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Abstract

Background and objective: Genetic predisposition is a factor in 40–70% of cases of
benign prostatic hyperplasia (BPH) and voiding symptoms. However, informal
reviews summarizing genes and variants imparting genetic disposition to BPH
are not yet available.
Methods: We conducted an informal narrative review of genes and variants associ-
ated with BPH or voiding symptoms in candidate gene studies, genome-wide asso-
ciation studies (GWAS), and Mendelian randomization studies. A literature search
of PubMed was performed using the terms ‘‘BPH heritability’’, ‘‘LUTS heritability’’,
‘‘BPH risk variant’’, ‘‘LUTS genetic risk’’, ‘‘GWAS BPH’’, and ‘‘genome-wide BPH’’.
Key findings and limitations: Candidate gene studies focused on variants related to
the vitamin D receptor, steroid metabolism, detoxification, inflammation, cytoki-
nes, and growth factors, which were previously found to be associated with pros-
tate cancer. Despite overall limited conclusiveness of candidate gene approaches,
some recent studies point to population-dependent contributions of single variants
to genetic BPH predisposition. Four GWAS and two Mendelian randomization stud-
ies for BPH identified correlation of BPH and voiding symptoms with variants
related to testosterone, prostate-specific antigen, progesterone, transcription fac-
tors, the cell cycle, neuronal organization, and thyroid-stimulating hormone.
Conclusions and clinical implications: The drug targetability of most of the genes iden-
tified in the BPH setting is precluded by predictable unbalanced side effects, low
efficacy, unknown organ specificity, and a lack of characterization in the prostate.
Meta-analyses of GWAS are not yet available for BPH. Unless calculated using
quantitative approaches, specific contributions of the risk variants identified to
the overall risk of BPH remain uncertain.
Patient summary: While age is a risk factor for benign enlargement of the prostate in
all affected patients, genetic factors may be involved in 39–72% of patients.
Research has identified a number of possible risk genes, but is still at a very early
stage. It is unlikely that drugs could be used to target these genes because of
expected side effects that would be tolerated for cancer treatment, but not for
benign diseases, or low efficacy in previous clinical trials.
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Table 1 – Meta-analyses of candidate gene stu
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1. Introduction

According to family and twin studies, heritability can
explain benign prostatic hyperplasia (BPH) and voiding
symptoms in 39–72% of affected patients [1,2]. This propor-
tion decreases with the age of the study population, as age
is the most important nongenetic risk factor for BPH [3].
Rather than simply causing BPH or symptoms, genetic pre-
disposition appears to account for earlier BPH onset, includ-
ing a larger prostate volume (PV) among younger patients.
A number of candidate gene studies in BPH addressed vari-
ants previously identified in prostate cancer (PCa). Though
investigation of preselected variants does not allow identi-
fication of key genes, recent candidate gene studies pointed
to population-dependent contributions of single variants to
genetic BPH. Four genome-wide association studies (GWAS)
and two Mendelian randomization studies for BPH have
been conducted, but no meta-analyses are yet available.

2. Candidate gene studies

Most candidate gene studies in BPH addressed variants
related to the vitamin D receptor (VDR), steroid metabo-
lism, inflammatory responses, and cytokine activity
(Table 1). The first meta-analysis of candidate gene studies
summarized 74 studies, including 70 genes examined in
BPH (Table 1) [4]. Quantitative synthesis was possible for
35 variants related to 24 genes, with five variants meeting
the statistical significance level. The epidemiological credi-
bility was highest, albeit moderate, for a VDR variant pro-
tective against lower urinary tract symptoms (LUTS). The
epidemiological credibility was rated as weak for the four
other variants, related to angiotensin-converting enzyme
(ACE, protective against LUTS and BPH surgery), ELA2 (PCa
risk gene, symptomatic BPH), GSTM1 (carcinogen detoxifi-
cation) and TERT (apoptosis-delaying telomerase, LUTS).
Subsequent original studies and four further meta-
analyses confirmed correlations for further VDR variants
and for polymorphisms related to ACE, steroid metabolism,
dies in BPH

es/SNP

genes; quantitative synthesis
35 variants related to 24
es

DR polymorphisms

olymorphisms (SRD5A2
23349, rs9282858)
-158G/A
, ACE, CYP17

gn prostatic hyperplasia; LUTS
5a-reductase, growth factors, the androgen receptor, and
prostate-specific antigen (PSA) with histologically con-
firmed BPH, voiding symptoms, or a need for surgery
(Table 1) [5–8]. Two candidate gene studies addressed the
estrogen receptor and reported correlations between three
ESR2 polymorphisms and voiding symptoms (International
Prostate Symptom Score [IPSS] >8, maximum urinary flow
rate <15 ml/s, PV >30 ml; n = 173; odds ratio [OR] 1.94–
2.18), and between one ESRa variant and histologically con-
firmed BPH (n = 482; OR 6.3) [9,10].
3. Epidemiological approaches: GWAS and Mendelian
randomization studies

Four GWAS and two Mendelian randomization studies have
been performed for BPH (Table 2). The studies identified
contributions of testosterone, PSA, progesterone, transcrip-
tion factors, genes with purported functions in the cell cycle
and neuronal organization, and thyroid-stimulating
hormone (TSH) to genetic BPH predisposition. A strong
correlation was found between PSA and LUTS/BPH, paral-
leled by identification of 23 significant variants in patients
who received medical or surgical treatment for LUTS sug-
gestive of BPH [11]. Induction of BPH by genetically ele-
vated testosterone was been confirmed in a Mendelian
randomization analysis that included 149 single-
nucleotide polymorphisms [12]. Another GWAS identified
significant correlations of 35 variants [13]. In a validation
cohort, four of the variants were significantly associated
with BPH diagnosis or treatment, including variants of the
progesterone receptor, RBMS1 (RNA/DNA binding in cell
cycle/death), MPPED1 (metallophosphoesterase), and
NPAP1 (tissue-specific imprinting, spermatogenesis). Top
hits in a GWAS based on codes for BPH diagnosis included
variants in SYN3 (synaptogenesis and neurotransmission),
GCLC (glutathione synthesis), UNC13A, DCC, BTBD3 (den-
dritic organization), and ELVOVL3 [14]. The authors esti-
mated that genetic factors account for 60% of the
phenotype variation in BPH.
Findings

Moderate epidemiological credibility across 5 studies: VDR rs731236
is protective for LUTS (OR 0.64).Weak credibility for pooled
associations: ACE rs4340 (protects against LUTS and surgery: OR 0.66),
ELAC2 rs5030793 (symptomatic BPH: OR 1.75), GSTM1 null allele
(LUTS: OR 2.08), TERT rs2736098 (LUTS, OR 1.25)
No association for Taq-I, Bsm-I, Apa-I, and Fok-I without stratification
of the study population.
rs9282858 OR 2.51; rs523349 depends on ethnicity and allele
(protective or promoting in Caucasians).
OR 0.47 for Caucasians, OR 1.63 for Asians; no association overall.
Polymorphism association positive for ACE, negative for CYP17 and
VDR (several variants); partly depends on ethnicity.

= lower urinary tract symptoms; OR = odds ratio; SNP = single-nucleotide
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Table 2 – GWAS and MR studies in BPH

Study Population Design Findings

Na 2017 [15] 3 populations: CLUE II (IPSS >8, or PV >30 ml, n = 3103); REDUCE
(treatment for LUTS/BPH, IPSS >15, n = 32 898); confirmation in
485 BPH cases (clinically confirmed LUTS) and 475 controls

GWAS One GATA3 variant significant in all 3 populations (OR 1.13, 1.3,
1.55); transcription factor, cell differentiation and function

Gudmundsson
2018 [11]

20 621 patients treated for LUTS/BPH (medical or surgical) and
280 541 controls; European setting

GWAS Strong correlation with PSA and LUTS/BPH (rg 0.77); 23 further
significant variants for 14 loci: BCL11A, CLPTM1L, TERT,
STARD4, H2AFY, HIST1H2BL, DNAJC1, EBLN1, FGFR2, WED11,
ODF3, TBX5, TBS3, DLEU1, RNASEH2B, HNF1B, GATA5, -6,
CTAGE1, THEG5; low ORs (0.85–1.12) for 21/23 variants; OR
0.67 for GATA5 variant, OR 1.27 for DNAJC1 variant.

Hellwege 2019
[14]

2656 BPH cases (codes for diagnosis) and 7763 controls GWAS Genetic factors account for 60% of phenotype variation in BPH.
Top-hit variations in SYN3 (OR 0.69; synaptogenesis,
neurotransmission), GCLC (OR 1.24; glutathione synthesis),
UNC13A, DCC, BTBD3 (8 variants, dendritic organization), and
ELOVL3.

Li 2021 [13] Discovery cohort: 1942 BPH cases, 4730 controls from eMERGE;
validation cohort: 5109 BPH cases, 16 1911 controls from the
UK Biobank

GWAS Of 35 significant variants (22 loci) in the discovery cohort, 4
were significant in the validation cohort: progesterone receptor
(OR 1.36 in discovery cohort), RBMS1 (OR 1.29; RNA/DNA
binding in cell cycle/death), MPPED1 (OR 0.72;
metallophosphoesterase), and NPAP1 (OR 0.66; tissue-specific
imprinting, spermatogenesis)

Lin 2023 [12] participants from previous GWAS MR Genetically elevated bioavailable testosterone induces BPH
Huang 2023

[16]
289 980 participants from thyroid studies, 13 118 BPH patients
(digital health care data), and 72 799 controls

MR Genetically predicted elevated TSH and hypothyroidism reduce
the risk of BPE (ORs 0.885, 0.864, 0.912 for overt
hypothyroidism, subclinical hypothyroidism, TSH)

BPE = benign prostatic enlargement; BPH = benign prostatic hyperplasia; GWAS = genome-wide association studies; IPSS = International Prostate Symptom
Score; LUTS = lower urinary tract symptoms; MR = Mendelian randomization; OR = odds ratio; PSA = prostate-specific antigen; PV = prostate volume; rg =
genetic correlation; TSH = thyroid-stimulating hormone
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Na et al [15] found that a GATA3 variant (transcription
factor, cell differentiation, cell function) was significantly
related to voiding symptoms in three independent popula-
tions, including cohorts with IPSS >8 or PV >30 ml, treat-
ment for LUTS/BPH and IPSS >15, and clinically confirmed
LUTS. In this and other studies, clinical endpoints were
often very broad in trials addressing variants associated
with genetic predisposition to BPH, and varied greatly by
study. It is arguable whether IPSS >8 or PV >30 ml is clini-
cally meaningful, and the criteria ‘‘treatment for LUTS/
BPH’’ and ‘‘clinically confirmed LUTS/BPH’’ cover a wide
range of conditions.

A Mendelian randomization study with data from partic-
ipants in thyroid studies, patients with BPH, and control
participants revealed that genetically elevated TSH and
hypothyroidism were associated with a lower risk of benign
prostatic enlargement [16]. Although not a GWAS, an inte-
grative approach that included sequencing arrays, profiling,
and database analyses suggested mTOR as a potential ther-
apeutic target, which was validated by decreases in PV for
patients treated with mTOR inhibitors [17].

4. Translational aspects

The translational value of many of the genes identified may
be limited by unbalanced side effects that might be toler-
ated in cancer treatment, but not in benign diseases. This
may apply to variants related to transcription factors, the
cell cycle, detoxification, cytokines, and growth factors.
Many of the genes identified are poorly understood, so
translation to clinical practice will depend on functional
characterization in the prostate and on organ specificity,
including genes functionally involved in neuronal organiza-
tion, as well as genes with testis-specific or sperm-specific
expression. For findings related to steroid metabolism, the
options for innovative drugs are limited, as 5a-reductase
inhibitors are routinely used. Similar limitations apply to
progesterone, considering that gestonorone was discontin-
ued decades ago because of low efficacy. The relevance of
other variants may be limited by the low efficacy of relevant
drugs. Vitamin D analogs were rated as disappointing after
initial preliminary clinical trials. The VDR agonist BXL-628
significantly reduced PV after 12 wk of treatment in a
placebo-controlled phase 2 study, which was possibly too
short for urodynamic improvements [18], while addition
of cholecalciferol to tamsulosin prevented recurrent urinary
tract infections and reduced the postvoid residual urine vol-
ume and PSA [19]. ACE inhibitors are widely used antihy-
pertensive agents, but no effect on BPH or LUTS has ever
become apparent. Use of mTOR inhibitors for BPH treat-
ment may be precluded not only by unbalanced side effects
but also by their high cost. The contribution of the estrogen
receptor to genetic BPH predisposition is an interesting
issue. The balance of estrogens to androgens is of higher
utility than androgen levels alone. The estrogen receptor
may be targeted by isoflavone phytoestrogens, which have
been examined in epidemiological studies and in preclinical
and clinical trials [20].

5. Conclusions

Unless calculated via quantitative approaches, specific con-
tributions of single variants to the overall genetic risk of
BPH remain uncertain. It is unlikely that a single key gene
imparting genetic predisposition to BPH exists. Rather, the
genetic risk for BPH may represent the sum of many vari-
ants. Meta-analyses of GWAS and other epidemiological
approaches are required to confirm the relevance of key
variants that have been identified, but no such analyses
are yet available for BPH. Post-GWAS strategies have been
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used for PCa [21], including computational methods, func-
tional validation, and clinical post-GWAS trials to confirm
causal contributions. Analog programs and the druggability
of variants identified in BPH will depend on functional char-
acterization and organ specificity, as unbalanced side effects
may be tolerated in oncology, but not for the treatment of
benign diseases. Gene ontology analyses could be applied
to attractive candidates for experimental characterization
identified in both candidate gene studies and GWAS, such
as TERT.
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