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A B S T R A C T   

Objectives: To evaluate the added benefit of integrating features from pre-treatment MRI (radio-
mics) and digitized post-surgical pathology slides (pathomics) in prostate cancer (PCa) patients 
for prognosticating outcomes post radical-prostatectomy (RP) including a) rising prostate specific 
antigen (PSA), and b) extraprostatic-extension (EPE). 
Methods: Multi-institutional data (N = 58) of PCa patients who underwent pre-treatment 3-T MRI 
prior to RP were included in this retrospective study. Radiomic and pathomic features were 
extracted from PCa regions on MRI and RP specimens delineated by expert clinicians. On training 
set (D1, N = 44), Cox Proportional-Hazards models MR, MP and MRaP were trained using radio-
mics, pathomics, and their combination, respectively, to prognosticate rising PSA (PSA > 0.03 
ng/mL). Top features from MRaP were used to train a model to predict EPE on D1 and test on 
external dataset (D2, N = 14). C-index, Kalplan-Meier curves were used for survival analysis, and 
area under ROC (AUC) was used for EPE. MRaP was compared with the existing post-treatment 
risk-calculator, CAPRA (MC). 
Results: Patients had median follow-up of 34 months. MRaP (c-index = 0.685 ± 0.05) significantly 
outperformed MR (c-index = 0.646 ± 0.05), MP (c-index = 0.631 ± 0.06) and MC (c-index =
0.601 ± 0.071) (p < 0.0001). Cross-validated Kaplan-Meier curves showed significant separation 
among risk groups for rising PSA for MRaP (p < 0.005, Hazard Ratio (HR) = 11.36) as compared to 
MR (p = 0.64, HR = 1.33), MP (p = 0.19, HR = 2.82) and MC (p = 0.10, HR = 3.05). Integrated 
radio-pathomic model MRaP (AUC = 0.80) outperformed MR (AUC = 0.57) and MP (AUC = 0.76) 
in predicting EPE on external-data (D2). 
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Conclusions: Results from this preliminary study suggest that a combination of radiomic and 
pathomic features can better predict post-surgical outcomes (rising PSA and EPE) compared to 
either of them individually as well as extant prognostic nomogram (CAPRA).   

Key points  
1. Radiomics and pathomics carry complementary information for prostate cancer prognosis and integrated radio-pathomic 

models may better predict prostate cancer outcomes (rising PSA and EPE).  
2. The combined radiomics and pathomics classifier was found to generalize on an external dataset in predicting extraprostatic 

extension.  
3. The combination of radiomics and pathomics outperformed pre-existing risk estimators (CAPRA) on an external dataset in our 

study.   

1. Introduction 

Prostate cancer (PCa) patients who experience biochemical recurrence (BCR: two consecutive prostate-specific antigen (PSA) 
measurements >0.2 ng/mL post radical prostatectomy (RP)) have a higher risk of developing metastasis, which in turn is highly 
associated with PCa-specific mortality [1]. Approximately 20–40 % [2,3] and 30–50 % [4] of patients experience BCR within 10 years 
post-RP and post-radiotherapy. Additionally, about 24–34 % and 5–10 % of patients with BCR further develop metastasis and die from 
PCa, respectively [1,5]. Therefore, accurate prediction of BCR post-RP can allow for early identification of high-risk PCa patients who 
might benefit from adjuvant therapy. 

Recently, companion diagnostics have been used to direct adjuvant therapy to only high-risk patients [6]. However, there is an 
unmet clinical need and a shortage of accurate prognostic tools that can be used post-RP. Several pre- and post-operative nomograms 
have been developed to predict BCR [7–10]. While these nomograms are driven primarily by PSA, stage, and Gleason grading, previous 
studies have shown that some of these human pathologist-derived parameters such as Gleason grading are vulnerable to inter-reviewer 
variability [11]. 

With recent technological advances in whole-slide imaging [12], the past decade has seen substantial development and growth in 

Abbreviations 

PCa Prostate Cancer 
BCR Biochemical Recurrence 
PSA Prostate-specific Antigen 
RP Radical Prostatectomy 
EPE Extraprostatic extension 
H&E Hematoxylin and Eosin 
ML Machine Learning 
3T 3-T 
mpMRI Multi-parametric MRI 
ADC Apparent Diffusion Coefficient 
DWI Diffusion Weighted Imaging 
PI-RADS Prostate Imaging–Reporting and Data System 
bpMRI Bi-parametric MRI 
IRB Institutional Review Board 
HIPAA Health Insurance Portability and Accountability Act 
GGG Gleason Grade Group 
CoLlAGe Co-occurrence of Local Anisotropic Gradient Orientations 
rFS Rising PSA Free Survival 
AUC Area Under the Receiver Operating Characteristic Curve 
LASSO Least Absolute Shrinkage and Selection Operator 
CI Confidence Interval 
AI Artificial intelligence  
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the field of digital pathology. Pathomics is a field of study that aims at computerized image analysis by extraction of high-throughput 
quantitative features from routinely acquired hematoxylin and eosin (H&E) slides describing glandular and nuclear shape, arrange-
ment, disorder, and tissue texture. Many previous studies have developed machine learning (ML) based approaches using pathomics 
and have highlighted their prominence in tasks such as predicting the aggressiveness of the tumor via Gleason grade [13,14] and 
prognosticating BCR [15,16]. 

With regards to imaging, advancements in 3-T (3T) prostate multi-parametric MRI have improved the detection and character-
ization of PCa [17,18]. Although Prostate Imaging–Reporting and Data System (PI-RADS) [19] guidelines have been standardized for 
PCa diagnosis and characterization, previous studies have shown that PI-RADS interpretation is still limited by intra- and inter-reader 
variability [20]. Radiomics is a quantitative approach in medical imaging that aims to extract and evaluate quantitative features 
defining attributes such as shape, volume, surface, and texture of a region of interest. Recently, several radiomics-based approaches on 
bi-parametric MRI (bpMRI: T2-weighted (T2W) and diffusion weighted (DWI)) have been developed, and these studies have 
demonstrated their ability in PCa diagnosis [21], risk stratification [22,23], and BCR prediction [24,25]. 

While radiomics can provide insight into anatomical and functional characteristics of a PCa lesion by means of quantifying tumor 
heterogeneity, their macroscopic resolution limits analysis of in-depth microstructural information. Such microscopic tissue specific 
attributes including gland and nuclear shape, arrangement, disorder, and tissue texture can be quantified using pathomics. Therefore, 
radiomic and pathomic features carry complementary information at different scales and we hypothesize that integration of these 
features can potentially enrich characterization of tumors and enable the construction of a more powerful model for BCR prediction. 
Consequently, in this work, on multi-site cohort of N = 58 (D1 = 44, D2 = 14) patient studies, we developed and validated an in-
tegrated radio-pathomic ML model combining features from pre-treatment bi-parametric MRI and post-surgical prostate H&E slides for 
prognosticating post-RP outcomes. We note that in our study, of the N = 44 patient studies in D1, only 3 experienced BCR while rising 
PSA (PSA > 0.03 ng/mL) was observed among 13 patients. To ensure a balanced training dataset, we chose to use rising PSA as the 
outcome of interest as opposed to BCR. Moreover, previous studies have indicated that rising PSA is very strongly associated with BCR 

Fig. 1. Flowchart of patient selection for dataset, D1. T2W MRI: T2-Weighted MRI. PSA: Prostate-specific antigen.  
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(Hazard Ratio (HR) 8.5, p < 0.0001) and may be used as a surrogate for BCR. 
Additionally, extraprostatic extension (EPE), which refers to presence of tumor cells beyond prostate capsule borders, is considered 

to be one of the primary adverse pathology findings along with lymph node invasion and seminal vesicle invasion [26]. EPE is also a 
critical part of the pathological tumor grading process [27], considered a risk factor for poor prognosis and is often included within risk 
predictors post-RP (HR range, 4.1–5.2) [28]. Furthermore, in some cases, adjuvant radiation therapy is recommended for patients with 
detected EPE [29]. Although EPE is most commonly detected in RP specimens, pre-operative prostate MRI can sometimes aid in ac-
curate EPE detection [30]. Hence, in this work, we sought to evaluate whether the integrated radiomic and pathomic features that are 
prognostic of rising PSA are also prognostic of the presence of EPE. 

2. Methods 

2.1. Study design and participants 

This retrospective study included data from two institutions, D1 (N = 44) and D2 (N = 14). A detailed overview of the datasets, 
including information regarding tumor annotations, is provided below. 

2.1.1. Dataset D1 
A total of 88 patients from D1 underwent RP between April 18, 2012 to October 2, 2017. The study was approved by the Insti-

tutional Review Board (IRB) and was compliant with the Health Insurance Portability and Accountability Act (HIPAA). The need for 
informed consent for all the patients was waived by the IRB. Access to digitized post-operative whole mount H&E slides and preop-
erative 3T mpMRI was available for each of these patient studies. Fig. 1 shows the inclusion and exclusion criteria. 

A total of 44 patients met the patient selection criteria. Table 1 shows the patient demographic data. Due to limited size, the entire 
D1 dataset was used for cross-validation. Since only three of 44 patients met the definition of BCR post-RP, this study was focused on 
identifying patients with rising PSA (rPSA+) which was defined as the rise in PSA levels (PSA>0.03 ng/mL) after being undetectable 
post-RP. 

2.1.1.1. MRI Imaging and prostate cancer delineations on MRI. All patients (N = 44) underwent 3T mpMRI with a surface pelvic phased- 
array coil. Table S1 presents the detailed MRI acquisition parameters. A radiologist with more than 10 years of experience reviewed the 
mpMRI scans and manually delineated the PCa lesions on T2W MRI with RP specimens as reference. The delineations on MRI were 
made on all axial slices (each 2D axial slice with the presence of a lesion was annotated) of T2W MRI using an open-source software, 3D 
Slicer [31]. Only the index lesions, defined as the lesion with the highest Gleason grade group (GGG) from each patient, were included 
for radiomic analysis. 

Additionally, to evaluate the stability and repeatability of the radiomic features, we used a Quantitative Imaging Network- 
PROSTATE-Repeatability dataset [32] (QIN test-retest dataset) from The Cancer Imaging Archive, consisting of baseline and repeat 
prostate multiparametric MRI scans of 15 individuals taken 2 weeks apart. Among the 15 patients, a suspected tumor was identified in 
11 patients. One patient was excluded due to the poor quality. The repeatability of radiomic features was assessed based on the 
remaining 10 patients. 

2.1.1.2. Whole mount H&E slides and prostate cancer delineations on H&E slides. All whole mount specimens were weighed, fixed in 
formalin, and serially sectioned at 3 mm intervals. Samples were divided into quadrants and digitized on an Aperio AT Turbo scanner 
at 20× magnifications (0.4960 microns-per-pixel). The slide containing the index lesion (highest grade/tumor) was annotated for a 
representative tumor region by an experienced genitourinary pathologist (>10 years of experience) and features were extracted from 
this region using the Aperio ImageScope software. 

Table 1 
Patient demographic information. IQR: Interquartile range. PSA: Prostate-specific antigen. GGG: ISUP Gleason grade group. PZ: peripheral zone. TZ: 
Transitional zone. rPSA+: Rising PSA. rPSA− : No rising PSA.  

Parameter Description (Value) 

#Patients N = 44 
Age (years) (median (IQR)) 62 (57–65.25) 
PSA (ng/ml) (median (IQR)) 5 (4.31–6.99) 
Prostate Volume (mm3) (median (IQR)) 33.05 (29.05–45.73) 
PSA Density (ng/ml/mm3) (median (IQR)) 0.14 (0.1–0.21) 
Pathologic GGG (# patients) 1 2 3 4 5 

1 26 9 2 6 
PI-RADS v2 (# lesions) 1 2 3 4 5 

1 8 3 8 24 
Zone (# lesions) PZ TZ 

32 12 
Rising PSA # patients rPSA- rPSA+

31 13  
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2.1.2. Dataset D2 
The D2 dataset is a publicly available dataset from the TCIA, Fused Radiology-Pathology Prostate Dataset (Prostate Fused-MRI- 

Pathology) [33]. The D2 dataset comprises 28 patients with pre-treatment prostate multi-parametric MRI and digitized H&E im-
ages of corresponding RP specimens. Detailed descriptions of the dataset can be found in previously published studies [34–37]. Since 
only 14 of 28 patients had tumor annotations on both T2W-MRI and H&E, only these patients were included in this study. 

2.2. Feature extraction 

Radiomic and pathomic features were extracted from bpMRI and whole-mount H&E slides, respectively. 

2.2.1. Radiomic feature extraction 
Radiomic features were extracted from both T2W MRI and apparent diffusion coefficient (ADC) maps derived from diffusion 

weighted imaging (DWI). As part of the T2W MRI preprocessing step, a non-parametric intensity standardization method [38] was 
used to correct for intensity drift artifacts and normalize the T2W MRI to a particular range. The T2W MRI was further resampled to a 
uniform axial resolution of 0.5 mm × 0.5 mm. 

Since annotations were only performed on T2W MRI, we co-registered the ADC images to T2W MRI. A rigid followed by affine 
registration with a multiresolution framework of elastix [39] was used for registration. Control points from the entire field of view were 
used for rigid registration while those from the prostate capsule alone were used for affine registration. Mattes mutual information was 
used as the similarity metric with the number of histogram bins set to 32 [40]. The similarity metric was optimized using gradient 
descent, with a maximum of 500 iterations per resolution. A linear interpolator was used. 

Subsequently, radiomic features (N = 2200) including first-order statistics, Gray Level Co-occurrence Matrix (GLCM), Gray Level 
Size Zone (GLSZM), Gray Level Run Length Matrix (GLRLM), and Gray Level Dependence Matrix (GLDM) as part of pyradiomics 
package [41] with additional features, including Co-occurrence of Local Anisotropic Gradient Orientations (CoLlAGe) [42], Laws [43] 
and Gabor [44] were extracted from PCa ROIs on T2W MRI and the co-registered ADCs. The radiomic feature extraction in this study 
was performed using pyradiomics [41] with additional features and image filters (CoLlAGe, Laws, Gabor) implemented. 

2.2.2. Pathomic feature extraction 
As part of the pathomic feature extraction preprocessing step, all H&E images were first resized to a resolution of 1 micron-per-pixel 

(×10 magnification) resolution. Glands present within the cross-section of H&E images are generally composed of lumen in the center 
with epithelial nuclei at the boundary and cytoplasm filling in the intermediate space. Quantification of glandular shape and 
arrangement first requires accurate segmentation of the lumen. Therefore, in this work, the lumen was segmented using a previously 
trained U-Net model [15], and features were extracted based on the segmented lumen. Five different families with a total of 242 
pathomic features were extracted; Descriptions of each of them are provided below; 

Global graph: These features were derived from lumen centroid coordinates and they include descriptors of gland arrangement and 
density-derived measurements from the edges and polygons of Voronoi and Delaunay maps [14,45]. They constituted 51 features 
among a total of 242. 

Lumen shape: These descriptors included lumen shape-based features with 25 shape measurements including invariant and Fourier 
descriptors of boundary points, fractal dimension, smoothness, area, and perimeter and their corresponding statistics (mean, median 
standard deviation, 5th/95th percentile) [14,45] for a total of 100 features. 

Lumen orientation disorder: A total of 39 features of lumen orientation disorder features describing how chaotic the glands appear 
in an image were extracted. A co-occurrence matrix was constructed for every sub-graph in an image and measures of entropy, 
variance, and energy were extracted from the matrix [16]. 18 × 18 co-occurrence matrix based on lumen orientation angles binned in 
the intervals of 10◦ between 0 and 180◦ was used for the feature extraction. 

Sub-graph: A total of 26 descriptors describing local gland arrangement, packing, and clustering were extracted. These features 
included sub-graph radius, eccentricity, clustering, path length, the ratio of glands in the largest sub-graph to the total number of 
glands, and the percentage of glands that are isolated [46]. 

Harlick: These descriptors were based on pixel intensity. The entire region of interest was converted into a grayscale image and 39 
Haralick features [47] describing the texture, edges, gradients, spots, and homogeneity of the image were extracted. The pathomic 
feature extraction was performed using an in-house MATLAB V.2019 (MathWorks, Natick, Massachusetts, USA) toolbox. 

2.3. Machine learning models for prognosticating rising PSA 

On dataset D1, Cox Proportional-Hazards (CPH) (CoxnetSurvivalAnalysis model implementation from sckit-survival python package 
[48]) ML classifiers MR (T2W MRI and ADC features) and MP (H&E features) were trained separately with extracted radiomic and 
pathomic features respectively for prognosticating rising PSA. An additional CPH model, MC, was trained with scores from a 
pre-existing post-operative risk estimator, CAPRA [49]. CAPRA is a risk predictor that assesses risk of PCa outcomes post-RP. It ac-
counts for factors such as PSA levels, Gleason score, clinical stage, and age and was developed and validated using Cox proportional 
hazards and life table analysis [49]. A 10-fold cross-validation strategy with 300 iterations of stratified random splits was used to 
optimize MR and MP. At each iteration of cross-validation, the following feature processing strategy was adopted; At first intraclass 
correlation coefficients (ICC) for the entire set of features of T2W MRI and ADCs between the baseline and repeat scans of QIN test 
retest were calculated. Features with ICC < 0.8 were removed from the analysis owing to their low repeatability score. Subsequently, 
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correlated features with a Pearson correlation >0.9 and constant features which were repeated for more than 25 % of the samples were 
removed. Next, an outlier removal was performed clipping the feature values between 1 and 99 percentiles. Subsequently, features 
were normalized to a range [0,1] using min-max normalization, and a feature selection method was used to select the top features. 

Fig. 2 depicts the ML framework of a fused classifier (MRaP) combining MR and MP. A similar 300 iteration and 10-fold cross- 
validation strategy as defined for the individual classifiers MR and MP were used to train a fused radiomic and pathomic CPH 
model, MRaP. The final fused CPH classifier, MRaP, was constructed by taking average prediction probabilities from MR and MP. 

Subsequently, the top radiomic and pathomic features (based on the frequency of the features selected within the cross-validation) 
from MR and MP respectively were further used to train logistic regression classifiers ER (only top T2W MRI radiomic features), EP (only 
top pathomic features) and ERaP (top radiomic and pathomic features) on D1, and test on external data (D2) to predict EPE. 

The training of machine learning classifiers, including feature normalization, preprocessing, and cross-validation, was performed 
using the scikit-learn (version 0.24.1) and scikit-survival (0.19.0) modules in Python (version 3.9). 

2.4. Statistical analysis 

The rising PSA-free survival (rFS) period is defined as the interval between RP and the date PSA began rising for the patient. For 
patients without rising PSA (rPSA− ), the last reported follow-up was labeled as censored. We used mean ± standard deviation of the c- 
index and area under the receiver operating characteristic curve (AUC) for evaluating the cross-validation accuracy of CPH models 
(MR, MP, MRaP). Two different feature selection strategies, including penalized cox-regression models with Least Absolute Shrinkage 
and Selection Operator [50] (LASSO) penalty on survival data (time from surgery to rising PSA or last follow-up date), and LASSO on 
binary censor data (whether had rising PSA or not), were tested. Following the 1 in 10 rule adopted in many previous studies [51,52], 
we limited the number of features (nf) to approximately 10 % of samples to avoid the risk of overfitting. Hence, cross-validation was 
repeated by considering the number of features = 1,2 … nf. The best configuration (bc) with a particular feature selection strategy (bfs) 
and number of features (bnf) was decided based on the highest mean ± standard c-index over 300 iterations of 10-fold cross-validation. 
Further details of the evaluation strategy for cross-validation are provided in the supplementary section, S1. Subsequently, on the best 
combination (bc), cross-validated Kaplan-Meier survival curves [53,54] were generated for time-to-event analysis. Hazard ratios with 

Fig. 2. Machine learning pipeline for the fused radiomics-pathomics Cox-Proportional Hazard (CPH) classifier constructed by integrating a 
radiomic-based CPH classifier (MR) and a pathomics-based CPH classifier (MP). For MR, at first T2W MRI is manually annotated, and radiomic 
features are extracted from within the annotated lesion from T2W MRI and co-registered ADCs. Subsequently, top features are selected and the CPH 
model is trained to prognosticate rising PSA. Similarly, for MP the digitized H&E slides are first manually annotated, and lumen segmentation is 
performed within the annotated region. Subsequently, pathomic features are extracted within the region of interest, followed by feature selection 
and training of a CPH model to prognosticate rising PSA. Finally, the predictions of MR and MP are fused (average of prediction probabilities) at the 
decision fusion node to create a fused radiomics-pathomics classifier, MRaP. 
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95 % confidence intervals were reported for each classifier. Additionally, log-rank tests were used to determine statistically significant 
differences (p < 0.05) in rising PSA-free survival (rFS). Furthermore, AUC was used as a metric to evaluate classifiers predicting EPE on 
the external dataset (D2). 

3. Results 

3.1. Study participants 

In D1, patients had a median follow-up data of 34 months. Among these 44 patients, rising PSA was detected in 13 patients, of 
which three went on to experience BCR as per the standard definition. Additionally, 19 of 44 patients in D1 and seven of 14 patients in 
D2 presented EPE post-RP. Within D1, of 13 patients with detected rising PSA, 10 had EPE. Table 1 provides further information on 
patient demographics for D1. 

3.2. Experimental results 

3.2.1. Performance of individual radiomics, pathomics, and CAPRA models 
Since the training dataset D1 included 44 patients, configurations of classifiers MR and MP were set with a maximum number of 

features to be approximately 10 % of the samples (nf = 5) to avoid overfitting [51,52]. Supplementary Table S2 shows the mean ±
standard deviation of the c-index of different configurations of MR and MP over 300 iterations of 10-fold cross-validation. MR resulted 
in a cross-validation C-index of 0.646 ± 0.05 and the best configuration (bc) for MR was found to be; bfs = LASSO penalized 
cox-regression on censor data; and bnf = 1. Similarly, MP resulted in a cross-validation C-index of 0.631 ± 0.06 with the best 
configuration (bc) for MP was found to be; bfs = LASSO on survival data and bnf = 4. Supplementary Figs. S1 and S2 depict the 
frequencies of features selected for the best configuration of MR and MP respectively. The top features that were selected for MR were 
based on CoLlAGe [42]gray level cooccurrence (GLCM) family of features from the ADC. Similarly, among the four top features that 
were selected for MP, one feature was based on a sub-graph, and three features were based on lumen shape. Table 2 shows a univariate 
cox regression analysis of the selected radiomic and pathomic features. A CoLlAGe radiomic feature and a gland-shaped pathomic 
feature were found to be most strongly associated with rising PSA using univariate analysis. No significant separation was observed for 
cross-validated Kaplan-Meier survival curves (Fig. 3) for MR (p = 0.64, HR = 1.33) and MP (p = 0.19, HR = 2.82). A CPH model, MC 
trained on CAPRA scores [49] yielded a cross-validation c-index of 0.601 ± 0.071 with cross-validated Kaplan-Meier survival curves 
(Fig. 3) not showing significant separation between rPSA− and rPSA+ patients (p = 0.10, HR = 3.05). 

3.3. Performance of combined radiomics and pathomics-based models 

MRaP yielded a mean ± standard deviation c-index of 0.685 ± 0.05 and was found to outperform both MR, MP, and MC (p < 0.0001). 
From the cross-validated Kaplan-Meier survival curves (Fig. 3) it can be observed that MRaP showed significant separation between 
patients with and without rising PSA (p < 0.005, HR = 11.36). Additionally, Fig. 4 illustrates the corresponding visualizations of one of 
the top features of MR (original_collage2D_glcmV_JointEnergyEntorpy) and MP (Shape: 5 %/95 % invariant 1). The presence of more 
chaotic intensity gradient orientations quantified by CoLlAGe radiomic feature on ADC (Fig. 4: R3, R4) suggests more aggressive PCa 
with a higher risk of rising PSA as compared to the ones with more uniform and lower entropy regions (Fig. 4: R1, R2). Similarly, the 
pathomic visualizations of Shape: 5 %/95 % invariant 1 (a gland shape feature) illustrates that high-risk rising PSA patients with 
aggressive cancer may present uniformly small, malformed lumen, resulting in lower 5th/95th percentile ratios (lower range) (Fig. 4: 
P3, P4) as compared to cases with lower risk of rising PSA (Fig. 4: P1, P2). 

Additionally, when top radiomic features from MR (including only T2W MRI features: a GLCM and two Gabor-based based features) 
and MP were used to train classifiers ERaP (trained using combination of top radiomic and pathomic features on D1), ER (trained with 
top radiomics features extracted solely from D1) and EP (trained with top pathomic features solely from D1), ERaP (AUC = 0.80) was 
found to outperform ER (AUC = 0.57) and EP (AUC = 0.76) on the external dataset, D2. Fig. 5 shows the comparison of ER, EP, and ERaP 
through a receiver operating characteristic (ROC) curve. 

Table 2 
Univariate cox regression analysis of selected radiomic and pathomic variables through LASSO and elasticnet feature selection methods. The first 
feature represents the top radiomic feature and belongs to the Co-occurrence of Local Anisotropic Gradient Orientations (CoLlAGe) gray level 
cooccurrence matrix (GLCM) family of features. Rows 4–7 represent the top pathomic features. One sub graph feature and three gland shape-based 
features were the top pathomic features. * indicates statistical significance (p < 0.05) in univariate analysis.   

Feature Log hazard ratio p-value 

1 collage2D_glcmV_JointEnergyEntropy__ADC 0.16 0.01* 
2 CGT: Std. tensor contrast energy 2.91 0.13 
3 Shape: 5 %/95 % invariant 7 0.01 1.00 
4 Shape: 5 %/95 % invariant 1 4.80 0.04* 
5 Shape: Mean Fourier 10 2.81 0.14  
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4. Discussion 

Among the various clinical endpoints after radical prostatectomy (RP) in prostate cancer (PCa) patients, biochemical recurrence 
(BCR) is usually the first evidence of tumor recurrence [5]. BCR presents a major progression and is known to be associated with a 
significant risk of metastasis and PCa-specific mortality [1,2]. Adjuvant therapies, given in the form of radiation therapy or chemo-
therapy with drugs such as docetaxel, have previously been shown to be effective in reducing risk of metastasis or PCa-specific death 
[55,56]. However, adjuvant therapy is not appropriate for all patients due to the low overall mortality of PCa patients [57]. Therefore, 
accurate prediction of PCa patients with a higher risk of BCR can help identify ideal candidates for adjuvant therapy. Additionally, 
extraprostatic extension (EPE) identified from RP specimens and prostate MRI has previously been shown to be associated with a 
higher risk of BCR [58]. Hence, accurate detection of EPE among RP patients can help triage patients for further adjuvant treatments 
such as radiation therapy. 

In the last decade, there has been an increased interest in the use of genomic signatures in predicting different outcomes [59,60]. 
One such genomic risk classifier, Decipher, has been widely used and validated for predicting the risk of metastasis and PCa-specific 
mortality [61,62]. However, these tests are tissue-destructive, which limits the test from being performed multiple times. Specifically, 
in cases with small tumors, tissue can be exhausted with repeated testing. 

In this work, we developed a fused radiomics and pathomics Cox-Proportional Hazard model (MRaP) by combining signatures from 
pre-treatment prostate bpMRI and post-RP digitized H&E slides to prognosticate rising-PSA post-RP and showed that MRaP out-
performed its individual counterparts (MR and MP). Additionally, by using the top radiomic and pathomic features from the rising PSA 
model, we further trained a classifier to predict EPE. On the external validation dataset, D2, the fused radiomics and pathomics model 
(ERaP) was found to outperform the individual classifiers ER and EP in predicting EPE among RP patients. 

Artificial intelligence (AI) based approaches on prostate MRI are widely being explored for PCa risk stratification [23,63,64] and 
BCR prediction [24,25]. For instance, specifically in the context of BCR prediction, Shiradkar et al. [24] and Bourbonne et al. [25] 
showed that machine learning (ML) classifiers trained with radiomic features were predictive of BCR. Corroborating the findings of 
Shiradkar et al. [24], the radiomic classifier MR in our study also resulted in identifying CoLlAGe entropy feature from ADC as a top 
feature associated with the risk of BCR. CoLlAGe features measure the local intensity gradient patterns within images, providing a 
quantification method to capture gradient based heterogeneity of tumors. Previous studies have demonstrated an association between 
tumor heterogeneity and hypoxic microenvironment. The variations in hypoxia-related heterogeneity might be reflected in the distinct 
expression patterns of CoLlAGe entropy [42]. While radiomic-based models from previous studies yielded HR = 1.9, 95 % CI [1.4–2.7], 

Fig. 3. Cross-validated Kalplan-Meier curves for radiomics Cox-Proportional Hazard (CPH) model (A: MR), pathomics CPH model (B: MP), CAPRA 
(C: MC) and the fused radiomics-pathomics model (D: MRaP). One can notice that these cross-validated Kaplan-Meier curves show significant 
separation for MRaP (p < 0.005, Hazard Ratio (HR) = 11.36) as compared to MR (p = 0.64, HR = 1.33), MP (p = 0.19, HR = 2.82) and MC (p = 0.10, 
HR = 3.05). 
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p < 0.05 [65] and HR = 2.91, 95 % CI [1.45–11.51], p = 0.02 [66] for predicting risk of BCR respectively, in this study we 
demonstrated that combining radiomic and pathomic features can separate low risk and high risk rising PSA patients with HR = 11.36, 
95 % CI [2.91–44.34]. 

Fig. 4. Visualizations of one of the topmost features of MR (orginal_collage2D_glcmV_JointEnergyEntorpy) (R1-R4) and MP (Shape: 5 %/95 % 
invariant 1) (P1–P4) between four different patients. The columns 1,2 represent patients with a low risk of rising PSA and columns 3,4 represent 
patients with a high risk of rising PSA. It can be observed that the visualizations of Co-occurrence of Local Anisotropic Gradient Orientations 
(CoLlAGe) gray level cooccurrence matrix (GLCM) radiomic feature on apparent diffusion coefficient (ADC) maps indicates the presence of higher 
density of high entropy regions for which MR has classified as rPSA+ (Fig. 4: R3, R4), as compared to the ones for which MR has classified as rPSA−

(Fig. 4: R1, R2). Similarly, the pathomic visualizations of Shape: 5 %/95 % invariant 1 depicts that a high risk of rising PSA with more aggressive 
cancer leads to uniformly small, malformed lumen resulting in a lower 5th/95th percentile ratio (lower range) (Fig. 4: P3, P4) as compared to cases 
with lower risk of rising PSA (Fig. 4: P1, P2). For radiomic visualizations, the feature array output from the pyradiomics package was used to overlay 
on top of the ADC using matplotlib package. For pathomics visualizations, in-house MATLAB code was used to overlay the visualizations. 

Fig. 5. Area under the receiver operating characteristic curve (AUC) comparison of machine classifiers ERaP (trained using combination of top 
radiomic and pathomic features on D1), ER (trained with top radiomics features extracted solely from D1) and EP (trained with top pathomic features 
solely from D1). 
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Similarly, in the context of whole slide imaging, several previous AI-based studies have demonstrated the prominence of pathomic 
features for various tasks, such as automated Gleason grading [13,14] and predicting the risk of BCR [15,67]. In this study, we trained 
an ML classifier (MP) using pathomic features derived from whole slide images. Among five different families of pathomic features, 
three gland shape-based features, and one sub-graph-based feature were found to be the topmost ones. These features were also 
previously found to be selected as top features in previous [15,16]. Pathomic feature visualizations of one of the top pathomic features, 
Shape: 5 %/95 % invariant 1 (Fig. 4) depicts that high risk of rising PSA with more aggressive cancer leads to uniformly small, 
malformed lumen resulting in lower 5th/95th percentile ratio (lower range) (Fig. 4: P3, P4) as compared to cases with lower risk of 
rising PSA (Fig. 4: P1, P2). Additionally, while machine learning models from previous studies using pathomic features for BCR 
prediction among PCa patients yielded HR = 2.83, 95 % CI [2.03–3.93] [15], our combined radiomics and pathomics model was able 
to separate low-risk and high-risk rising PSA patients with HR = 11.36, 95 % CI [2.91–44.34]. 

While some groups have begun to develop and apply approaches for combining image features from radiology and pathology scans 
[68–70], these approaches have not yet been applied to PCa characterization. Feng et al. [68], Rathore et al. [70] and Vaidya et al. [69] 
illustrated that combining signatures from both radiology and histopathology can help in the better prognosis of rectal cancer, glio-
blastoma, and early-stage lung cancers. Additionally, studies have also developed signatures integrating genomics (quantifying 
cellular activities measured at the molecular level) either with pathomics [71] or with both radiomics and pathomics [72] for pre-
dicting various disease outcomes. 

However, in the context of PCa, a few studies have made attempts to integrate pathology with radiology [73,74] through spatial 
co-registration and correlating radiomic and pathomic features. For instance, McGarry et al. [73] co-registered whole mount speci-
mens to T2W MRI and trained a regression algorithm to predict epithelium density values using T2W MRI intensities using 
pathologist-delineated regions of interest. Additionally, in a previous study, correlations between whole-mount specimens and T2W 
MRI were assessed by co-registering whole-mount specimens to MRI and mapping pathologist-identified regions of interest on MRI 
[74]. However, our work involved identifying the top features in each modality, i.e., radiology and pathology, separately and inte-
grating them to create a fused super-classifier for improved prognostication compared to radiology and pathology alone. 

The uniqueness of our approach was to focus on demonstrating the added benefit of combining interpretable and biologically 
explainable hand-crafted radiomic and pathomic features which have previously shown promise in prognosticating BCR when used 
separately. While deep learning fusion strategies of radiology and pathology have been previously used for disease characterization 
[72,75,76], their black-box nature and lack of interpretability among these models hinders their ability to explain the biological 
underpinning of the disease. Mobadersany et al. [75] and Chen et al. [76] combined histopathology with genomics, and Braman et al. 
[72] combined radiology in addition to histopathology and genomics via deep learning frameworks to illustrate that the fusion ap-
proaches outperform their individual counterparts. In this work, on a discovery cohort (N = 44 patients), we demonstrated the added 
benefit of combining interpretable radiomic- and pathomic-based ML models for predicting rising PSA. Through feature visualizations 
we explained the biological phenomena associated with the features. Additionally, for EPE as an endpoint, we also demonstrated that 
the fused radiomics-pathomics ERaP classifier is a significant improvement over the individual classifiers ER and EP, each trained with 
only radiomic and pathomic features. 

Our study did have its limitations. This preliminary study involved only 44 patients with rising PSA endpoints. While cross- 
validation was a reasonable strategy to generate the preliminary findings for this proof-of-concept study, to prove the clinical util-
ity of the approach it is necessary to validate the presented approach on external test sets from multiple sites, as well as perform 
prospective validation. However, with EPE as an endpoint, we demonstrated that the fusion of radiomics and pathomics provides 
significant improvement over the individual data streams, not only on the discovery cohort but also on an external dataset. 
Furthermore, as previously discussed, since only three of the 44 patients had BCR, we chose rising PSA (PSA> 0.03 ng/mL) as the 
clinical endpoint. However, previous studies have shown that rising PSA is an independent factor that identifies BCR more accurately 
than any traditional risk factors and presents a significant lead-time advantage [77]. Additionally, this study focuses on demonstrating 
the added benefit of combining previously used radiomic and pathomic features while introducing novel hand-crafted features and 
exploring other interpretable deep learning approaches remain part of future directions. Lastly, the current biomarkers in this study are 
only prognostic of rising PSA; however, identifying predictive biomarkers remains part of future work. 

In conclusion, the results of this proof-of-concept study suggest that an integrated radiomics-pathomics approach combining 
representations from both radiology (prostate MRI) and pathology (whole mount H&E slides) can help better prognosticate rising PSA 
and identify EPE, as compared to radiology and pathology alone. Furthermore, this fusion-based approach can potentially be used as an 
alternative to more expensive and tissue-destructive assays like Decipher. 
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