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Abstract
The problem of finding an optimum within a set of possibilities that represent the varying

successfulness of numerous subjects competing with one another is highly relevant in the

field of ecosystem interactions. We propose a method for solving this problem by the

application of the Nash equilibrium concept, which is frequently used in ecology. The pro-

posed model is based on the transformation of the initial payoff vectors of subjects that

interact in different situations into a statistical set of symmetrical game matrices that con-

sist of permutations of payoff values. The equilibrium solution is expressed as values of

the probability of Nash equilibrium occurrence with uniform distribution over all possible

permutations based on uncertainty of positions of payoff values in the matrix. We assume

that this equilibrium solution provides information on the distribution of the degree of sta-

bility among individual situations and interacting subjects. In this paper, we validate this

assumption and demonstrate its application to a dataset that represents interspecies

interactions in plant ecology. We propose that the use of the Nash equilibrium in the analy-

sis of datasets formalized according to the Pareto optimality scheme is applicable in

numerous other contexts.

Introduction
The problem of finding an optimum within a set of possibilities that represent the varying suc-
cessfulness of numerous subjects competing with one another is not only a highly relevant
basic topic in the field of economics but also in other disciplines. The basic approach for solv-
ing this problem in economics is to search for the Pareto optimality (PO) that corresponds to
the state in which no subject can achieve a better result without worsening the result of another
subject. The PO problem is often encountered in economics research. Of recently published
research, the paper of Luc [1] is notable. The paper provides a detailed, exact analysis of a PO
problem. The PO concept is practical, and it is frequently used in many contexts including
environmental sciences [2–5]. Nevertheless, an evaluation of the equilibrium optimum within
the set of possibilities that represent various successful competitive environments, e.g., the spe-
cies represented in an ecosystem, may be realized using other approaches. In the first place, the
application of the Nash equilibrium (NE), which is a fundamental principle of game theory [6],
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is offered as an option. Additionally, both principles—PO and NE—may be compared within
the framework of the matrix game scheme. PO can be found in states that are not necessarily
identical with NE [7].

In this paper, we propose a method for solving the problem of the equilibrium optimum in
a set of situations with various payoffs for interacting subjects by applying the NE concept,
which is frequently used in ecology. Most cases that involve the application of advanced game
theory are referred to as evolutionary game theory (EGT). In the theory of evolutionary pro-
cesses, game models are viewed as the basic unit of frequency-dependent interspecies interac-
tions. Basic interaction types (e.g., plant–plant competition, plant–herbivore interactions, and
plant–mutualism interaction [8]) are modeled based on defined strategies that species acquire
during evolutionary development.

When simulating adaptive dynamics in phenotype space, a game model of interactions is
applied in the replicator equation, the solution to which provides a picture of short- and long-
term evolution [9]. The simulated population’s per-capita growth rate can be determined using
the G-function [10]. This function, which includes a specific game model, is dependent on the
sizes and strategies of the interacting populations as well as the particular strategy, i.e., a trait of
the species whose evolutionary development is being simulated [11, 12].

In EGT, the attainment of an evolutionarily stable strategy (ESS) is viewed as the optimal
solution [13]. Every ESS is a strategy in a Nash equilibrium in the stage of linear game, although
not all NE are made up of ESS. Matrix games as models of evolutionary interaction have been
applied in many studies [14–20]. EGT has been applied to a number of specific cases, such as
adaptations by organisms to recent climate changes [21], competitive interactions between
root systems of plants [22], and many others. An example of an EGT-based study is the appli-
cation of advanced game theory to the coordination of ecosystem management strategies [23].
In this example, the replicator equation follows from a bioeconomic game model, and the sta-
ble state is a NE.

In sum, the practical application of game theory in environmental science results in interac-
tive models in the form of game types of various degrees of complexity. However, in contrast to
the game concept, the problem analyzed in this research, i.e., the search for the equilibrium
optimum within a set of variant situations that represent various payoffs for interacting sub-
jects, does not include a deterministic selection of strategies. The problem that we solve may be
regarded as a purely stochastic one. We propose a model for the evaluation of the equilibrium
optimum in a set of observed data. In principle, this evaluation may be considered analogous
to statistical data processing.

The proposed approach is based on transformation of the initial payoff vectors of subjects
who interact in different situations in a statistical set of symmetrical game matrices that consist
of permutations of payoff values. Additionally, the concept of variable payoff vectors in game
models is introduced within a framework of the inclusion of more types of possible behavior of
individual players. However, this proposed approach does not exclusively concern a stochastic
problem. The result of the game is determined by the selection of strategies even though these
strategies are linked with a specific type of player behavior defined by a probability value. Thus,
extended game models were established by Harsanyi [24, 25] and have been developed particu-
larly in the field of cooperative game theory [26, 27] and related research.

The solution proposed in this paper also transcends the category of stochastic games formed
by a sequence of random states. The actual payoff depends on previous states of the game. Sto-
chastic games were introduced by Shapley [28].

Our proposal for solution of the equilibrium optimum in a set of various situations is based
on permutation of N-plets of payoff values of N interacting subjects in a symmetrical game
matrix of a corresponding dimension. The individual variant configurations of this matrix are
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fully independent. That is, they do not exhibit a relative structural connection. Each incurred
matrix represents a linear game in normal form with at least one NE. Therefore, the substance
of the proposed model consists of the equilibrium solution of a symmetrical game matrix
derived from payoff values of subjects that interact in a set of various situations. This equilib-
rium solution is expressed as values of the probability of NE occurrence with uniform distribu-
tion over all possible permutations given by the uncertainty of the positions of N-plets of
payoff values in the matrix.

We assume that this equilibrium solution provides information on the distribution of the
degree of stability among the individual situations and the interacting subjects. The problem of
ecosystem stability is the topic of many works, where the relationship between stability and
diversity is often evaluated [29–34]. We propose a stochastic model for calculation of the
degree of stability that can be used to evaluate e.g. the selected data sets of ecosystem descrip-
tors. Our approach can be applied in the simplest case to the numerical example of two species
observed at four sampling sites mentioned in Chapter 4 of Legendre and Legendre Numerical
Ecology [35]. A similar scheme is of course addressed in many research works, not only in
ecology.

The model
Let a set of K alternative situations be defined by different external conditions. In each K situ-
ation, N subjects interact with one another. The results of this interaction are expressed by
payoff values for each subject in all K situations. That is, the individual situations are advan-
tageous to different degrees for the interacting subjects. The aim is to find the continuous dis-
tribution of individual situations along an axis that represents the equilibrium determined by
a total degree of advantageousness for all interacting subjects. The maximum degree of equi-
librium will be displayed by the situation that provides the best possible compromise of pay-
off values for all subjects. However, the evaluation of equilibrium is based on the NE concept,
which cannot be found in a set of individual vectors of payoff values. Therefore, for the pro-
posed method of evaluation, it is necessary to transform the initial payoff vectors into a nor-
mal form game matrix of dimension N. However, no information is available on the possible
strategies of the interacting subjects that could determine the particular configuration of the
game matrix. Nevertheless, it is possible to define two basic, apparent conditions for this
transformation of payoff vectors into the game matrix. The first starting principle is that the
derived game matrix should be symmetrical with respect to the number of interacting possi-
bilities—therefore, formal strategies of interacting subjects in the sense of defining the game
in the basic form. The second condition is connected with the stochastic substance of the
proposed approach, which can be expressed as follows. Any information that substantiates a
particular form of game matrix for NE evaluation is unavailable. Then, the only correct possi-
bility is to include a complete set of all possible forms of game matrices to be derived, which
can differ depending on the NE position within the limits of the elements of the game matri-
ces. Of course, the elements in the derived matrices correspond to payoff values of N subjects
in K individual situations pk

1; :::pk
N . Permutations that result in the formation of individual

game matrices are identical in relation to interacting subjects (i.e., players). The individual
game matrices concern permutations of K situations with fixed payoff values for players
pk
1; :::pk

N , which are invariable with respect to changes in position in the matrix. The maxi-
mum, which is represented by a complete set of all possible permutations that determine the
occurrence of NE in derived games, is achieved in the symmetrical payoff matrix of dimen-
sion N. If strategies are not made concrete, i.e., if (considering the evaluated NE position of
the elements in the matrix) the sequence of columns or rows of the matrices to be derived
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does not matter because the total number of available games V with the possibility of a differ-
ent NE result for N subjects (players) is given as follows:

V ¼ ðQN
n AnÞ!QN
n An!

ð1Þ

An is the number of formal strategies of player n. The number of possible permutations V
of the payoff matrix is the maximum for A1 = A2 = . . . = AN; therefore, for a symmetrical game

matrix of dimension N. Because ðQN
n AnÞ! ¼ K! is a constant and for the denominator is: ðAþ

tÞ! � ðK=ðAþ tÞÞ! > A!2;A ¼ ffiffiffiffi
K

p
; t 6¼ 0 for a pair of interacting entities.

The evaluation of equilibrium for payoff vectors pk
n primarily requires their linear mapping

φ : XK ! YK0 from space of variant situations XK into space YK0, dimension K0, which will
enable the formation of symmetrical matrices, i.e., K0 � AN, where A> 1 is the selected number
of columns and rows of the game payoff matrix. For example, the outcome for two interacting
subjects may be K0 = 9, i.e., A = 3, and the total number of permutations with the possibility of
various results with respect to NE in this matrix is 9!/(3!2) = 10,080.

Each permutation of the derived payoff matrix is a game in the basic form with at least
one NE. The condition for the best mutual response of two opponents (i.e., player n and
playerm) with respect to a Nash equilibrium is as follows [6]: Let xn and xm be mixed strate-
gies of players n andm. Then, xn is the best response to xm if for i � An xn,i > 0) (πn xm)i =
max(πn xm)k applies, and xm is the best response to xn if for j � Am xm,j > 0) (πm xn)j = max
(πm xn)k applies.

NE can be calculated as linear programming tasks for each matrix permutation. Specific
calculations can be performed via labeled polytopes [36, 37]. For example, a 3 × 3 bimatrix
game can be geometrically interpreted as two polyhedra in space that represents each play-
er’s individual strategies: x1, x2, x3 for Player 1 and y4, y5, y6 for Player 2. NE can be evalu-
ated as the completely labeled vertices of these polytopes, which ensures that by definition
the vertices are found at local maxima that correspond to identical rows and columns within
each payoff matrix. The evaluated options represent games with NE on the generated poly-
tope axes in pure strategies, on faces in mixes of two strategies, and for a proportion of pay-
off bimatrix permutations at the intersection of three faces in space in mixes of three
strategies.

NE is found for every game from the complete set of evaluated permutations V of a symmet-
rical game matrix. Every found NE represents a vector of selection of formal strategies. That is,

for player n, xn;1:::xn;A;
PA

i¼1 xn;i ¼ 1. The resulting values xn,i are counted as contributions to

the total degree of equilibrium Enk of player n in a situation k that corresponds to the deter-
mined NE. In the case of NE in pure formal strategies, the contribution xn,k = 1 is the same for
all players. For NE in mixed strategies, the contributions may be xn,i in individual situations
(representing NE) for each player.

Each complete set of permutations of the symmetrical matrix (therefore, the game) has
weight 1. If there is more than one NE in one game, the values of the counted contributions are
divided by the number of determined equilibriums lE. The resulting values of total En,k are
obtained as summary contributions of all V of solved games:

En;k ¼
X
V

xn;k
lE

� �
v

ð2Þ
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Degrees of equilibrium for individual situations and players (therefore, interacting subjects)
can be additionally relativized by dividing by a total number of evaluated permutations:

pn;k ¼
En;kA!

N

AN !
;
XK

k¼1

pn;k ¼ 1 ð3Þ

This step results in the expression of the equilibrium solution of the derived game in the
form of sets of values of probability pn,k, thereby determining NE in the arbitrary permutation
of a symmetrical game matrix for N interacting subjects in K situations.

The values pn,k characterize Nash equilibrium probabilities which could be interpreted as
relative degrees of stability for interacting subjects in individual situations. Higher values indi-
cate a preferable compromise of payoff values of interacting subjects in relation to equilibrium
and therefore also a higher stability of evaluated situations.

In general contexts, the approach employed can also be validated (for case of two players)
using an analogy with a corresponding elementary card game: Each player has K cards with
various values. In each round of the game, one of the players arranges these K cards into a
square with A cards per side (A2 = K). The other player matches his or her cards to the cards
the first player arranged to make prescribed pairs. K identical pairs are created each round and
no other pairs are permitted. The order of the players alternates between individual rounds.
The card pairs’ square distribution is evaluated in each round such that each player is assigned
the points of his or her cards or shares of cards which represent NE. The players’ primary effort
is to be assigned cards with the highest possible value. However, the players do not know the
specific card distribution methods (the payoff bimatrix variations that lead to NE) with the
greatest number of these highest cards. The distribution of card pairs in each round is therefore
random. If all possible distributions are taken into account, it is possible to determine which
cards of each player will win more frequently in the sense of their proportions of the NE found.
The game’s total points are therefore determined by the card values distributed to each player
and how these cards are prescribed within the K defined pairs.

Example
As an example, an application of the proposed model in the field of plant ecology is described.
The example concerns the evaluation of the stability of interactions between the expansive
bushgrass Calamagrostis epigejos and other plant species in nine environments under various
types of management.

The evaluated data were acquired over two seasons in an experiment performed in com-
plete, randomized blocks with three repetitions. The experimental design was based on long-
term experiments performed in Central Europe [38, 39]. Each block consisted of nine treat-
ments represented by squares with an area of 9 m2 within which various fertilization rates and
mowing / no mowing managements were applied: C-cut, C-uncut, N-cut, N-uncut, K-uncut,
NP-cut, NP-uncut, NPK-cut, and NPK-uncut. C designates variants with no fertilization, and
C-uncut corresponds to squares without any intervention. Nutrients were supplied by applying
commercial fertilizers. A community’s response to added nutrients is rapid and typically results
in a decrease in species diversity at the local level [40, 41]. During the second season, the rela-
tive spatial proportion of C. epigejos and the number of other plant species that occurred were
evaluated for each square. To eliminate any possible distortion due to the edge effect, data were
collected only in the central area of each square.

For the proposed evaluation method, data were available on the determined abundance of
C. epigejos and the numbers of other species within the nine management treatments (individ-
ual abundances of the otrher species have not taken into account). Subject 1 is bushgrass with a
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payoff table that expresses its abundance within individual squares in multiples of 10%. Subject
2 consists of other found species, and the payoff table states their determined numbers. All val-
ues represent the rounded means (with a minimum increment of 0.5) of each treatment’s three
repetitions. The particular payoff values for both subjects are provided in Fig 1. The vector of
payoff values is dimension AN, and its additional transformation is unnecessary. Nine pairs of
payoff values may be directly distributed into a 3 × 3 symmetrical matrix (Fig 1).

An overview of the total number of NE calculated for all 10,080 payoff bimatrix permuta-
tions (i.e., games) is provided in Table 1. NE was most frequently found in pure strategies,
whereas in mixes of three formal strategies, NE occurred in fewer than 10% of the evaluated
permutations.

The resulting NE probabilities pn,k for the individual management variants are shown in Fig
2 For each of the nine variants, we can define an expected value of 1/9 corresponding to a uni-
form distribution of NE probability. Within the context of the approach that was used, this
value can be viewed as an indifferent state.

The results show that the application of the proposed concept offers the possibility of solv-
ing the problem of equilibrium optimum, i.e., the best compromise among payoff values,
which are optimal for each interacting subject. The setting is not trivial, and the maximum pay-
off is achieved in both subjects in different situations. For C. epigejos, NPK-cut is an optimal
situation. The other species achieve their highest numbers in the C-uncut situation. The evalu-
ation of the initial payoff values according to the proposed concept unambiguously results in a
preferred maximum number of other species, and thus a significantly higher probability of NE

Fig 1. The derived payoff bimatrix: One of the 10,080 permutations. The bimatrix includes abundance
values of the bushgrass Calamagrostis epigejos (CE) in multiples of 10% and numbers of the other species
that were found (individual abundances of the other species have not taken into account).

doi:10.1371/journal.pone.0155023.g001
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occurrence pn,k results, which can be interpreted as a degree of stability (Fig 2). This result
approximately matches common assumptions. That is, the highest degree of stability is
achieved in a situation without interference, and this stability corresponds to the number of
occurring species; therefore, corresponds to biodiversity and not to the abundance of expansive
bushgrass. This fact is not only demonstrable with respect to the maximum obtained value pn,k.
The result of the proposed concept is a continuous distribution of the degree of stability of the
evaluated situations. The correlation of this dependence with the set of initial payoff values
unambiguously results in the beneficial occurrence of other species—r = 0.617 against r = 0.114
for C. epigejos abundance. That is, stability corresponds to biodiversity (Fig 3).

Table 1. Total Nash equilibrium (NE) found.

Variant Summary NE in pure
strategies

Summary NE in mixes of two
strategies

Summary NE in mixes of three
strategies

Total summary NE

Subject 1
CE

Subject 2
Species

Subject 1
CE

Subject 2
Species

Subject 1
CE

Subject 2
Species

Subject 1
CE

Subject 2
Species

C-cut 360.0 360.0 799.0 654.9 101.0 75.0 1260.0 1089.9

C-uncut 3403.3 3403.3 621.9 548.9 64.8 85.9 4090.0 4038.2

N-cut 0.0 0.0 198.5 390.1 48.1 86.1 246.7 476.2

N-uncut 72.0 72.0 353.8 446.2 81.9 76.5 507.7 594.7

K-uncut 0.0 0.0 254.6 198.0 82.1 58.3 336.7 256.3

NP-cut 973.3 973.3 602.5 586.8 76.7 84.2 1652.5 1644.4

NP-uncut 0.0 0.0 265.5 259.6 84.1 68.5 349.6 328.1

NPK-cut 0.0 0.0 352.0 372.9 68.2 61.7 420.2 434.6

NPK-
uncut

612.3 612.3 534.9 525.3 69.5 80.0 1216.7 1217.6

Total 5421.0 5421.0 3982.7 3982.7 676.3 676.3 10080.0 10080.0

doi:10.1371/journal.pone.0155023.t001

Fig 2. Obtained Nash equilibrium probabilities for individual management treatments. The dotted line
is the expected value of 1/9 that corresponds to a uniform distribution of NE probability.

doi:10.1371/journal.pone.0155023.g002
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The determinant factor with respect to the result is the occurrence of NE in pure formal
strategies such that the calculated distribution of the degree of stability is not significantly dif-
ferent for both subjects. Therefore, it is impossible to deduce a recommendation regarding the
type of management that might be more beneficial for the stability of occurrence of other spe-
cies compared with the abundance of C. epigejos. However, the results of the evaluation may
represent a contribution to research on the spread of this expansive grass. Based on the evalua-
tion, a summary is possible: there are types of management that result in a more remarkable
elimination of the occurrence of C. epigejos in plant communities, e.g., K-uncut. However, the
assumed degree of stability of these management types is low compared with the non-interfer-
ence situation, and these states may not be sustainable in the long term.

Discussion
The proposed model of evaluation of the occurrence of NE probability for a set of variant situa-
tions and subjects interacting in these situations can be considered to be a solution of a game
with vector payoffs. The equilibrium concept in zero-sum matrix games with vector payoffs
was developed by Shapley [42]. Variable payoffs may be considered as randomly distributed in
commonness, therefore as values with random deviation. Harsányi [24] designed a model of
purification of mixed equilibrium that enables a deterministic solution of equilibrium in a
game with randomly distributed payoffs. In this paper, we have addressed a situation in which
the quantitative results of interactions of the involved subjects (i.e., players) are well known, as
are the payoffs in individual situations. However, there is no information on player strategy,
which results in a particular limitation of the position of individual situations (linked with
player payoffs) in the game matrix. We assume that this uncertainty can be revolved using a
statistical set of all permutations of an evaluated situation in a derived symmetrical game
matrix. NE is explicitly searched for in every permutation, and its occurrence (in pure or mixed
strategies) is gradually counted for individual players in evaluated situations. Thus, our model
is simple: the calculation of the probability distribution of NE occurrence does not require
complicated mathematical generalization. Considering the established concept of a game with
vector payoffs, in our model, all of the vectors in the game matrix are identical. In every solved
step (i.e., permutation), the selection of individual payoff values is unambiguously determined
by the permutation rules of the evaluated situations (linked with payoffs) in the game matrix.

Fig 3. Comparison of the trend of NE probabilities for bushgrass abundance and number of other species.
Presented trends are normalized to the mean value of one.

doi:10.1371/journal.pone.0155023.g003
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The presented example of the application of the proposed concept of stability evaluation in
datasets of a given type is a simple one with an unambiguous, easily substantiated result. It is
obvious why the highest probability of NE occurrence results in the maximum occurrence of
other species (in the situation without interference C-uncut) compared with the maximum
abundance of C. epigejos (in NPK-cut) with the degree of equilibrium being low. The factor
that determines the resulting distribution of the degree of equilibrium is NE occurrence in pure
formal strategies for the given set of payoff values (Table 1). It is understandable from the ini-
tial payoff values that the abundance of C. epigejos achieves relatively higher values in a situa-
tion that includes the maximum occurrence of other species (i.e., C-uncut). Among the eight
other situations, five display a lower abundance value of C. epigejos than occurs in situation C-
uncut. Thus, the probability of finding NE in purely formal strategies for the situation of the
maximum occurrence of other species (i.e., C-uncut) in any permutation of symmetrical game
matrix 3 × 3 is 20:56 (0.36), which agrees with the obtained result (Fig 2) (this outcome also
includes the lesser NE frequency that results from mixed formal strategies). In contrast, the sit-
uation with the maximum abundance of C. epigejos (i.e., NPK-cut) includes the smallest num-
ber of other species of all nine situations. Thus, the probability of NE occurrence in pure
formal strategies is zero for this situation, which is documented by the results presented in
Table 1.

Of course, the proposed procedure of stability evaluation in the system represented by the
determined payoff values N of interacting subjects in K situations can be used to evaluate more
complex interactions than those included in the presented example. For example, the proce-
dure may be applied to interactions of more subjects with an ambiguous probability preference
of equilibrium maxima. In such cases, the obtained stability distribution can be predominantly
determined by NE found in mixed formal strategies, and thus, the values of NE probability will
be more clearly different for the interacting subjects of the individual situations. Naturally, sta-
bility distribution is not required to correlate in individual subjects with their initial payoff
values.

The significant feature of the proposed concept is that the result—the evaluation of the
degree of stability based on the NE principle—is guaranteed for an arbitrarily complex interac-
tive system. Every permutation of the derived matrix of any dimension N can be considered to
be a payoff table of a game that has at least one NE. The full statistical set of NE occurrence in
the permutations of the game matrix is always available for the evaluation of the distribution of
the degree of stability.

The proposed approach is only based on the comparison of measurable or observable values
of quantitative parameters without the inclusion of specific internal factors that determine the
complex behavior of the ecosystem. The interpretation of a larger probability of NE occurrence
as a higher stability of ecological interaction is an assumption that often is not applicable. In
addition, the degree of stability defined in this way is only relative. It is larger or smaller only
compared with the results obtained for other evaluated situations.

However, approaches based on game theory and NE application are often used in ecology,
particularly in evolutionary ecology, as noted in the introduction. The proposed concept, which
is exclusively derived from the stochastic game model, can have its foundation in the context of
frequent exploitation of game theory principles for solving ecological problems. Out of all of the
supposed applications of varying complexity, the use of proposed approach can be demonstrated
on general numerical example of two species observed at four sampling sites, cited in the intro-
duction [35]. It is a very simple example of a multidimensional quantitative data set. The statisti-
cal evaluation primarily leads to the covariance matrix and the result is an information on the
degree of similarity or differences of descriptors of behavior in the set of selected sites. Our pro-
posed model assesses the situation in a completely different way. The result shows the
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distribution of degrees of stability of the descriptors in the set of individual sites. We assume,
therefore, that we are able to determine more stable and less stable sites (Fig 4).

Relative ecological stability could be evaluated in this way, particularly through the applica-
tion of our approach to more extensive datasets that reflect, e.g., the ecological parameters of a
larger number of landscape elements. In addition, the evaluation of NE probability of occur-
rence could suitably complement the standard statistical analysis of data of this type. The pro-
posed concept of using NE to solve settings formalized in the Pareto optimality scheme is
surely applicable in many contexts including multicriteria analysis of complex ecological and
other systems.
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