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    Introduction 
 The control of apoptosis is governed largely by interactions be-

tween the prosurvival and prodeath members of the Bcl-2 pro-

tein family ( Cory et al., 2003 ). The process is initiated when the 

proapoptotic Bcl-2 homology 3 (BH3) – only proteins dock their 

 � -helical BH3 domains into a hydrophobic groove on their 

prosurvival targets (Bcl-2, Bcl-x L , Bcl-w, Mcl-1, and A1;  Petros 

et al., 2000; Liu et al., 2003 ;  Czabotar et al., 2007 ). This binding 

event results in activation of the essential death mediators Bax 

and Bak, thereby committing cells to apoptosis ( Cheng et al., 2001 ; 

 Zong et al., 2001; Willis and Adams, 2005 ). 

 It has recently become apparent that many BH3-only pro-

teins show preferential binding to their prosurvival Bcl-2 – like 

targets, the selective interactions being a central feature of apop-

totic regulation ( Chen et al., 2005 ;  Kuwana et al., 2005 ;  Willis et al., 

2005, 2007; Certo et al., 2006 ;  Kim et al., 2006 ). Although certain 

BH3-only proteins such as Bim and Puma bind to all prosurvival 

proteins tightly, others only bind to certain subsets: Bad engages 

Bcl-2, Bcl-x L , and Bcl-w tightly, whereas Noxa preferentially 

binds to Mcl-1 and A1. The molecular basis that underpins this 

selectivity is currently unclear despite the availability of several 

structures of BH3 domain – prosurvival protein complexes ( Sattler 

et al., 1997; Petros et al., 2000 ;  Liu et al., 2003 ;  Czabotar et al., 

2007 ). Such information will probably be invaluable for the design 

of ligands (including small-molecule BH3 mimetic compounds) 

that are highly specifi c. These ligands will be useful for probing 

aspects of apoptotic regulation controlled by the Bcl-2 pathway 

and may also provide clues for the development of drugs that 

target particular prosurvival proteins overexpressed within tumors. 

Highly specifi c, tailored therapies may have fewer side effects 

than those that act on a broad range of targets. 

 A promising BH3 mimetic anticancer drug is ABT-737 

( Oltersdorf et al., 2005 ). Although ABT-737 causes the regression 

of some tumors in mouse xenograft models ( Oltersdorf et al., 

2005 ), its effi cacy as a single agent against many cancers is lim-

ited because it only binds to Bcl-2, Bcl-x L , and Bcl-w with high 

affi nity but not to Mcl-1 ( van Delft et al., 2006 ). As inactivating 

Mcl-1 is critical for cell death to proceed ( Chen et al., 2005 ), 

strategies that target Mcl-1 sensitize many cell types to ABT-737 

( Konopleva et al., 2006 ;  van Delft et al., 2006; Chauhan et al., 2007 ; 

 L
ike Bcl-2, Mcl-1 is an important survival factor for 

many cancers, its expression contributing to chemo-

resistance and disease relapse. However, unlike other 

prosurvival Bcl-2 – like proteins, Mcl-1 stability is acutely 

regulated. For example, the Bcl-2 homology 3 (BH3) – only 

protein Noxa, which preferentially binds to Mcl-1, also 

targets it for proteasomal degradation. In this paper, we 

describe the discovery and characterization of a novel 

BH3-like ligand derived from Bim, Bim S 2A, which is highly 

selective for Mcl-1. Unlike Noxa, Bim S 2A is unable to trigger 

Mcl-1 degradation, yet, like Noxa, Bim S 2A promotes cell 

killing only when Bcl-x L  is absent or neutralized. Furthermore, 

killing by endogenous Bim is not associated with Mcl-1 

degradation. Thus, functional inactivation of Mcl-1 does 

not always require its elimination. Rather, it can be effi -

ciently antagonized by a BH3-like ligand tightly engaging 

its binding groove, which is confi rmed here with a struc-

tural study. Our data have important implications for the 

discovery of compounds that might kill cells whose sur-

vival depends on Mcl-1.

 A novel BH3 ligand that selectively targets Mcl-1 
reveals that apoptosis can proceed without 
Mcl-1 degradation 
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detectable levels in our assay, whereas two others (L62A and F69A) 

had partial effects, reducing the affi nity of BimBH3 for Bcl-x L  

and Bcl-w 18 – 45-fold. In contrast, the interactions of these mu-

tants with Bcl-2 differed in two respects ( Fig. 1 B ). The L62A 

mutant had a greater impact, whereas F69A decreased Bcl-2 

binding only by twofold, which is in contrast to the greater loss 

seen for its binding to Bcl-x L  or Bcl-w. 

 The most striking difference was observed with Mcl-1 

( Fig. 1 C ). Only the G66E and D67A mutants had signifi cant 

 effects (28-fold and ninefold decreases, respectively) on Mcl-1 

binding. Therefore, Mcl-1 is more tolerant of mutations in Bim, as 

no signifi cant effects were observed with mutations (A59E, L62A, 

and F69A) that drastically affected binding to Bcl-x L , Bcl-w, or 

Bcl-2 ( Figs. 1, A – C;  and S1 A). Together, these results  illustrate 

differences in the way Bim engages the various prosurvival pro-

teins and highlights the unique nature of Bim binding to Mcl-1. 

 Binding of phage-displayed peptides 
predicts the association of intact proteins 
in cells 
 As the alanine scanning data ( Fig. 1, A – C ) refl ects the binding 

of an isolated BH3 domain expressed on phage particles to 

C-terminally truncated recombinant proteins, we next tested sev eral 

full-length BimBH3 domain mutants for their ability to interact 

with full-length prosurvival proteins in mammalian cells to deter-

mine the potential physiological relevance of these results. 

In all cases, we observed a close correlation between in vitro 

binding ( Fig. 1, A – C ) and the ability of full-length Bim S  to interact 

with prosurvival proteins in cells ( Fig. 1, D – F ). 

 For example, BimBH3 mutants that adversely affected 

Bcl-x L  binding (i.e., A59E, L62A, G66E, D67A, and F69A; 

 Fig. 1 A ) had reduced ability to associate with wild-type Bcl-x L  

when introduced into full-length Bim S  ( Fig. 1 D ). Similar obser-

vations were obtained with Bcl-2 ( Fig. 1,  compare  B with E ). 

In this case, the Bim S F69A mutant retained Bcl-2 binding ( Fig. 1 E ), 

which is consistent with the small (twofold) decrease seen with 

the phage-displayed mutant ( Fig. 1 B ). Finally, Mcl-1 bound to 

Bim S A59E, L62A, and F69A but not to any signifi cant extent to 

G66E or D67A ( Fig. 1 F ), which is in agreement with the phage 

data ( Fig. 1 C ). 

 An Mcl-1 – specifi c Bim variant 
 The distinct binding profi le of BimBH3 mutants for Mcl-1 ( Fig. 1 ) 

suggested that it might be possible to target it specifi cally be-

cause two residues, L62 and F69, are important for binding 

Bcl-x L , Bcl-w, or Bcl-2 ( Figs. 1, A and B;  and S1 A) but not Mcl-1 

( Fig. 1 C ). Initial experiments with a phage-displayed BimBH3 

L62A/F69A double mutant showed tight binding only to Mcl-1 

(unpublished data). To accurately quantify its affi nity, we tested 

a synthetic peptide harboring both mutations (hereafter referred 

to as BimBH3 2A) in solution competition assays using an optical 

biosensor. At peptide concentrations up to 10  � M, no binding to 

Bcl-x L , Bcl-w, or Bcl-2 was detected, and affi nity for A1 was also 

reduced ( Fig. 2 A ). However, consistent with the phage experi-

ments, its affi nity for Mcl-1 was indistinguishable from the wild-

type peptide. Binding selectivity with full-length proteins was 

confi rmed in cells, as Bim S 2A (i.e., full-length Bim S  containing 

 Chen et al., 2007 ;  Lin et al., 2007 ). Physiologically, the elimination 

of Mcl-1 in response to cytotoxic signals is also thought to be a crit-

ical step in cell death ( Craig, 2002 ;  Cuconati et al., 2003 ;  Nijhawan 

et al., 2003 ;  Willis et al., 2005; Brunelle et al., 2007 ). Thus, small-

molecule drugs that specifi cally target Mcl-1, which are yet to be de -

veloped, may prove useful to complement the activity of ABT-737. 

However, it is currently not determined whether such molecules 

also need to target Mcl-1 for degradation to be effective. 

 To gain insight into the molecular basis of BH3 domain 

selectivity, we performed an extensive structure-function study 

to identify the functional epitopes on the promiscuous binding 

BH3 domain from Bim. Unexpectedly, this analysis enabled the 

design of a novel BimBH3 variant highly specifi c for Mcl-1 that 

enabled us to investigate the requirements for the neutralization 

of Mcl-1 prosurvival activity. Our data demonstrate that degra-

dation is not essential for Mcl-1 antagonism and that ligands 

that merely engage its hydrophobic groove with high affi nity 

are suffi cient. Consistent with this fi nding, we also demonstrate 

that apoptotic stimuli that result in the induction of endogenous 

Bim kill cells without eliminating Mcl-1, which is in contrast to 

DNA-damaging and certain other stimuli. In addition, our bio-

chemical and structural analyses provide new insights into how 

BH3 ligands engage their targets. 

 Results 
 Alanine-scanning mutagenesis reveals the 
unique way Bim engages Mcl-1 
 We postulated that identifying the determinants on BH3 do-

mains for binding prosurvival proteins would provide clues for 

the design of variants with novel selectivity profi les. Previously, 

we have demonstrated that phage display could be applied to 

studying interactions between BH3 domains and prosurvival 

proteins ( Kvansakul et al., 2007 ;  Lee et al., 2007 ). In one study, 

a 26-residue peptide encompassing the BimBH3 domain was 

expressed on M13 phage as a fusion to the minor coat protein 

encoded by  gene 3  ( Sidhu et al., 2000 ) and was found to bind to 

four prosurvival proteins with IC 50  values that closely matched 

those obtained with synthetic peptides ( Lee et al., 2007 ), as 

measured in solution competition assays using the optical bio-

sensor ( Chen et al., 2005 ) or by isothermal titration calorimetry 

(ITC; unpublished data). In this study, we have mutated every 

amino acid residue within the 26-residue sequence to alanine 

except for wild-type alanine or glycine, which were instead 

replaced with glutamic acid. The sequences also had a FLAG 

epitope fused to their N terminus to ensure that all mutants 

expressed comparably in binding assays with an anti-FLAG 

antibody. Indeed, very similar expression levels were observed 

for all mutants (unpublished data), allowing us to proceed with a 

detailed analysis of prosurvival protein binding. 

 Signifi cant differences were observed in the effect of 

BimBH3 mutations on binding to different prosurvival proteins. 

Bcl-x L  and Bcl-w binding were comparably affected, with the 

same fi ve BimBH3 mutations signifi cantly affecting the inter-

actions ( Fig. 1 A  and Fig. S1 A, available at http://www.jcb.org/

cgi/content/full/jcb.200708096/DC1). Three mutations (A59E, 

G66E, and D67A) reduced binding to Bcl-x L  or Bcl-w below 
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we further anticipated that Bad should also complement Bim S 2A. 

Indeed, potent killing was observed with this combination ( Figs. 2 C  

and S2 A). Our recent experiments ( Willis et al., 2005 ) also 

suggest that only Mcl-1 and Bcl-x L  have to be inactivated for 

Bak-mediated apoptosis. Therefore, in cells that express Bak but 

are defi cient in Bcl-x L , only Mcl-1 needs to be targeted for cell 

death ( Chen et al., 2005 ). Accordingly, killing of Bcl-x L  –  defi cient 

MEFs by Bim S 2A was observed ( Figs. 2 D  and S2 B), which 

is comparable with killing by a Bim S  variant with a Noxa BH3 

domain replacement that makes it relatively selective for Mcl-1 

( Chen et al., 2005 ;  Willis et al., 2005 ). No killing of Mcl-1 –

  defi cient MEFs by Bim S 2A was observed, supporting its spec-

ifi city for Mcl-1. 

the L62A/F69A mutations) bound to Mcl-1 like its wild-type 

parent but not to Bcl-x L  ( Fig. 2 B ). 

 As Bim S 2A was derived from a promiscuously binding 

BH3-only protein, it was essential to test whether its biological 

action matches the binding profi le. Because deletion or inactiva-

tion of Mcl-1 alone, such as that seen with the BH3-only protein 

Noxa, is not suffi cient to kill mouse embryonic fi broblasts (MEFs; 

 Chen et al., 2005 ;  Chen et al., 2007 ), we anticipated that Bim S 2A 

would be inert, and, as expected, its high level expression was 

 tolerated in long-term assays ( Fig. 2 C  and Fig. S2 A, available at 

http://www.jcb.org/cgi/content/full/jcb.200708096/DC1). Because 

Bad (which targets Bcl-x L , Bcl-w, and Bcl-2) cooperates with 

Noxa (targeting Mcl-1) for killing cells ( Chen et al., 2005 ), 

 Figure 1.    Identifying residues in the BH3 region of Bim critical for binding prosurvival Bcl-2 proteins.  (A – C) Individual residues on the phage-displayed 
BimBH3 (amino acids 51 – 76 of human Bim S ) were mutated to alanine except for native alanine or glycine, which were replaced instead with glutamic 
acid. Their affi nities (in IC 50 ) for Bcl-x L  (A), Bcl-2 (B), and Mcl-1 (C) were determined by solution competition ELISAs ( Kvansakul et al., 2007 ;  Lee et al., 
2007 ). The data represent the IC 50  (left) and fold reduction in binding compared with wild-type BimBH3 (right). The upper limits on the y axes were set to 
1,000 nM (left) or at least a 40-fold reduction based on the IC 50  of a nonbinding mutant (G66E) independently confi rmed in solution competition assays 
using an optical biosensor ( Chen et al., 2005 ). (D – F) Validation of in vitro binding assays. Interactions between FLAG-tagged prosurvival Bcl-x L  (D), 
Bcl-2 (E), or Mcl-1 (F; black arrowheads) and HA-tagged Bim S  or selected BH3 mutants of it (white arrowheads) were assessed by coimmunoprecipitation. 
Equivalent  35 S-labeled lysates harvested from transiently transfected 293T cells were immunoprecipitated with antibodies to the FLAG (FL), HA, or control 
(C) tags. Wild-type Bim S  or mutants that bound with wild-type affi nities (in A – C) to the prosurvival proteins are indicated by boxes. A nonbinding Bim S  
mutant (Bim S 4E;  Chen et al., 2005 ) served as a negative control. Data in A – C represent means  ±  SD (error bars) of three experiments; those in D – F are 
from representative experiments.   
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 Figure 2.    Characterization of a novel Mcl-1 – specifi c Bim variant.  (A) A BimBH3 mutant that retains signifi cant binding only to Mcl-1. The relative affi nities 
of wild-type or the BimBH3 mutant 2A (L62A/F69A) peptides for prosurvival proteins were determined in solution competition assays using an optical 
biosensor. Compared with the wild-type sequence, the mutant 2A has reduced affi nity for all prosurvival proteins except for Mcl-1. (B) Full-length Bim S 2A 
(top) interacts with Mcl-1 in cells (right), but, unlike wild-type Bim S  (bottom), it does not bind Bcl-x L  (left), which is consistent with the in vitro binding assays 
using purifi ed components (A). Prosurvival proteins are indicated by black arrowheads, and Bim S /Bim S 2A is indicated by white arrowheads. (C) Functional 
cooperation between the Mcl-1 – specifi c Bim S 2A variant and Bad. Stable pools of wild-type MEFs were generated by hygromycin selection after retroviral 
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Noxa (Bim S NoxaBH3; both of which cause Mcl-1 degradation 

when overexpressed in cells) to cooperate with ABT-737 to kill 

cells. As shown previously, ABT-737 is a Bad BH3 mimetic 

(targeting Bcl-x L , Bcl-2, and Bcl-w) and, therefore, is unable to 

kill many cells, including MEFs, on its own ( Fig. 4 A ;  Chen 

et al., 2005 ;  Oltersdorf et al., 2005 ;  Willis et al., 2005;  Konopleva 

et al., 2006 ;  van Delft et al., 2006 ;  Lin et al., 2007 ). However, 

when combined with strategies that reduced Mcl-1 levels, ABT-737 

is a very potent killer ( Konopleva et al., 2006 ;  van Delft et al., 

2006; Lin et al., 2007 ;  Trudel et al., 2007 ). By performing a dose-

response experiment with ABT-737 on cells expressing either 

Bim S 2A or Noxa/Bim S NoxaBH3, we observed that Bim S 2A 

is just as effective at sensitizing cells to the killing  activity of 

ABT-737 as ligands that also cause Mcl-1 degradation ( Fig. 4 A ). 

Furthermore, the kinetics of killing with a fi xed concentration 

of ABT-737 are very similar, with maximal cell death observed 

within 4 – 6 h after treatment with ABT-737 regardless of whether 

Mcl-1 was degraded or not ( Fig. 4 B ). 

 As Bax/Bak-dependent cytochrome  c  release is a hallmark 

of apoptosis, this was used as a marker of the ability of Bim S 2A 

to sensitize MEFs to ABT-737 in vitro. No cytochrome  c  release 

was observed from mitochondria derived from Bim S 4E-express-

ing cells (or  bax   �  /  �   bak   �  /  �     MEFs expressing either Bim S 4E or 

Bim S 2A) in response to ABT-737, but signifi cant release was 

seen with mitochondria from Bim S 2A-expressing cells ( Fig. 4 C ). 

Previously, the Noxa/ABT-737 combination was shown to 

kill MEFs via both Bax or Bak ( van Delft et al., 2006 ). Similarly, 

the Bim S 2A/ABT-737 combination was able to kill both  bax   �  /  �     
and  bak   �  /  �     MEFs ( Fig. 4 D ) but not  bax   �  /  �   bak   �  /  �     MEFs (not 

depicted), demonstrating that Mcl-1 degradation is not required 

for either Bak- or Bax-mediated cell death. The clear-cut results 

with cells expressing only Bax or Bak prove genetically that ei-

ther can function to mediate killing triggered by the Bim S 2A/

ABT-737 combination. 

 As shown, Bim S 2A is unable to directly engage Bax or 

Bak ( Fig. 2, E and F ); nevertheless, it may be exerting its pro-

apoptotic activity by acting as a sensitizer BH3-only protein, 

releasing activator BH3-only proteins (such as Bim and/or Bid) 

sequestered by prosurvival proteins ( Letai et al., 2002; Kuwana 

et al., 2005 ;  Certo et al., 2006 ). This did not appear to be the 

case, however, as Bim S 2A and ABT-737 (or Bim S BadBH3) 

were able to synergize and kill MEFs lacking both of the puta-

tive direct activators, Bim and Bid ( Fig. 4 D  and Fig. S3, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200708096/DC1). 

This suggests that the killing observed with this combination is 

caused by an indirect mechanism of Bax/Bak activation whereby 

multiple prosurvival proteins are neutralized ( Willis et al., 2005, 

2007 ) but not necessarily degraded (in the case of Mcl-1). 

 Importantly, unlike wild-type Bim S , Bim S 2A was unable 

to bind to Bax in immunoprecipitation experiments ( Fig. 2 E ), 

nor was any interaction between Bak and Bim S  or Bim S 2A de-

tected ( Fig. 2 F ). Therefore, collectively, these data suggest that 

this novel Mcl-1 – specifi c Bim variant neutralizes only one Bcl-2 

family member, Mcl-1, and can cause killing, provided Bcl-x L  

is also inactivated. 

 The Mcl-1 – specifi c ligand Bim S 2A 
stabilizes Mcl-1 
 Although the expression of Noxa causes the degradation of Mcl-1 

( Willis et al., 2005; Czabotar et al., 2007 ), neither Bim S  nor 

Bim S 2A caused any reduction in basal Mcl-1 levels ( Fig. 3 A ). 

Instead, basal levels of Mcl-1 appear to be stabilized in Bim S - or 

Bim S 2A-expressing cells. This apparent stabilization may be 

caused by the Bim S  ligand – inhibiting binding of the BH3 domain –

 containing E3 ubiquitin ligase, Mule, which appears to be im-

portant for regulating basal levels of Mcl-1 by targeting it for 

proteasomal degradation ( Zhong et al., 2005 ). 

 This prompted us to examine the possibility that Bim S 2A 

could act as a specifi c inhibitor of Mcl-1 degradation. As both 

Noxa and Bim bind within the same hydrophobic groove on 

Mcl-1 ( Czabotar et al., 2007 ), it would be predicted that Bim S 2A 

could compete with Noxa for Mcl-1 binding, thereby blocking 

the degradation triggered by Noxa. Indeed, our data support this 

hypothesis, as the enforced expression of Bim S 2A in cells sta-

bly expressing Noxa results in higher levels of Mcl-1 compared 

with Noxa-expressing cells, in which the inert Bim S  variant 

Bim S 4E was expressed ( Fig. 3 B ). The reintroduction of Noxa 

does not lead to a further signifi cant decrease in Mcl-1 levels, 

suggesting that Noxa is not at limiting concentrations in these 

cells ( Fig. 3 B ). The ability of Bim S 2A to out-compete Noxa is 

supported by ITC analysis that shows that the actual dissocia-

tion constant of BimBH3 2A peptide binding to Mcl-1 is nine-

fold tighter than NoxaBH3 ( Fig. 3 C ). 

 Mcl-1 neutralization is as effective as 
degradation for cell killing 
 As the killing activity of Bim S 2A is not associated with Mcl-1 

degradation (unlike Noxa), it provided an excellent reagent to 

address the question of whether ligands that simply engage the 

binding groove on Mcl-1 but do not also target it for degrada-

tion are as effective at killing cells as those that function more 

like Noxa. This has important consequences for the develop-

ment of small-molecule drugs targeting Mcl-1, as these will 

most likely work in a manner like Bim S 2A. 

 Therefore, we compared the ability of Bim S 2A with that 

of Noxa or Bim S  with its BH3 domain replaced with that from 

 infection with the parental pMIH vector or one expressing the full-length Mcl-1 – specifi c Bim S 2A mutant. Long-term colony formation was assessed when 
these pools were reinfected with the control pMIG retrovirus or one expressing Bim S BadBH3 (a Bim S  variant with its BH3 replaced with that of Bad;  Chen 
et al., 2005 ). Bim S 2A was inert on its own, but there was a striking reduction in colonies formed if Bim S BadBH3, which targets the prosurvival proteins 
(Bcl-x L , Bcl-2, and Bcl-w) that Bim S 2A does not bind, is coexpressed. (D) The Mcl-1 – specifi c BH3 ligands, full-length Bim S NoxaBH3 or Bim S 2A, potently kill 
only when Bcl-x L  is absent, whereas Bim S BadBH3 only kills the cells defi cient in Mcl-1. Cell viability was assessed 24 h after infection with the indicated 
retroviruses. (E) HA-tagged wild-type Bim S  but neither the Bim S 2A nor the inert Bim S  mutant (Bim S 4E) coimmunoprecipitated with endogenous Bax. 
(F) FLAG-tagged Bak (middle) coimmunoprecipitates with HA-tagged Bcl-x L  and Mcl-1 but not with HA-tagged Bim S 4E, Bim S , or Bim S 2A (top). Asterisks are 
the remnant signals from reprobing of the FLAG immunoprecipitation (top) with the FLAG antibody. Data in D represent means  ±  SD (error bars) of at least 
three experiments; those in A – C, E, and F) are from representative experiments. WCL, whole cell lysate.   
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 Long-term neutralization of Mcl-1 is not 
well tolerated 
 Although the expression of Bim S 2A and Noxa appears to be tol-

erated in cell lines that express them under antibiotic selection 

pressure, we next examined the effect of long-term neutralization 

on an unselected population of cells. Thus, we infected wild-type 

or  bax   �  /  �   bak   �  /  �     MEFs with retroviruses in which the expression 

of Bim S 2A, Noxa, Bad, or Bim S 4E was linked to GFP expression 

through an internal ribosome entry site (IRES). The population 

of viable cells (propidium iodide negative) that remained GFP +ve  

was then monitored over a period of  � 40 d. Essentially,  > 90% of 

all cells remained GFP +ve  regardless of the construct expressed 

in the  bax   �  /  �   bak   �  /  �     MEFs ( Fig. 5 B ). Similarly, wild-type MEFs 

 Finally, to see whether some of the aforementioned obser-

vations could be made for cells other than MEFs, we also ex-

pressed Bim S 2A in FDC-P1 myelomonocytic cells. Consistent 

with the results for MEFs, these cells did not die in response to 

ABT-737 alone but were killed in response to ABT-737 after 

the enforced expression of Bim S 2A (Fig. S4, available at http://

www.jcb.org/cgi/content/full/jcb.200708096/DC1). 

 The aforementioned results demonstrate that cells previ-

ously resistant to ABT-737 can be sensitized when treated in 

combination with ligands that neutralize but not necessarily de-

grade Mcl-1. Therefore, we envisage that small-molecule drugs 

targeting Mcl-1 should only need to engage the hydrophobic 

groove, as targeting the protein for destruction is not required. 

 Figure 3.    The Mcl-1 – specifi c Bim variant does not trigger Mcl-1 
degradation.  (A) Immunoblots of equivalent lysates prepared from 
MEFs after infection with parental retroviral vector or ones express-
ing wild-type Bim S , Bim S 4E, Bim S 2A, Bim S NoxaBH3, or Noxa itself 
were probed with antibodies to Mcl-1 (top), Bcl-2 (middle), or HSP70 
(loading control; bottom). Levels of Mcl-1 were signifi cantly lower if 
Noxa or Bim S NoxaBH3 (Bim S  with its BH3 domain replaced with 
that from Noxa) is expressed. In contrast, the Mcl-1 – specifi c Bim S 2A 
variant stabilizes Mcl-1 levels. The images were assembled and 
cropped from a single gel. (B) Bim S 2A counters Mcl-1 degradation 
triggered by Noxa. Equivalent lysates were prepared from Noxa- or 
Bim S 4E-overexpressing MEFs after reinfection with the inert Bim S 4E, 
Noxa, or Bim S 2A retroviruses, and the blots were probed for Mcl-1 
or HSP70 (loading control). Note that Mcl-1 levels are signifi cantly 
higher in cells expressing the Mcl-1 – specifi c Bim S 2A. (C) ITC analysis 
of BimBH3 2A and NoxaBH3 binding to Mcl-1. BimBH3 2A binds to 
Mcl-1 tighter than NoxaBH3.   
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 hydrophobic residues that partly defi ne the BH3 domain sequence 

motif are important for engaging their prosurvival counterparts, 

as they are usually buried within hydrophobic pockets along the 

prosurvival protein-binding groove. Thus, an outstanding ques-

tion regarding the Bim S 2A mutant is how it engages Mcl-1 given 

that two of the defi ning features of a BH3 domain (the leucine at 

position h2 and a large hydrophobic residue at h4) are absent 

( Fig. 6 A ). Therefore, we determined the crystal structure of a 

BimBH3 2A 26-mer synthetic peptide in complex with a human/

mouse Mcl-1 chimera (hMcl-1) to 2.0- Å  resolution and compared 

it with the wild-type BimBH3 – hMcl-1 complex ( Czabotar et al., 

2007 ). This chimeric Mcl-1 had a very similar BimBH3 alanine 

scan binding profi le (Fig. S1 B) to the mouse Mcl-1 used in 

the aforementioned studies ( Fig. 1 C ). The crystals grew in 

 expressing the inert Bim S 4E or Bad remained mostly ( > 80%) 

GFP +ve  ( Fig. 5 A ). However, in cells in which Mcl-1 was neutral-

ized by the enforced expression of either Noxa or Bim S 2A, there 

was a progressive loss of GFP +ve  cells over the time period, with 

the loss somewhat more rapid in the Bim S 2A cells ( Fig. 5 A ). 

These data suggest that long-term neutralization of just Mcl-1 

may not be well tolerated. 

 Mcl-1 binds BimBH3 2A similarly to 
wild-type BimBH3 
 Analysis of the three-dimensional structures of various BH3 do-

main peptides in complex with prosurvival proteins (including 

BimBH3 – Mcl-1;  Sattler et al., 1997; Petros et al., 2000 ;  Liu et al., 

2003 ;  Czabotar et al., 2007 ) suggests that the four conserved 

 Figure 4.    Bim S 2A effi ciently inactivates Mcl-1 to induce cell killing.  (A) Bim S 2A sensitizes cells to ABT-737, a BadBH3 mimetic. The viability of MEFs 
stably infected with the vector control or ones expressing Bim S 2A, Bim S NoxaBH3, or Noxa was determined 24 h after treatment with 0 – 10  � M ABT-737. 
Although ABT-737, which targets Bcl-x L , Bcl-2, and Bcl-w, was inert on its own, the three Mcl-1 – selective BH3-only proteins were equipotent at cooperat-
ing with ABT-737 to effi ciently kill cells. (B) The kinetics of killing with 1  � M ABT-737 were comparable regardless of whether Mcl-1 was degraded (with 
Noxa or Bim S NoxaBH3) or neutralized (with Bim S 2A). (C) Bim S 2A promotes Bax/Bak-mediated cytochrome  c  release only when combined with ABT-737. 
Equivalent lysates prepared from wild-type (top) or  bax   �  /  �   bak   �  /  �     (bottom) MEFs stably expressing the inert Bim S 4E or the Mcl-1 – specifi c Bim S 2A were 
fractionated after incubation in vitro with 5  � M ABT-737 (+). Only the combination of Bim S 2A and ABT-737 caused cytochrome  c  release, which was 
abrogated in the absence of Bax and Bak (bottom). Blots for Bcl-2 (pellet fraction; p) and Apaf-1 (soluble fraction; s) served as markers for the  subcellular 
fractionation. (D) Only when combined with ABT-737 does the Mcl-1 – specifi c Bim S 2A kill cells, either through Bax or Bak without the need for the putative 
activator BH3-only proteins (Bim and Bid). Data in A, B, and D are means  ±  SD (error bars) of at least three experiments, whereas C is from a representa-
tive experiment.   



JCB • VOLUME 180 • NUMBER 2 • 2008 348 

 Binding energy hotspots in the BimBH3 2A –
 Mcl-1 complex 
 The aforementioned structure demonstrates that even peptides 

without a canonical BH3 sequence can still bind within the 

hydrophobic groove on Mcl-1 with high affi nity. However, it does 

not clarify the sites on the mutant peptide that are critical for the 

 interaction. Therefore, we performed additional site-directed muta-

genesis, this time using BimBH3 2A as the template sequence. 

 The crystal structure indicated several potentially impor-

tant interacting amino acids on BimBH3 2A, particularly the 

 hydrophobic residues at the h1 and h3 positions (I58 and I65, 

 respectively;  Fig. 6 A ). Indeed, simultaneous replacement of 

all four conserved hydrophobic residues (h1 – h4) caused a total 

loss of detectable binding, although, remarkably, replacement of 

h1 (I58) with alanine in combination with the L62A/F69A muta-

tions had no discernable effect on the interaction as measured 

either in a competition ELISA ( Fig. 6 F ) or by ITC using a mu-

tant synthetic peptide (not depicted). However, mutation of the 

h3 site (I65) to alanine in the L62A/F69A peptide ablated bind-

ing ( Fig. 6 F ). This demonstrates that just a single large hydro-

phobic residue (I65) within BimBH3 2A is required for a high 

affi nity interaction with Mcl-1. Interestingly, this h3 position is 

also important in the context of the L62A single mutation ( Fig. 6 F ). 

However, essentially no effect was observed when I65 was mu-

tated on its own (Fig. S1 B) or in combination with F69 ( Fig. 6 F ). 

Evidently, the small changes observed in Mcl-1 in the L62A re-

gion of the mutant complex are incompatible with maintaining 

wild-type binding affi nity for the L62A/I65A combination. In con-

trast, the accommodating changes in Mcl-1 around the F69A site 

did not have a comparable knock-on effect. These results pro-

vide an example of the sensitivity of interactions between BH3 

domains and prosurvival proteins, with minor structural altera-

tions in the receptor affecting the contribution of a single amino 

acid residue on the ligand to the binding affi nity. 

 Bim-induced apoptosis does not necessarily 
result in degradation of Mcl-1 
 Our biochemical and cellular studies with Bim variants in vitro 

suggest that Bim can effi ciently inactivate Mcl-1 without its 

 degradation ( Figs. 2 – 4 ). However, as Mcl-1 degradation ap-

pears to be required for, or at least associated with, apoptosis 

caused by diverse stimuli ( Cuconati et al., 2003 ;  Nijhawan et al., 

2003 ;  Opferman, 2006 ), we were prompted to further investigate 

the physiological requirement for Mcl-1 degradation in Bim-

 induced apoptosis. As Bim is the primary BH3-only protein 

 induced by calcium fl ux ( Cante-Barrett et al., 2006 ), various 

apoptotic agents (e.g., thapsigargin and ionomycin) that elevate 

intracellular Ca 2+  concentrations were used to specifi cally ad-

dress this question. 

 Signifi cant cell death was observed when wild-type breast 

epithelial carcinoma MCF-7 cells were treated with thapsigargin 

( Fig. 7 A ), presumably as a result of the induction of the endog-

enous Bim isoforms ( Fig. 7 B  and Fig. S5, available at http://

www.jcb.org/cgi/content/full/jcb.200708096/DC1;  Puthalakath 

et al., 2007 ), as the same cells in which Bim expression was re-

duced by short hairpin RNA (shRNA;  Fig. 7 B ) were relatively 

insensitive to this death stimulus ( Fig. 7 A ). Importantly, levels of 

identical conditions to the wild-type BimBH3 – Mcl-1 complex 

and had similar unit cell dimensions (Table S1; avail able at http://

www.jcb.org/cgi/content/full/jcb.200708096/DC1;  Czabotar 

et al., 2007 ). 

 Surprisingly, the BimBH3 2A peptide binds to Mcl-1 in 

an almost identical fashion to the wild-type peptide ( Fig. 6 B ). 

Only minor differences were observed in the orientations of 

side chains on Mcl-1 close to the sites of the mutations in the 

BimBH3 2A peptide. For example, the side chains of F228 and 

M231, which form part of the h2 binding pocket, have moved 

slightly so as to fi ll the void introduced by the L62A substitu-

tion ( Fig. 6 C ). Similar subtle reorientations of the side chains 

of V216 and V220 on Mcl-1 in the vicinity of the F69A mutation 

were also observed ( Fig. 6 D ). The only differences on the pep-

tide itself were in the side chains of Y72 and Y73, which now 

tilt more toward the h4 binding pocket ( Fig. 6 E ). Although the 

changes observed are small, the structures have been deter-

mined at high resolution, and the differences observed here 

are unambiguous. 

 Figure 5.    Long-term neutralization of Mcl-1 is not well tolerated.  Wild-
type MEFs (A) stably expressing Bim S 4E (black triangles), Bim S 2A (red 
circles), Noxa (blue diamonds), or Bad (green squares) were generated. 
Expression of the BH3-only proteins was linked to GFP expression through 
an IRES. Long-term expression of the inert Bim S 4E or Bad was maintained 
for nearly 40 d, as indicated by the proportion of cells that remained 
GFP +ve . In contrast, targeting Mcl-1 (either with Bim S 2A or Noxa) was 
poorly tolerated unless the downstream mediators of apoptosis (Bax and 
Bak) were absent (B).   
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 Similar results were achieved for primary thymocytes de-

rived from either wild-type or  bim   � / �   mice. Here, treatment with 

the selective calcium ionophore ionomycin causes signifi cant 

 Figure 6.    The Mcl-1 – specifi c Bim variant binds Mcl-1 like wild-type Bim.  (A) Alignment of sequences of representative BH3 domains from BH3-only proteins 
or the Mcl-1 – specifi c Bim S  variant Bim S 2A. The numbers in parentheses indicate the positions of residues in full-length proteins, and numbers in orange at 
the top indicate the positions in full-length Bim S . The four conserved hydrophobic residues are boxed (blue) and labeled as h1 – h4. Residues shaded in black 
are conserved in all proapoptotic BH3 domains. (B) Overlay of the crystal structures of human Mcl-1 (yellow) in complex with wild-type BimBH3 (orange) 
and that of human Mcl-1 (cyan) complexed with BimBH3 2A (blue). (C – E) Minor structural differences between the wild-type and mutant BimBH3 complexes 
were noted in the Mcl-1 regions proximal to L62 (C), F69 (D), and around residues Y72 and Y73 (E) in the BimBH3 peptide. (F) The effect on Mcl-1 binding 
of additional mutations (bold) in the context of the phage-displayed BimBH3 2A variant. The fold decrease in binding with respect to BimBH3 2A is shown. 
Residue I65 (position h3) but not I58 (position h1) appears critical for the binding of BimBH3 2A to Mcl-1.   

Mcl-1 were not reduced after treatment with thapsigargin, even 

after 48 h, but instead were elevated by up to twofold over levels in 

untreated cells ( Figs. 7 B  and S5). 
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Recently, ABT-737 ( Oltersdorf et al., 2005 ) was shown to be a 

bona fi de BH3 mimetic ( van Delft et al., 2006 ). However, despite its 

high affi nity for Bcl-2, Bcl-x L , and Bcl-w, ABT-737 demonstrated 

single-agent effi cacy only in malignancies with low Mcl-1 levels 

( Oltersdorf et al., 2005 ;  Konopleva et al., 2006 ;  Chauhan et al., 

2007 ;  Trudel et al., 2007 ). This observation suggested that tumors 

resistant to ABT-737 should succumb when treated in combina-

tion with agents that eliminate Mcl-1. 

 Mcl-1 is believed to be an important survival factor for 

many cancers ( Song et al., 2005 ;  Wuilleme-Toumi et al., 2005; 

Qin et al., 2006 ;  Sieghart et al., 2006 ;  Cavarretta et al., 2007 ), 

and its overexpression contributes to chemoresistance and dis-

ease relapse ( Kaufmann et al., 1998 ;  Kitada et al., 1998 ;  Saxena 

et al., 2004 ;  Wuilleme-Toumi et al., 2005 ). Importantly, strategies 

that reduce Mcl-1 levels, for example through inhibition of its 

transcription (such as with the cyclin-dependent kinase inhibitors 

Seliciclib and Flavopiridol) or translation (with the multikinase 

inhibitor BAY 43-9006), can induce apoptosis in some cancer 

death to wild-type cells but not to those defi cient in Bim ( Fig. 7 C ). 

As with thapsigargin treatment of MCF-7 cells, Mcl-1 levels did 

not signifi cantly change after treatment and, in fact, were slightly 

elevated at the earlier time point ( Fig. 7 D ). Together, these re-

sults demonstrate that Bim-induced apoptosis does not result in 

Mcl-1 degradation and can lead to the stabilization of Mcl-1 

similar to that seen after the overexpression of Bim S  ( Fig. 3 A ; 

 Czabotar et al., 2007 ). Thus, Mcl-1 degradation is not required 

for cell death in response to some apoptotic stimuli. 

 Discussion 
 Mcl-1 as a target for anticancer therapy 
 There is great interest in the development of new anticancer 

drugs that target one or more of the prosurvival Bcl-2 proteins by 

mimicking BH3 ligands ( Fesik, 2005 ;  Zhai et al., 2006 ). Such 

therapeutics may be effective in tumors with elevated prosurvival 

protein levels or with defects in the p53 pathway ( Fesik, 2005 ). 

 Figure 7.    Physiological cell death initiated by Bim does not necessarily coincide with Mcl-1 degradation.  (A) Down-regulating Bim attenuates thapsigargin-
induced apoptosis. Viability of wild-type ( � ) or an MCF-7 subclone (+) stably expressing Bim shRNA treated with 1.5  � M thapsigargin for 0 – 48 h. (B) Treatment of 
wild-type MCF-7 cells with thapsigargin induced an increase in the levels of Bim (the isoforms include Bim EL , Bim L , and Bim S ; middle) that coincided with 
the onset of apoptosis seen in A. Mcl-1 levels increase upon treatment (top). Only low levels of Bim EL  were detectable in cells stably expressing Bim shRNA, 
whereas neither the Bim L  nor Bim S  isoforms were apparent. (C) Loss of Bim attenuates ionomycin-induced killing of thymocytes. The viability of wild-type 
(+/+) or Bim-defi cient ( � / � ) thymocytes determined 0 – 24 h after treatment with 1  μ g/ml ionomycin. Incubation with 50  � M of the pancaspase inhibitor 
qVD-OPH signifi cantly reduced the killing induced by ionomycin. (D) Treatment of  bim +/+   thymocytes with ionomycin increases the levels of Bim EL  and Bim L  
after 4 h (middle), which coincided with the onset of apoptosis seen in C. There was no signifi cant concomitant loss of Mcl-1 (top). In B and D, immuno-
blots were reprobed with antibodies to HSP70 for loading control (bottom). In addition, the cells were treated with 50  � M qVD-OPH to avoid confounding 
effects caused by caspase cleavage of Mcl-1 ( Herrant et al., 2004 ). Data in A and C represent means  ±  SD (error bars) of three experiments, and B and D 
are from representative experiments.   
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of Bim S 2A blocks Mcl-1 degradation induced by the overexpres-

sion of Noxa. Consistent with its ability to bind only Mcl-1, 

Bim S 2A was inert when introduced into cells. Only when com-

bined with strategies to neutralize Bcl-x L , such as by  coexpression 

with Bad, do the cells die. Killing was also observed in the con-

stitutive absence of Bcl-x L  because the only restraint left for 

controlling Bak ( Willis et al., 2005 ), Mcl-1, is now inactivated 

by Bim S 2A. 

 Importantly, fi broblasts or myeloid cells that are refractory 

to ABT-737 as a single agent ( van Delft et al., 2006 ) become 

highly sensitive to it when Bim S 2A is expressed despite the fact 

that Mcl-1 levels are maintained or are even elevated above those 

seen in wild-type cells. These cells are as sensitive to ABT-737 as 

those expressing ligands (such as Noxa) that cause a signifi cant 

reduction in Mcl-1 levels. Therefore, our study also highlights 

the limitation of establishing Mcl-1 activity solely by determining 

its protein level because the increased Mcl-1 protein in Bim S 2A-

overexpressing cells is, in fact, functionally incompetent. Thus, 

although the absence of Mcl-1 predicts sensitivity to ABT-737 

( Konopleva et al., 2006 ;  van Delft et al., 2006; Lin et al., 2007 ), 

the presence of detectable protein does not preclude that such a 

cell could still be readily killed by ABT-737 if the available Mcl-1 is 

inactivated by associated BH3-only proteins. 

 We also showed that killing mediated by Bim S 2A with 

ABT-737 can occur via either Bax or Bak, suggesting that the 

elimination of Mcl-1 is not essential for activation of either of 

these essential cell death pathway components. In addition, our 

data are consistent with the indirect activation model of apoptosis, as 

neither direct binding to Bax and/or Bak is required ( Fig. 2, E and F ) 

nor are the activator BH3-only proteins (Bim and Bid) required, 

as cell death readily proceeds in their absence ( Fig. 4 D ). 

 Collectively, these data provide proof of principle that li-

gands specifi cally targeting Mcl-1 can be developed and do not 

necessarily need to also target Mcl-1 for degradation to be ef-

fective. Such molecules are likely to be useful for extending the 

range of cancers against which ABT-737 is effective or to treat 

cancers that are dependent on Mcl-1 for their survival. 

 Interestingly, long-term neutralization of Mcl-1 through 

the enforced expression of either Bim S 2A or Noxa appeared to 

be poorly tolerated over a (month) long time frame in fi broblasts. 

Therefore, although we and others have shown the potential of 

Mcl-1 as a target for pharmacological intervention, especially to 

potentiate the activity of ABT-737, it will be important to deter-

mine the consequences of its long-term neutralization in light of 

its central role during development ( Rinkenberger et al., 2000; 

Opferman et al., 2003, 2005 ). 

 New insights into prosurvival protein – BH3 
domain interactions 
 Structural and limited mutagenesis data suggest that the four 
 conserved hydrophobic residues in BH3 domains all appear to 

contribute to the binding free energy in interactions with pro-

survival proteins ( Sattler et al., 1997; Petros et al., 2000 ;  Liu et al., 

2003 ;  Czabotar et al., 2007 ;  Kvansakul et al., 2007 ). One of the 

key fi ndings that came out of our search for an Mcl-1 – specifi c 
 ligand was that in BimBH3 – prosurvival protein complexes, dif-

ferent subsets of these residues were critical depending on the 

cells ( Gojo et al., 2002 ;  Rahmani et al., 2005 ;  Raje et al., 2005 ; 

 Yu et al., 2005 ). Furthermore, such strategies to eliminate Mcl-1 

have been shown to sensitize cells refractory to ABT-737 ( van 

Delft et al., 2006; Chen et al., 2007 ;  Lin et al., 2007 ). However, 

these drugs may have global effects within a cell and, thus, might 

be expected to have side effects when used systemically or be 

futile in the many tumors that harbor mutations in the p53 pathway. 

Therefore, a more attractive approach may be to design a small-

molecule inhibitor that targets Mcl-1 specifi cally. 

 Targeting Mcl-1 does not require its 
degradation for cell death to proceed 
 A common view is that antagonizing the prosurvival activity of 

Mcl-1 requires its elimination from cells to initiate the apoptotic 

cascade. Indeed, in addition to the aforementioned therapeutic 

strategies, many death stimuli, including UV irradiation, viral 

infections, or anoxia, cause a rapid decrease in Mcl-1 levels that 

correlates with apoptosis ( Cuconati et al., 2003 ;  Nijhawan et al., 

2003; Brunelle et al., 2007 ). Therefore, an important question is 

whether small-molecule antagonists of Mcl-1 would also need to 

target it for degradation to be effective. This would be a particu-

larly challenging task even though a template already exists in 

the Noxa BH3 domain that both binds the hydrophobic groove 

on Mcl-1 with high affi nity and appears to form a binding sur-

face to promote its degradation by the proteasome machinery 

( Willis et al., 2005; Czabotar et al., 2007 ). Such small-molecule 

Noxa-like BH3 mimetics would not only need to specifi cally 

bind to Mcl-1 with high affi nity but would also somehow have to 

recruit the protein degradation machinery. 

 Interestingly, although the BimBH3 domain binds to Mcl-1 

in a similar fashion to Noxa, it appears to lack the sequence or 

structural signature required for proteasomal targeting ( Czabotar 

et al., 2007 ). Importantly, Bim S  is able to potently kill cells, 

 although its overexpression actually leads to the stabilization of 

Mcl-1 ( Czabotar et al., 2007 ). Similarly, another BH3-only protein, 

Puma, which is a potent killer of cells, was also recently shown to 

stabilize Mcl-1 ( Mei et al., 2005 ). Increasing the pool of Bim or 

Puma for binding Mcl-1 such as that displaced by Bik from an-

other prosurvival protein ( Gillissen et al., 2007 ) would also be 

 anti cipated to stabilize Mcl-1. Here, we have now shown that a 

physiological stimulus (increase in intracellular calcium) that spe-

cifi cally induces endogenous Bim ( Cante-Barrett et al., 2006 ) leads 

to (Bim dependent) cell death without the concomitant elimination 

of Mcl-1. This fi nding supports the view that strategies to target 

Mcl-1 do not necessarily need to also induce its degradation. 

 An Mcl-1 – specifi c ligand 
 The BimBH3 mutagenesis study demonstrated that the Mcl-1 

binding groove is suffi ciently different to the other prosurvival 

proteins to allow ligands highly specifi c for it to be developed. 

This is consistent with some of our recent experiments that showed 

that Mcl-1 is unique in terms of how it engages BH3 peptidyl 

 ligands ( Lee et al., 2007 ). The novel Bim mutant Bim S 2A 

binds with high affi nity and specifi city to Mcl-1. Signifi cantly, 

Bim S 2A does not function like Noxa to cause Mcl-1 degrada tion; 

instead, it stabilizes Mcl-1 levels like wild-type Bim S  (possibly 

by inhibiting interaction with Mule). Indeed, the enforced expression 
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coated onto 96-well plates (Maxisorp; Thermo Fisher Scientifi c) overnight 
at 4 ° C. For the competition assays, various concentrations of Bcl-2 – like 
proteins in solution were used to displace a fi xed subsaturating dilution of 
phage-displayed BimBH3 peptide from binding to immobilized Bcl-2 – like 
proteins. Solution competition assays using a biosensor (Biacore 3000; GE 
Healthcare) were performed as described previously ( Chen et al., 2005 ). 
The IC 50  values of the mutant BH3 domains were divided by the value ob-
tained for its wild-type parent to determine relative binding. ITC studies 
were performed using a VP-ITC instrument (MicroCal). Proteins were di-
luted to 4 – 6.5  � M in TBS, and peptides (prepared in the same buffer from 
2-mM stocks) were titrated from a 40 – 80- � M solution. All experiments 
were performed at 25 ° C. Data analysis was performed using Origin soft-
ware (MicroCal). 

 Coimmunoprecipitation of prosurvival proteins and Bim 
 FLAG-tagged mammalian expression vectors for human Bcl-2, mouse Bcl-x L , 
or mouse Mcl-1 and HA-tagged human Bim S  or its mutants subcloned into 
pEF PGKpuro have been previously described ( Huang et al., 1997 ;  Moriishi 
et al., 1999 ;  Chen et al., 2005 ;  Willis et al., 2005 ). The maintenance, trans-
fection, and metabolic labeling of HEK293T cells with [ 35 S]methionine/
cysteine as well as coimmunoprecipitation experiments have been described 
previously ( Huang et al., 1997 ;  O ’ Connor et al., 1998; Moriishi et al., 1999 ). 
Cell lysates were prepared in lysis buffer (20 mM Tris, pH 7.4, 135 mM NaCl, 
1.5 mM MgCl 2 , 1 mM EDTA, and 10% glycerol) containing 1% (vol/vol) 
 Triton X-100 and were supplemented with protease inhibitors (Roche). Immuno-
precipitation was performed by incubating lysates with  � 5  μ g of antibody 
(anti-HA HA.11 [Covance Research Products] and anti-FLAG M2 [Sigma-
 Aldrich]) and control anti – Glu-Glu (anti-EE; Covance Research Products). 
The proteins were resolved by SDS-PAGE and transferred onto nitrocellulose 
membranes.  35 S-labeled Bim and associated prosurvival proteins were 
detected by fl uorography using Amplify (GE Healthcare). 

 Coimmunoprecipitation of Bim with Bax/Bak 
 The transfection of HA-tagged Bim S  into HEK293T cells was performed us-
ing Lipofectamine (Invitrogen). Cell lysates were prepared in lysis buffer as 
detailed in the previous section and incubated with anti-HA – conjugated 
agarose resin (Roche). The bound proteins were eluted by boiling in SDS-
PAGE sample buffer, resolved by SDS-PAGE, and transferred onto nitro-
cellulose membranes. Endogenous Bax associated with Bim S  was detected 
by Western blotting with the anti-Bax antibody (2D2; Sigma-Aldrich). The HA-
tagged Bim S /Bim S  mutants were detected with the anti-HA antibody 
(3F10; Roche). 

 For the coimmunoprecipitation of Bim S  with Bak, FLAG-tagged Bak 
and HA-tagged Bim S /Bim S 2A/Bim S 4E or HA-tagged Bcl-x L /Mcl-1 were co-
transfected into HEK293T cells. Cell lysates were prepared in lysis buffer 
as detailed in the previous section and incubated with 5  μ g of anti-FLAG 
antibody (M2; Sigma-Aldrich) for 1 h at 4 ° C. The resultant complexes were 
then captured by incubation with protein G – Sepharose (GE Healthcare). 
Bound proteins were eluted by boiling in SDS-PAGE sample buffer, resolved 
by SDS-PAGE, and transferred onto nitrocellulose membranes. HA-tagged 
proteins associated with immunoprecipitated Bak were detected with the 
anti-HA antibody (3F10; Roche), and FLAG-tagged proteins were detected 
with the anti-FLAG antibody. 

 Killing assays 
 Retroviral expression constructs were made using the pMIG vector (MSCV-
IRES-GFP; GFP sequence is that of EGFP) as described previously ( Van 
Parijs et al., 1999; Chen et al., 2005 ) or the modifi ed vector pMIH, in 
which the GFP cassette is replaced by one encoding hygromycin B resis-
tance. These plasmids were transiently transfected using Lipofectamine 
(Invitrogen) into ecotropic packaging cells (Phoenix;  Kinsella and Nolan, 
1996 ). Filtered virus-containing supernatants were used to infect SV40 
large T-antigen – transformed MEFs or FDC-P1 cells by spin inoculation as 
described previously ( Willis et al., 2005 ). 

 For short-term killing assays, cell viability was determined by fl ow 
cytometric analyses of infected cells (GFP +ve ; FL-1) that excluded 5  � g/ml 
propidium iodide (PI  � ve ; FL-3; Sigma-Aldrich) analyzed by using FACScan 
(Becton Dickinson) either 30 h or at the indicated times after retroviral 
transduction. For assays performed in combination with ABT-737, cells 
were incubated with the indicated concentrations of ABT-737, which was 
added immediately after spin inoculation. 

 Long-term survival (colony) assays were performed in two ways. 
Stable cell lines expressing either Bim S 2A, Bim S 4E, or Noxa were generated 
by selection of GFP +ve  cells after retrovirus spin inoculation. Assays were 
performed by plating 150 of the GFP +ve  cells in the absence or presence of 

prosurvival protein. These data suggest that different BH3 domain –

  prosurvival protein interactions are dependent on the receptor –

  ligand context. 

 Our structure of the BimBH3 2A peptide in complex with 

Mcl-1 and accompanying structure-function data illustrate this 

point. Although the mutation of I65 to alanine on Bim had little 

effect on Mcl-1 binding, introduction of the same mutation in 

combination with the L62A mutation was detrimental. Evidently, 

the very subtle changes observed in orientations of the side chains 

of residues in the BimBH3 2A – Mcl-1 complex compared with the 

wild-type complex render the mutant complex highly susceptible 

to the I65A mutation. This demonstrates the potential challenges 

associated with the design of BH3 ligands/mimetics given the 

 sensitivity of these interactions to subtle changes in the binding 

surface of the interacting partners. 

 Similarly, the design of our Mcl-1 – specifi c ligand, BimBH3 

2A, would have been challenging if based solely on rational ap-

proaches, as the sequence lacks two of the characteristic features 

of BH3 domains (a leucine at position h2 and a large hydro phobic 

residue at position h4). Indeed, although BimBH3 2A is now 

Noxa-like in its binding profi le, this has been achieved in a 

 sequence that is actually less Noxa-like than wild-type BimBH3. 

 These data demonstrate that the underlying molecular basis 

that dictates the selectivity of BH3 domains for their prosurvival 

targets is elusive and does not follow obvious rules of engage-

ment. Thus, the development of small-molecule BH3 mimetic li-

gands and even peptidic ligands with target specifi city will require 

a combination of both empirical and rational approaches. 

 Materials and methods 
 Recombinant proteins and synthetic peptides 
 The expression and purifi cation of human Bcl-x L  � C25, mouse and human/
mouse Mcl-1, or N-terminal His 6 -tagged human Bcl-2 � C22 and human 
Bcl-w � C29 (C29S and A129E) have been described previously ( Chen et al., 
2005 ;  Czabotar et al., 2007 ). Synthetic peptides were synthesized by 
 Mimotopes and purifi ed by reverse-phase HPLC to  > 90% purity. 

 Cell lines 
 The FDC-P1 myelomonocytic cell line and MEFs used in the experiments 
have been described previously ( Willis et al., 2005, 2007 ) except for the 
 mcl-1  � / �    MEFs. They were generated from embryonic day 13.5 embryos 
of targeted mice generated on an inbred C57BL/6 background. All fi bro-
blasts were immortalized with SV40 large T antigen. The MCF-7 cells sta-
bly expressing shRNA against Bim were generated as previously described 
( Puthalakath et al., 2007 ). Thymocytes derived from  bim +/+   and  bim  � / �    
mice were prepared as described previously ( Bouillet et al., 1999 ). 

 Phage display constructs 
 A 26 – amino acid residue peptide encompassing the BH3 domain plus 
fl anking residues of human Bim ( Fig. 6 A ) was fused via a linker sequence 
(GGGT) to the N terminus of the M13 phage  gene 3  (residues 249 – 406) 
in the phagemid vector described previously ( Fairlie et al., 2003 ). To cre-
ate an N-terminally FLAG-tagged form of the sequence, the FLAG sequence + 
glycine-serine linker (DYDDDDKGS) was fused to the aforementioned se-
quence by Kunkel mutagenesis ( Kunkel et al., 1991 ). For the alanine scan-
ning constructs and other point mutations of the BimBH3 sequence, Kunkel 
mutagenesis on the FLAG-BimBH3 template was performed. Phage particles 
were isolated from cell supernatants as described previously ( Sidhu et al., 
2000 ). All constructs were confi rmed by sequencing. 

 Binding studies 
 All phage ELISAs were performed as described previously ( Fairlie et al., 
2003 ). In each case, either 5  μ g/ml of the prosurvival Bcl-2 – like family 
protein or 0.5  μ g/ml of the M2 anti-FLAG antibody (Sigma-Aldrich) was 
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Fig. S4 shows that Bim S 2A can combine with ABT-737 to kill FDC-P1 cells. 
Fig. S5 shows the quantitation of Bim isoforms after treatment of MCF-7
cells with thapsigargin. Table S1 presents crystallographic statistics. Online 
supplemental material is available at http://www.jcb.org/cgi/content/full/
jcb.200708096/DC1. 
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