools and care providers.1

A set of guidelines for diagnosis and genetic testing would be
useful, given the variety and complexity of causes of MR/DD, and
the benefits of an accurate diagnosis. The following are the recom-
mendations of the American College of Medical Genetics
(ACMG) Professional Practice and Guidelines Committee, which
was convened to assist health care professionals in making deci-
sions regarding cytogenetic diagnostic testing and counseling for
MR/DD. This document reviews available evidence concerning
the value of conventional and molecular cytogenetic testing for
the identification of chromosomal anomalies that play a role in
the etiology of MR/DD, and, based on this evidence, specific rec-
ommendations for each method of testing are provided.

RECOMMENDATIONS FOR TESTING
Routine chromosome analysis

Historically, when investigating an individual with MR or
DD, with or without dysmorphic features, the initial analysis
began with routine chromosome analysis of peripheral blood.
Developed in the 1970s, G-banding and other chromosome
banding techniques permit the identification of the alternating
light and dark staining bands comprising each chromosome,
the detection of aneuploidy (extra or missing chromosomes),
and the identification of microscopically apparent structural
aberrations, including deletions and translocations. The rou-
tine G-banding level of blood chromosome analysis is in the
range of 400-550 bands per haploid karyotype; however, for
patients with MR or developmental delay, constitutional stud-
ies with banding levels of � 550 should be repeated (ACMG
Standards and Guidelines for Clinical Genetics Laboratories,
Section E5.1.1.4). Banding techniques are routine procedures
in clinical cytogenetic laboratories and are important in the
evaluation of all individuals with MR or developmental delay
regardless of the presence of dysmorphic features, small stat-
ure, congenital abnormalities, or unusual or manneristic be-
havior. It should not be assumed that perinatal distress and
delivery complications are adequate to explain subsequent de-
velopmental delay and MR, because these complications can
be associated with chromosome abnormalities. Based on good
and consistent evidence, the overall yield of routine cytoge-
netic testing is 3.7%.6

High-resolution chromosome analysis

Because the chromosomal alterations that result in MR/DD
frequently are undetectable at the level of resolution of routine

chromosomal analysis, high-resolution analysis may be re-
quired to detect microdeletions, microduplications, or subtle
translocations in the individual with MR/DD. Rather than us-
ing cells in mid-metaphase, which display bands that have
fused during contraction, high-resolution chromosomal anal-
ysis involves the synchronization of lymphocyte cultures to
achieve a population of cells in prophase or prometaphase.16

Whereas the metaphase cells used in conventional chromo-
somal analysis yield approximately 400-550 bands per haploid
genome, prophase or prometaphase preparations enable the
visualization of up to 1000 bands.17 Because of the increased
number of visible bands, small structural chromosomal abnor-
malities such as deletions or duplications not resolvable with
standard karyotypes may be detected. The ACMG Standards
and Guidelines for Clinical Genetics Laboratories recommends
that a focused high-resolution analysis should be reserved for
cases in which a specific microabnormality syndrome is being
considered, the diagnosis of which generally requires chromo-
somes above the 650-band stage (resolution at the 850-band
level may be necessary). In addition, complete high-resolution
chromosome analysis should always include a minimum of
three pairs of each chromosome at a level of resolution above
the 650-band stage. However, because of the increased amount
of work required and the difficulty of high-resolution chromo-
somal analysis, routinely achieving approximately 850 bands is
usually reserved for targeting specific chromosomal regions.18

At resolutions � 650 bands, alterations as small as 3-5 Mb can
be reliably detected using chromosome analysis on peripheral
blood; for the detection of subtle rearrangements in patients
with either abnormal or normal karyotypes, molecular cytoge-
netic analysis may be useful.

Molecular cytogenetic analysis

For individuals with MR/DD and phenotypes suggestive of
particular disorders, targeted fluorescence in situ hybridiza-
tion (FISH) can be performed prior to or concurrent with rou-
tine chromosome analysis if a particular microdeletion/micro-
duplication syndrome is under consideration. FISH involves
the hybridization of fluorescently labeled DNA probes to the
denatured DNA of metaphase chromosomes or interphase nu-
clei directly on a glass slide.19 –21 Types of DNA probes include
unique sequence probes such as:

● bacterial artificial chromosome (BAC) clones, yeast arti-
ficial chromosome (YAC) clones, and cosmid clones that
are used to interrogate a specific locus on a chromosome;

● repetitive sequence probes, such as alpha-satellite se-
quences to identify the centromeric regions of individual
chromosomes; or

● whole-chromosome painting (WCP) probes, which uti-
lize chromosomal libraries of clones for hybridization
along the length of a specific chromosome.

FISH is capable of detecting submicroscopic (�5 Mb)
alterations that cannot be reliably observed using routine or
high-resolution microscopic chromosome analysis. Resolu-
tion by FISH is dictated by the size of the probes used. For
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example, single cosmids provide a resolution of approxi-
mately 30 to 40 kb, while contigs of overlapping cosmids or
BAC probes provide a resolution of 80 to 200 kb.18 The
importance of FISH is illustrated by its use in detecting
submicroscopic rearrangements in numerous microdele-
tion syndromes, including those with a relatively high fre-
quency in the general population (e.g., DiGeorge/velocar-
diofacial syndrome, approximately 1:400022), and some
microduplication syndromes (e.g., dup(17)(p11.2p11.2)23).
However, because FISH relies upon the use of location-
specific probes, it can only be used when the phenotype
suggests a particular disorder so a specific probe can be
requested. If locus-specific FISH analyses reveal abnormal-
ities, FISH should also be performed on both parents to
identify a carrier parent. FISH screening on patients with
moderate to severe MR/DD has been shown to have a rela-
tively high yield of 6.8%.6

Subtelomeric analysis

Because idiopathic MR/DD accounts for a significant pro-
portion of MR/DD cases—approximately 40% of moderate to
severe MR/DD11 and 45% to 65% of mild MR/DD24—and
because most of these individuals do not have a specific phe-
notype that would indicate the use of a locus-specific probe,
locus-specific FISH is not feasible for most initial attempts at
diagnosis. However, evidence exists that aberrations in the ter-
minal bands of chromosomes, the subtelomeric regions, are
the cause of many cases of idiopathic MR/DD. Although re-
ports of subtelomeric aberrations in unexplained MR/DD vary
by their inclusion criteria, number and type of subjects, and
testing acumen, it is estimated that approximately 5% of un-
explained cases of MR/DD can be attributed to alterations of
the subtelomeric regions.13,14,25 This is because the subtelo-
meric regions are relatively gene-rich,26 with alterations in
these regions predicted to be more likely to result in abnormal
phenotypes, and are believed to be prone to rearrangement due
to a number of mechanisms.27,28 Because the ends of chromo-
somes lack distinctive G-bands, it is difficult to see small rear-
rangements at these regions in routine karyotype analysis and
sometimes even at higher resolution (850-band). Further-
more, the presence of repetitive sequences within the telomeric
regions precludes the use of chromosome-specific telomeric
probes for FISH analysis due to the potential for multiple hy-
bridization signals. However, the development of a set of 41
unique subtelomere probes (the short arms of the acrocentric
chromosomes are not represented, and the X/Yp and X/Yq
pseudoautosomal regions are represented by one clone
each)29,30 has permitted analysis of the unique regions approx-
imately 300 kb proximal to the repetitive telomere region.

The degree of developmental delay/mental retardation or
learning disability is a major predictor of the likelihood of
finding a subtelomeric rearrangement as the cause of
the individual’s disorder. Those with moderate or severe
MR/DD and a small chromosomal abnormality are more
likely to have some combination of facial dysmorphism,
minor physical abnormalities of the hands or feet, small

stature, and/or microcephaly. The finding of MR/DD and
an abnormal phenotype in a relative increases the chances of
detecting a small chromosomal rearrangement.31 Recently,
a set of clinical criteria for subtelomere screening was
proposed32 that may be helpful in some cases. The authors
concluded that good indicators for subtelomeric defects are
positive family history, prenatal-onset growth retardation,
postnatal poor growth/overgrowth, two or more facial dys-
morphic features, and one or more nonfacial dysmorphic
features and/or congenital abnormalities.32 If subtelomere
FISH analyses reveal abnormalities, FISH should also
be performed on both parents to establish the parental ori-
gin of the anomaly and exclude the possibility of
polymorphism.33,34

Subsequent testing after finding a structural chromosome
abnormality

After initial testing, if the patient’s chromosomes display a
structural abnormality, chromosome analysis should be per-
formed on both parents to determine whether one of them
carries a balanced rearrangement. If a carrier parent is de-
tected, the nature of the rearrangement should become clear. If
parental chromosomes are normal, several molecular cytoge-
netic techniques, used alone or in tandem (e.g., FISH using
WCP probes or subtelomere probes) can be used to define the
patient’s rearrangement.

In addition, techniques have been developed to differentially
label each human chromosome with a unique color combination
to obtain 24-color karyotypes.35–38 This allows the detection of
structural chromosomal aberrations at a level of resolution similar
to that of a routine karyotype (400 to 550 bands). However, these
techniques cannot detect rearrangements involving only a single
chromosome such as deletions, inversions, and intrachromo-
somal duplications, and the limited number of spectrally resolv-
able fluorochromes may prohibit accurate detection of some
translocations.39 Thus, 24-color karyotyping is usually used in
conjunction with other procedures (e.g., subtelomere FISH) to
maximize effectiveness.

Subsequent testing options if no chromosome abnormality is
found

Direct DNA analysis for the fragile X syndrome is indicated
in addition to chromosome analysis for all developmentally
delayed/mentally retarded individuals, both male and female,
who do not have an apparent underlying cause for their clinical
status such as microcephaly, craniofacial dysmorphism and
multiple congenital abnormalities.40 Both chromosome anal-
ysis and fragile X DNA analysis should be performed because
chromosome abnormalities are as common, or more com-
mon, than fragile X mutations in mentally retarded individu-
als. ACMG recommendations for diagnostic testing for fragile
X syndrome, a significant inherited cause of MR/DD, have
been published previously.40 The overall yield of abnormal re-
sults after fragile X testing is �2.6%.6

If, after initial testing by karyotyping and molecular cytoge-
netics the patient’s chromosome analysis reveals no abnormal-
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ity, and fragile X DNA analysis is negative, several options re-
main. Comparative genomic hybridization (CGH) is one
possible option. In this technique, two genomes are differen-
tially labeled and directly compared by simultaneous hybrid-
ization to normal metaphase chromosomes. It has an average
resolution of approximately 10 Mb in most laboratories,41– 43

although higher resolutions have been reported.44 However,
for most laboratories the low resolution precludes its useful-
ness. The future application of CGH is on microarrays (array
CGH), in which the two differentially labeled genomes are
compared using large-insert clones immobilized on a glass
slide as the substrates for analysis.45,46 With this technique the
resolution is substantially increased over conventional cytoge-
netics, depending on the size and density of clones used. It is
likely that for certain applications, such as the individual with
nonspecific MR/DD, array CGH may be used in conjunction
with routine cytogenetics to replace the locus-specific and/or
subtelomere FISH in the future.47

Analysis of tissues other than blood

The routine and molecular cytogenetic analyses outlined
thus far are usually performed on peripheral blood. However,
there are some situations in which the cytogenetic analysis of a
skin biopsy or other tissue may be indicated. First is the anal-
ysis of a different tissue type in T-cell deficient individuals.
Because the analysis of metaphase chromosomes requires
stimulation of T-cells by a mitogen (phytohemagglutinin) to
enter mitosis, some individuals, such as those with DiGeorge
syndrome, may not have enough normal T-cells to yield ade-
quate metaphases for analysis. In these cases, skin fibroblast
cultures, which do not depend on phytohemagglutinin stimu-
lation, can be used to evaluate the chromosomes.

A second example is the cytogenetic analysis of skin fibro-
blasts to detect mosaicism. Current standard methods for cy-
togenetic analysis of peripheral blood will identify only those
chromosome aberrations that are present in the circulating
T-lymphocytes. However, there are certain chromosome ab-
normalities that do not appear to be compatible with survival
of the T-cells.48 Therefore, only those T-cells that do not con-
tain the aberration will be present in the circulating lympho-
cytes. Examples of this include mosaic tetrasomy of the short
arm of chromosome 12 (Pallister-Killian syndrome49,50) and
mosaic trisomy 17.51

Finally, the chromosomal aberration simply may not be
present in the peripheral blood because of tissue-limited
mosaicism.51 In cases in which chromosomal analysis is nor-
mal but suspicion of a chromosome abnormality remains high,
a skin fibroblast culture can be used to detect the aberration.
Skin biopsies may be taken from individuals with asymmetry
or individuals with hypo- and hyperpigmented regions. The
skin should be cleansed with alcohol and not with iodine-con-
taining compounds because these inhibit cell growth in cul-
ture. Chromosome analysis of skin biopsies has been used to
study parents who have more than one child with the same
chromosome aberration, e.g., trisomy 21.52 Case reports sug-
gest that cytogenetic analysis of skin biopsies is a possible alter-

native when chromosome analysis of blood is normal, al-
though the yield is unknown. Studies using series of patients
are needed to determine the overall yield for finding a cytoge-
netic diagnosis using skin biopsies.

Analysis when fetal karyotype is normal following prenatal
diagnosis

In cases of developmental delay or MR, with or without
physical anomalies, and in newborns with dysmorphic features
and/or multiple malformations, a blood karyotype should be
performed even when a fetal karyotype from amniocentesis or
chorionic villus sampling is normal. There are several reasons
to perform a blood karyotype. First, there may be mosaicism
that has gone undetected in the fetal analysis. Second, the
banding resolution is often higher in postnatal blood prepara-
tions than in cultured amniocytes or chorionic villi. Finally, the
majority of fetal chromosome analyses are done for general
reasons (e.g., advanced maternal age, abnormal triple-marker
screening) and not for a specific set of dysmorphic features.
After birth, the clinical features may provide clues regarding a
specific chromosomal imbalance or for the use of additional
techniques (e.g., FISH).

Summary of Recommendations

● For any child with unexplained MR/DD, even in the ab-
sence of dysmorphic facial features, other clinical features
or positive family history, routine chromosome analysis
(minimum 550-band resolution) is indicated.

● For children with clinical features of known chromo-
somal abnormality syndromes (e.g., Down syndrome),
cytogenetic analysis should be performed. The identifica-
tion of a translocation may affect the family’s recurrence
risk.

● High-resolution chromosome analysis is not routinely in-
dicated unless a specific chromosomal region is to be in-
vestigated or there is a family history of a particular ab-
normality. These studies should be limited in focus and
used when FISH is not available.

● For children with clinical features suggestive of a particu-
lar microdeletion/microduplication syndrome, FISH or
other molecular techniques should be performed prior to
or concurrently with chromosome analysis.

● If chromosome analysis is normal at 550-band resolution,
subtelomere FISH testing may be considered.

ACKNOWLEDGMENTS

The authors thank Maureen Bocian, M.D. (University of
California Irvine Medical Center, Orange, CA), Lawrence Sha-
piro, M.D. (New York Medical College and Westchester Med-
ical Center, Valhalla, NY), Stuart Schwartz, Ph.D. (University
of Chicago, Chicago, IL) and Kurt Hirschhorn, M.D. (Mount
Sinai School of Medicine, New York, NY) for their contribu-
tions to the manuscript; and Daynna Wolff, Ph.D. (Medical
University of South Carolina, Columbia, SC), Christa Lese
Martin, Ph.D. (Emory University, Atlanta, GA), David Ledbet-

Cytogenetic evaluation of developmental delay or mental retardation

November/December 2005 � Vol. 7 � No. 9 653



ter, Ph.D. (Emory University, Atlanta, GA), Jon Zonana, M.D.
(Oregon Health Sciences University, Portland, OR), Debra
Driscoll, M.D. (University of Pennsylvania Medical Center,
Philadelphia, PA) for their critical reviews of the manuscript;
and Aaron Theisen (Washington State University, Spokane,
WA) for his editorial support.

References
1. Curry CJ, Stevenson RE, Aughton D, Byrne J, et al. Evaluation of mental retardation:

Recommendations of a Consensus Conference: American College of Medical Ge-
netics. Am J Med Genet 1997;72:468–477.

2. Battaglia A, Bianchini E, Carey JC. Diagnostic yield of the comprehensive assess-
ment of developmental delay/mental retardation in an institute of child neuropsy-
chiatry. Am J Med Genet 1999;82:60–66.

3. Chiurazzi P, Oostra BA. Genetics of mental retardation. Curr Opin Pediatr 2000;12:
529–535.

4. Bundey S, Thake A, Todd J. The recurrence risks for mild idiopathic mental retar-
dation. J Med Genet 1989;26:260–266.

5. Lamont MA, Dennis NR. Aetiology of mild mental retardation. Arch Dis Child
1988;63:1032–1038.

6. Shevell M, Ashwal S, Donley D, Flint J, et al. Practice parameter: Evaluation of the
child with global developmental delay. Report of the Quality Standards Subcommit-
tee of the American Academy of Neurology and The Practice Committee of the
Child Neurology Society. Neurology 2003;60:367–380.

7. Yeargin-Allsopp M, Murphy CC, Cordero JF, Decoufle P, et al. Reported biomedical
causes and associated medical conditions for mental retardation among 10-year-old
children, metropolitan Atlanta, 1985 to 1987. Dev Med Child Neurol 1997;39:142–149.

8. Batshaw ML, Shapiro BK. Mental retardation. In: Batshaw ML, editor. Children
with disabilities, 4th ed. Baltimore: Paul H. Brookes, 1997:335-359.

9. Kinsbourne M, Graf WD. Disorders of mental development. In: Menkes JH, Sarnat
HB, editors. Child neurology, 6th ed. Philadelphia: Lippincott Williams & Wilkins,
2001:1155-1211.

10. Simeonsson RJ, Simeonsson NW. Development surveillance and intervention. In:
Hoekelman RA, Adam HM, Nelson NM, Weitzman ML, Wilson MH, editors. Pri-
mary pediatric care, 4th ed. St. Louis: Mosby, 2001:274-282.

11. Flint J, Wilkie AO. The genetics of mental retardation. Br Med Bull 1996;52:453–464.
12. Raymond GV. Abnormal mental development. In: Rimoin DL, Connor M, Pyeritz

RE, Korf BR, editors. Emery and Rimoin’s principles and practice of medical genet-
ics. London: Churchill-Livingstone, 2002:1046-1065.

13. Flint J, Wilkie AO, Buckle VJ, Winter RM, et al. The detection of subtelomeric
chromosomal rearrangements in idiopathic mental retardation. Nat Genet 1995;9:
132–140.

14. Knight SJ, Regan R, Nicod A, Horsley SW, et al. Subtle chromosomal rearrangements in
children with unexplained mental retardation. Lancet 1999;354:1676–1681.

15. Lauritsen M, Mors O, Mortensen PB, Ewald H. Infantile autism and associated
autosomal chromosome abnormalities: A register-based study and a literature sur-
vey. J Child Psychol Psychiatry 1999;40:335–345.

16. Yunis JJ. High resolution of human chromosomes. Science 1976;191:1268–1270.
17. Yunis JJ. Mid-prophase human chromosomes. The attainment of 2000 bands. Hum

Genet 1981;56:293–298.
18. Shaffer LG, Ledbetter DH, Lupski JR. Molecular cytogenetics of contiguous gene syn-

dromes: mechanisms and consequences of gene dosage imbalance. In: Scriver CR, Beau-
det AL, Sly WS, Valle D, Childs B, Kinzler KW, Vogelstein B, editors. The metabolic and
molecular basis of inherited disease. New York: McGraw Hill, 2001:1291-1324.

19. Jauch A, Daumer C, Lichter P, Murken J, et al. Chromosomal in situ suppression
hybridization of human gonosomes and autosomes and its use in clinical cytogenet-
ics. Hum Genet 1990;85:145–150.

20. Lichter P, Boyle AL, Cremer T, Ward DC. Analysis of genes and chromosomes by
nonisotopic in situ hybridization. Genet Anal Tech Appl 1991;8:24–35.

21. Trask BJ. Fluorescence in situ hybridization: Applications in cytogenetics and gene
mapping. Trends Genet 1991;7:149–154.

22. Devriendt K, Fryns JP, Mortier G, van Thienen, MN, et al. The annual incidence of
DiGeorge/velocardiofacial syndrome. J Med Genet 1998;35:789–790.

23. Potocki L, Chen KS, Park SS, Osterholm DE, et al. Molecular mechanism for dupli-
cation 17p11.2- the homologous recombination reciprocal of the Smith-Magenis
microdeletion. Nat Genet 2000;24:84–87.

24. McLaren J, Bryson SE. Review of recent epidemiological studies of mental retardation:
Prevalence, associated disorders, and etiology. Am J Ment Retard 1987;92:243–254.

25. Biesecker LG. The end of the beginning of chromosome ends. Am J Med Genet
2002;107:263–266.

26. Saccone S, De Sario, A, Della Valle, G, Bernardi G. The highest gene concentrations
in the human genome are in telomeric bands of metaphase chromosomes. Proc Natl
Acad Sci U S A 1992;89:4913–4917.

27. Ballif BC, Wakui K, Gajecka M, Shaffer LG. Translocation breakpoint mapping and
sequence analysis in three monosomy 1p36 subjects with der(1)t(1;1)(p36;q44) sug-
gest mechanisms for telomere capture in stabilizing de novo terminal rearrange-
ments. Hum Genet 2004;114:198–206.

28. Ballif BC, Yu W, Shaw CA, Kashork CD, et al. Monosomy 1p36 breakpoint junctions
suggest pre-meiotic breakage-fusion-bridge cycles are involved in generating termi-
nal deletions. Hum Mol Genet 2003;12:2153–2165.

29. A complete set of human telomeric probes and their clinical application. National
Institutes of Health and Institute of Molecular Medicine collaboration. Nat Genet
1996;14:86-89.

30. Knight SJ, Horsley SW, Regan R, Lawrie NM, et al. Development and clinical appli-
cation of an innovative fluorescence in situ hybridization technique which detects
submicroscopic rearrangements involving telomeres. Eur J Hum Genet 1997;5:1–8.

31. Knight SJ, Flint J. Perfect endings: A review of subtelomeric probes and their use in
clinical diagnosis. J Med Genet 2000;37:401-409.

32. de Vries BB, White SM, Knight SJ, Regan R, et al. Clinical studies on submicroscopic
subtelomeric rearrangements: a checklist. J Med Genet 2001;38:145–150.

33. Ballif BC, Kashork CD, Shaffer LG. The promise and pitfalls of telomere region-
specific probes. Am J Hum Genet 2000;67:1356–1359.

34. Shaffer LG, Kashork CD, Bacino CA, Benke PJ. Caution: Telomere crossing. Am
J Med Genet 1999;87:278–280.

35. Schrock E, du Manoir, S, Veldman T, Schoell B, et al. Multicolor spectral karyotyp-
ing of human chromosomes. Science 1996;273:494–497.

36. Uhrig S, Schuffenhauer S, Fauth C, Wirtz A, et al. Multiplex-FISH for pre- and
postnatal diagnostic applications. Am J Hum Genet 1999;65:448–462.

37. Schrock E, Veldman T, Padilla-Nash H, Ning Y, et al. Spectral karyotyping refines
cytogenetic diagnostics of constitutional chromosomal abnormalities. Hum Genet
1997;101:255–262.

38. Speicher MR, Gwyn Ballard, S, Ward DC. Karyotyping human chromosomes by
combinatorial multi-fluor FISH. Nat Genet 1996;12:368–375.

39. Fauth C, Speicher MR. Classifying by colors: FISH-based genome analysis. Cytogenet
Cell Genet 2001;93:1–10.

40. Sherman S, Pletcher BA, Driscoll DA. Fragile X syndrome: Diagnostic and carrier
testing. American College of Medical Genetics Professional Practice and Guidelines
Committee. Genet Med 2005;7:584 –587.

41. Bentz M, Plesch A, Stilgenbauer S, Dohner H, et al. Minimal sizes of deletions
detected by comparative genomic hybridization. Genes Chromosomes Cancer 1998;
21:172–175.

42. Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, et al. Comparative genomic
hybridization for molecular cytogenetic analysis of solid tumors. Science 1992;258:
818–821.

43. Levy B, Dunn TM, Kaffe S, Kardon N, et al. Clinical applications of comparative
genomic hybridization. Genet Med 1998;1:4–12.

44. Kirchhoff M, Gerdes T, Maahr J, Rose H, et al. Deletions below 10 megabasepairs are
detected in comparative genomic hybridization by standard reference intervals.
Genes Chromosomes Cancer 1999;25:410–413.

45. Pinkel D, Segraves R, Sudar D, Clark S, et al. High resolution analysis of DNA copy
number variation using comparative genomic hybridization to microarrays. Nat
Genet 1998;20:207–211.

46. Solinas-Toldo S, Lampel S, Stilgenbauer S, Nickolenko J, et al. Matrix-based com-
parative genomic hybridization: biochips to screen for genomic imbalances. Genes
Chromosomes Cancer 1997;20:399–407.

47. Shaffer LG, Bejjani BA. A cytogeneticist’s perspective on genomic microarrays. Hum
Reprod Update 2004;10:221–226.

48. Kulharya AS, Lovell CM, Flannery DB. Unusual mosaic karyotype resulting from
adjacent 1 segregation of t(11;22): Importance of performing skin fibroblast karyo-
type in patients with unexplained multiple congenital anomalies. Am J Med Genet
2002;113:367–370.

49. Hunter AG, Clifford B, Cox DM. The characteristic physiognomy and tissue specific
karyotype distribution in the Pallister-Killian syndrome. Clin Genet 1985;28:47–53.

50. Peltomaki P, Knuutila S, Ritvanen A, Kaitila I, et al. Pallister-Killian syndrome:
Cytogenetic and molecular studies. Clin Genet 1987;31:399–405.

51. Shaffer LG, McCaskill C, Hersh JH, Greenberg F, et al. A clinical and molecular study
of mosaicism for trisomy 17. Hum Genet 1996;97:69–72.

52. Hsu LY, Gertner M, Leiter E, Hirschhorn K. Paternal trisomy 21 mosaicism and
Down’s syndrome. Am J Hum Genet 1971;23:592–601.

Shaffer

654 Genetics IN Medicine


