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Highly resolved spatial data of complex systems encode rich
and nonlinear information. Quantification of heterogeneous and
noisy data—often with outliers, artifacts, and mislabeled points—
such as those from tissues, remains a challenge. The mathematical
field that extracts information from the shape of data, topologi-
cal data analysis (TDA), has expanded its capability for analyzing
real-world datasets in recent years by extending theory, statis-
tics, and computation. An extension to the standard theory to
handle heterogeneous data is multiparameter persistent homol-
ogy (MPH). Here we provide an application of MPH landscapes,
a statistical tool with theoretical underpinnings. MPH landscapes,
computed for (noisy) data from agent-based model simulations
of immune cells infiltrating into a spheroid, are shown to surpass
existing spatial statistics and one-parameter persistent homology.
We then apply MPH landscapes to study immune cell location in
digital histology images from head and neck cancer. We quantify
intratumoral immune cells and find that infiltrating regulatory T
cells have more prominent voids in their spatial patterns than
macrophages. Finally, we consider how TDA can integrate and
interrogate data of different types and scales, e.g., immune
cell locations and regions with differing levels of oxygenation.
This work highlights the power of MPH landscapes for quanti-
fying, characterizing, and comparing features within the tumor
microenvironment in synthetic and real datasets.

topological data analysis | digital pathology | histology data |
tumor immunology | hypoxia

Advances in topological data analysis (TDA), an emerging
field of mathematics that studies shape within datasets,

offer novel descriptors of spatial data that have the potential
to inform histological analysis. Its primary technique, single-
parameter persistent homology (1-PH), provides a multiscale
topological summary of data and benefits from a rigorous the-
oretical underpinning (1–3). While 1-PH has proven successful
for many types of datasets and applications (4–10), including
histology datasets (11–13), and is tolerant to small imperfec-
tions in the registration of points, its utility can be diminished
when analyzing data with large amounts of noise (e.g., out-
liers, including points that are misclassified), typical of biological
datasets. The case for considering multiscale data with out-
liers was, in part, a driver of the creation of multiparameter
persistent homology (MPH) (14–16), a theoretically and com-
putationally challenging area of active mathematical research
(17, 18). Moreover, the need to compare topological summaries
and their vectorizations has driven the development of statisti-
cal methodologies for 1-PH (19, 20) and, more recently, MPH
landscapes (21).

Interest in the distribution of immune cells in tumors rela-
tive to areas of hypoxia (reduced oxygen availability) is high
because of the associations between immunogenicity, tumor
hypoxia, and prognosis (22, 23). The pattern of immune cell
infiltration may also be relevant to the focused application of
cancer immunotherapy (24) or new opportunities to manipulate
oxygen-sensing pathways (25). However, current histopathologi-

cal practice does not include rigorous analysis of either the extent
of tumor hypoxia [which can be assessed in a variety of ways (26)]
or the number and distribution of different types of infiltrat-
ing immune cells. While international consensus guidelines exist
to facilitate visual enumeration of tumor infiltrating leukocytes
(27, 28), these have not yet been adopted into routine prac-
tice. Furthermore, manual assessment is labor intensive, prone to
intraobserver and interobserver variation and cannot fully char-
acterize the complex spatial patterning of these cells. Digital
pathology generates high-resolution, multiscale images allowing
application of automated methods to describe and quantify the
distributions of different (immune) cell types in ways that surpass
the limits of human assessment (29, 30). Early work in this area
has compared immune cell densities at the tumor outer margin
and inner core (31, 32) or applied established spatial statistics,
such as those originally developed for ecological data analysis, to
histology images (33). While clearly an improvement over sub-
jective qualitative assessment or cell counting, such approaches
still fall short of a full description (34).

Motivated by the limitations of current techniques for analyz-
ing cellular spatial patterns in histology data, here we analyze
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two datasets, one synthetic and one clinical, and compare results
obtained from 1-PH, spatial statistics, and MPH (see SI Appendix
for a video tutorial and ref. 35 for interactive examples). We show
that these techniques provide complementary information but
that, in contrast to conventional spatial statistics or 1-PH, MPH
can both reveal and quantify spatial features in the face of the
noise typically found in biological datasets.

Description of Datasets
Agent-Based Model. We generate synthetic data from a two-
dimensional (2D), off-lattice, cell-center agent-based model
(ABM) that simulates macrophages infiltrating an avascular
spheroid in response to a chemotactic gradient (based on ref.
36). Individual tumor cells and macrophages are represented
as discrete particles whose behavior is determined by a set of
rules. At the spheroid edge, oxygen levels are high, and tumor
cells proliferate. As oxygen diffuses into the tumor and is con-
sumed by the cells, its levels decrease, leading to cell death in
the core of the spheroid. Under hypoxia, tumor cells release a
chemoattractant, which we take to be macrophage colony stim-
ulating factor-1 (CSF-1), that establishes a spatial chemotactic
gradient as it diffuses through the spheroid. All cells move in
response to the mechanical forces exerted on them by neigh-
boring cells; the macrophages are also subject to chemotactic
forces which bias their movement in the direction of increasing
chemoattractant levels. A parameter χ describes how sensitive
macrophages are to spatial gradients of CSF-1 (when χ = 0,
macrophages are insensitive to the chemoattractant). Each sim-
ulation is initialized with macrophages distributed around the
boundary of a well-developed spheroid (in which the net rate
of tumor cell proliferation balances the net rate of tumor cell
death). We simulate the ABM for different values of the chemo-
tactic sensitivity parameter χ and record the spatial location of
the infiltrating macrophages over time (Fig. 1 A, Left). Subse-
quently, we add biologically realistic levels of noise to the data
by misclassifying a proportion of the tumor cells as macrophages
(Fig. 1 A, Right).

From Histology Slides to Point Cloud Data. Using digitized
immunohistochemistry (IHC) images of human head and neck
squamous cell carcinoma specimens, we extract the locations of
three immune cell types relative to regions of varying oxygen
availability present within the tumors using a semiautomated
pipeline (34). The cell types studied are cytotoxic T lympho-
cytes, regulatory T lymphocytes, and macrophages, defined by
their respective expression of CD8, FoxP3, and CD68 proteins.
The best oxygenated, well-vascularized stromal regions were
identified by lack of expression of the epithelial marker pancy-
tokeratin (PanCK). Less well oxygenated areas were identified
using a series of hypoxia markers. Regions with an oxygen par-
tial pressure of ∼20 mm Hg were identified by expression of
the hypoxia-inducible factor target gene carbonic anhydrase 9
(CAIX). Regions with an oxygen partial pressure of ∼10 mm
Hg were identified by staining for adducts of the exogenous
hypoxia marker pimonidazole (Pimo). Necrotic regions that are
considered virtually anoxic were manually annotated by P.S.M., a
pathologist. (See Materials and Methods section and SI Appendix
for further details of IHC protocols, image analysis pipeline, and
hypoxia markers.)

Results
Tumors are heterogeneous, and different regions exhibit vari-
able immune cell densities; their spatial organization opens up
avenues for TDA, as we show here.

1-PH can be used to study spatial distributions of immune
cells, giving information that complements traditional statisti-
cal methods, such as the pair-correlation function (PCF), as we
demonstrate here using data generated by the ABM. Both meth-
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Fig. 1. We apply 1-PH, the PCF and MPH to ABM data (Left) and to ABM
data with falsely registered cells (Right). (A) Cell distributions at three time
points from an ABM simulation. The green cells denote macrophages, the
red cells denote viable tumor cells, and the orange cells are necrotic tumor
cells. There are ∼ 100 macrophages and ∼ 20 falsely registered cells. (B)
The barcode for each snapshot of the simulation. A bar in the barcode
corresponds to a loop formed by the macrophages (green). Longer bars
correspond to larger loops. (C) 1-PH decay curves tracking the length of
the longest bar in the barcode against time for simulations with different
chemoattractant sensitivity parameter χ. The curves show the average curve
with standard deviation (SD) bands, computed with five simulations for each
value of χ. Without noise we separate the distinct chemotaxis parameters.
The decay curves are significantly disrupted by the introduction of mea-
surement noise. (D) The PCF, g(r) for each snapshot of the simulation. The
horizontal dashed line at g(r) = 1 is indicative of randomly distributed cells.
g(r)> 1 suggests clustering of macrophages at distance r from one another;
g(r)< 1 suggests dispersal. (E) Curves tracking the maximum value of the
PCF throughout the simulation (mean and SD of five simulations). The curves
show that macrophages become less clustered as they begin to infiltrate the
spheroid. Curves at high χ show more clustering toward the end of simula-
tions, as macrophages reach the spheroid core and become more clustered
again. In the presence of measurement noise, these patterns become less
clear and are difficult to interpret. (F) MPH decay curves tracking the 2-norm
of the MPH landscape against time. The MPH decay curves are less impacted
by the measurement error. In C, E, and F, t = 0 corresponds to the time at
which macrophages are introduced into the simulation.

ods perform well on perfect data but not when (biologically
relevant) measurement errors are introduced (Fig. 1 A–E). The
distorting effects of the measurement errors are alleviated when
MPH is used instead, as is demonstrated using the ABM data
(Fig. 1F). Two tailor-made examples (Fig. 2) and an interactive
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Fig. 2. We illustrate the features of point cloud data which may be extracted by MPH and associated landscapes (MPH landscapes). (A) Point clouds from
rings of different radii, together with measurement noise, to demonstrate that MPH landscapes can detect the size and number of loops in the presence of
noise. Eighty points are uniformly sampled from each ring, and 20 points are sampled from the area enclosed by each ring. (B) Illustrations of the radius-
codensity bifiltrations associated with the example point clouds. Increasing the radius parameter increases the radius of the balls centered at the points of
the point cloud. The codensity parameter first admits points from dense regions of the point cloud (dark green) and then includes points from the sparser
regions (light green). We highlight the parameter values for which loops are formed in the bifiltration; the strongest signal of a loop is shown in yellow. (C)
The MPH landscapes for the bifiltrations highlight the regions of the parameter space for which loops are detected. For the 3 Rings point cloud we detect
a signal above small radius parameters in λ(1,~x),λ(2,~x) and λ(3,~x) but not λ(4,~x). These signals correspond to the three small loops of the same scale in
the point cloud. For the 2 Rings point cloud we detect a signal above large radius and large codensity parameters and a signal for small radius and small
codensity parameters in λ(1,~x). These signals correspond to the large radius sparsely sampled loop and the small radius densely sampled loop respectively.
(D) Taking 30 samples of each of the point clouds and treating the output persistence landscapes as high dimensional vectors. PCA of the vectors λ(1,~x)
identifies that the principal difference between the two types of point clouds is the presence of a large radius loop. Taking the norm of the landscape
vectors outputs a real value. We plot the distributions of the norms ‖λ(k,~x)‖, k = 1, 2, 3, 4 for the two point clouds. These distributions identify a large loop
in the 2 Rings point clouds and three loops in the 3 Rings point clouds.
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demonstration (35) illustrate interpretability of this mathemati-
cally sophisticated method and versatility of the new associated
statistical tool: MPH landscapes.

Applying MPH landscapes to a collection of (small) regions
of interest across a tumor, distinct spatial patterns for differ-
ent immune cell types are detected (Fig. 3): in this example,
in these regions of interest, T cell (CD8+ and FoxP3+) distri-
butions tend to form more pronounced voids than macrophage
(CD68+) distributions, a finding which appears to be more
marked in less well oxygenated tumors compared to those

with less extensive regions of necrosis, pimonidazole- or CAIX-
positivity.

Employing MPH landscapes in a different statistical study,
over larger tumor areas, suggests a link between immune cell
density and oxygen levels; deriving one of the parameters (coden-
sity) automatically from cell distribution data produces a good
proxy for tumor hypoxia (Fig. 4).

Statistical and Topological Analysis of ABMs. We first analyze the
spatial patterns formed by the infiltrating macrophages in the

A

B

C

k=1

Fig. 3. TDA of CD8+, FoxP3+, and CD68+ cell spatial patterning in 1.5 mm× 1.5 mm tumor regions. (A) A region of a head and neck tumor IHC slide stained
to show CD8+ T cells. (Scale bar 500 µm.) 1.5 mm × 1.5 mm regions of interest are highlighted. In this tumor, sufficient tissue was present to sample 67
regions stained for CD8+ T cells, 74 regions stained for FoxP3+ T cells, and 74 regions stained for CD68+ macrophages. For each region of interest we extract a
point cloud of immune cell locations. We plot example point clouds and their associated first multiparameter MPH landscape, λ(1,~x), for the radius-codensity
filtration. (B) We compute the MPH landscapes for the radius-codensity filtrations associated to each sample. Treating the persistence landscapes as feature
vectors we apply PCA to identify the principal difference between the landscapes of the CD8+, FoxP3+, and CD68+ samples. The first and second principal
components are plotted on the PCA plot axes. We observe that the T cell samples support loops at large radius parameter values. We use LDA as another
dimension reduction technique to visualize the distribution of the landscape vectors and see that the landscape vectors of the three immune cell types can
be well separated with a linear classifier. (C) We indicate the prevalence of loops for different radius parameters. We sum the average MPH landscapes along
the codensity parameter,

∫
λ(1,~x)dxcodensity, to produce radius profile curves for each immune cell type. Again this indicates that the T cell samples support

loops with larger radius parameter than the macrophages. We convert the collections of MPH landscapes to real values which detect loops of large radius
parameter, by integrating the landscapes over the parameter values with yradius≥ 240µm:

∫
λ(1,~x)1Radius≥240µmdxcodensity.
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Radius-Hypoxia BifiltrationRadius-Codensity Bifiltration

Ra
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Codensity Hypoxia
Radius-Codensity Bifiltration, Radius-Hypoxia Bifiltration,

Tumour Hypoxia and Immune Cell Spatial PatterningA

B

C

D

Fig. 4. We investigate the distribution of immune cells relative to regions of tumor hypoxia, and compare radius-codensity against radius-hypoxia bifiltra-
tions. (A) IHC slide showing CD8+ T cells in a head and neck tumor. The region contains a central area of necrosis annotated by a pathologist. Consecutive
IHC regions stained for FoxP3+ T cells, CD68+ macrophages, PanCK (a marker distinguishing tumor from stroma), CAIX (a marker for hypoxia), and Pimo (a
marker for more severe hypoxia) were manually aligned. (Scale bar: 500 µm, region size 4.72 mm × 3.96 mm.) (B) Point clouds of CD8+, CD68+, and FoxP3+

cells are identified from the regions of interest and colored according to which of five distinct tissue regions they lie in: necrosis (identified via manual
annotation), Pimo+ (severe hypoxia, identified via positive pimonidazole staining), CAIX+ (less extreme hypoxia, identified via positive CAIX staining and
negative pimonidazole staining), PanCK+ (better oxygenated tumor, identified via positive PanCK staining and negative CAIX and pimonidazole staining),
and stroma (PanCK negative tissue). (C) This illustrates the similarity between the radius-codensity and the radius-hypoxia bifiltration of one subsample
of 1,500 FoxP3+ cells from this region. (D) To examine the distribution of all three immune cell types in detail we repeatedly sample from the large point
cloud of cells surrounding the necrotic region. Taking 50 samples we compare the norm of the MPH landscapes for the radius-codensity bifiltration and the
radius-hypoxia bifiltration. The results indicate that these two filtrations give comparable relative values for all three cell types. The radius-codensity and
radius-hypoxia bifiltrations both indicate that CD68+ cells infiltrate hypoxic regions to a greater extent than CD8+ and FoxP3+ cells. The data suggest that
this cell codensity descriptor is a good proxy for hypoxia level.
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ABM using 1-PH and the PCF from spatial statistics. Both
approaches provide more detailed spatial descriptors than cell
counting and have been used to analyze histology data (11, 12,
34, 37); we have previously validated the use of PCF to describe
macrophage infiltration in human tumors by demonstrating that
images grouped semiquantitatively by a pathologist share simi-
lar statistics (34). In particular, we quantify the extent to which
the macrophages infiltrate the spheroid at each time point in the
ABM simulations.

A ubiquitous tool in the field of TDA, 1-PH, has seen a variety
of applications to biological data (5, 9, 11, 12, 38–40). Persis-
tent homology encodes nonlinear features of a point cloud in
an algebraic object, giving a multiscale, topological summary. In
our setting of 2D point clouds, persistent homology can be used
to detect loops. 1-PH persistence modules can be visualized as a
barcode in which the length of each bar in the barcode reflects
the size of a loop detected in the point cloud.

At the beginning of each ABM simulation the macrophages
lie on the boundary of the spheroid (Fig. 1A). We quantify the
macrophage location with perfect simulated data (Fig. 1, Left).
The 1-PH barcode represents the large loop of macrophages
present at the beginning of the simulation with a long bar (Fig.
1B). As the simulation advances, the macrophages infiltrate from
the boundary to the core of the spheroid and the size of the loop
formed by the cells and the corresponding bar in the barcode
shrinks.

We now vary the chemoattractant sensitivity parameter χ
in our simulations and track the rate at which the length of
the longest bar in the barcode in Fig. 1C decreases over time.
As such, these decay curves quantify the rate at which the
macrophages migrate into the center of the spheroid.

Fig. 1D shows the PCF g(r) calculated from the macrophage
locations at different time steps shown in Fig. 1A (see SI
Appendix for definition). The peak of the PCF at small radii
shows that macrophages are initially more likely to be close
to other macrophages than if they were randomly distributed.
As the simulation advances the peak becomes less pronounced,
suggesting that macrophages become less clustered over time
in this simulation. Fig. 1E tracks the average peak (i.e., max-
imum value) of the PCF [denoted by max g(r)] for increasing
chemoattractant sensitivity (i.e., different values of χ).

Taken together, Fig. 1 C and E describe infiltration of
macrophages into the spheroid over the simulation (the dynam-
ics described here are consistent with those described in ref.
41). Fig. 1C indicates that the chemotaxis sensitivity parame-
ter χ affects the time at which the macrophages penetrate the
spheroid boundary. The greater the sensitivity to chemotaxis,
the more rapidly the macrophages cross the spheroid bound-
ary, causing both the length of the longest bar in the barcode
and the maximum value of the PCF to decrease more quickly.
Second, we observe that once the macrophages have penetrated
the spheroid, the decay curves in Fig. 1C have similar gradi-
ents, indicating that the rate at which macrophages proceed
to the spheroid core is insensitive to the different chemotaxis
sensitivity parameters. In simulations with high chemotaxis sen-
sitivity (large χ), the curves in Fig. 1E begin to increase at
later time steps as macrophages cluster at the spheroid core.
These spatial descriptions give complementary information. In
particular, the PCF cannot distinguish between clustering at the
simulation start in which macrophages form a loop around the
spheroid and clustering at the end in which macrophages are
at the spheroid core. This difference can be seen in the 1-PH
analysis.

The Case for MPH. Our 1-PH analysis of the ABM simulations
is sensitive to the location of each macrophage. In the analysis
of synthetic data, this sensitivity was an advantage and allowed
detection of subtle changes to the model. However, this sensitiv-

ity is a less desirable property if we wish to analyze real biological
or clinical data. It is likely that in digitized clinical histology
samples false positive points will result from inaccuracies during
sample preparation and image analysis. With this assumption, we
run the same ABM simulation, except at each time step we have
∼ 100 true macrophages and ∼ 20 false positives. We investigate
the effect of measurement error in the data on 1-PH and PCF
(Fig. 1 A–E, Right). The prominent bars in Fig. 1B and the 1-
PH decay curves in Fig. 1C are significantly diminished by the
misidentified cells. Without measurement error the longest bars
shorten from ∼ 13 cell diameters to ∼ 2 cell diameters and with
measurement error from ∼ 5 cell diameters to ∼ 2 cell diame-
ters. Similarly, for the PCF analysis, the maximum value of g(r)
is decreased in Fig. 1D, causing increased noise and overlap in
the curves in Fig. 1E.

We would like topological summaries for ABM and histology
data analyses to be both robust to outlier noise and sensitive
to the length scale of the spatial patterns formed by cell point
clouds. Our solution is to filter our point clouds by two param-
eters. Instead of relying on one radial parameter as for 1-PH,
we introduce an additional parameter, codensity. The radius
parameter serves to detect the size of topological features. The
codensity parameter includes cells in dense regions of the point
cloud earlier in the filtration and thus adds robustness to noise
introduced by less densely arranged outlier cells. MPH is an
extension of 1-PH involving a two-parameter filtration, or bifil-
tration, of data and requiring new theory and computational
tools (see Introducing MPH Landscapes for Applications and
SI Appendix for details).

One can view previous 1-PH applications to breast cancer and
prostate cancer histology images in refs. 11, 12 as fixing one of
our two parameters and varying the other. For example, the tech-
nique employed by ref. 12 is analogous to our 1-PH analysis of
the ABM data and is notably sensitive to measurement errors.
In contrast, the technique of ref. 11 is robust to outlier noise
but sacrifices sensitivity to the size of the topological features
extracted, in the sense that both small and large loops of the same
pixel intensity produce the same topological fingerprint. Further-
more, fixing one of the parameter values requires tuning which is
hard to determine. Indeed, the survey article (42) identifies that
“. . .tuning parameters. . .remains one of the greatest challenges
in TDA.” By computing MPH, we circumvent the requirement
for tuning and maintain scale information in our methodol-
ogy. For completeness, we also include in SI Appendix, section
3C, a comparison with known 1-PH noise reduction techniques
(SI Appendix, Tables S2 and S3.)

As a proof of concept, we apply a MPH analysis on the radius-
codensity bifiltration of macrophages as the ABM simulations
progress. We use MPH landscapes (21) as described in Introduc-
ing MPH Landscapes for Applications. Like the barcode for 1-PH,
the size of the norm of the MPH landscape decreases as the
macrophages migrate into the core of the spheroid (Fig. 1F). The
MPH decay curves are less impacted by the measurement noise,
demonstrating that MPH mitigates the impact of mislabeled
cells. Hence, without measurement error the landscape norms
decay from norm∼ 5 to norm∼ 0.5 and with measurement error
from norm ∼ 3.5 to norm ∼ 0.5.

Introducing MPH Landscapes for Applications. The topological
summaries produced by persistence techniques may be vec-
torized and, thus, are amenable to traditional data analysis
techniques. Persistence landscapes, first introduced in ref. 20,
have been widely used as a vectorization for 1-PH (43–45).
We have previously extended this work to a vectorization for
MPH, facilitating the application of traditional statistical tech-
niques to MPH (21). Real-valued statistics derived from these
vectorizations obey a central limit theorem, and hence, it is pos-
sible to statistically analyze the topological features of a dataset.
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Computational feasability and interpretability distinguish MPH
landscapes from other vectorization methods for MPH (compare
refs. 46, 47).

Here we illustrate how MPH landscapes can detect the num-
ber of topological features and their size in the presence of
outlier noise (Fig. 2). Fig. 2A depicts two example point clouds
drawn from distributions that we call “3 Rings” and “2 Rings.”
We aim to identify that 3 Rings contains three loops of medium
size and that 2 Rings contains one large loop and one small
loop. We filter the point clouds by a radius parameter (radius
of dots plotted) and codensity parameter (fifth nearest neigh-
bor empirical codensity function detailed in SI Appendix). The
radius-codensity bifiltration is illustrated in Fig. 2B. At param-
eter value (xcodensity, yradius) we build the bifiltration at scale
parameter yradius on the points with codensity less than or equal
to xcodensity. For an a priori unknown range of the xcodensity param-
eter, the outlier points will be excluded and the loops will be
detected.

We use MPH landscapes (21) to vectorize, quantify, and sta-
tistically analyze the topological features present in the bifiltered
point cloud. The MPH landscapes are a sequence of functions
λ(k ,~x ), k =1, 2, 3 . . . (SI Appendix, Definition 7). In our setting
of two-parameter persistence, we visualize the landscape func-
tions λ(k ,~x ) :R2→R≥0 as a sequence of images, with the color
indicating their value. λ(k ,~x ) is nonzero only if there are at least
k loops present at parameter value ~x =(xcodensity, yradius). The
value λ(k ,~x ) indicates the prominence of the k th most promi-
nent loop at that parameter value: just as long bars in a barcode
indicate prominent loops in the point cloud, large landscape
values indicate significant loops. We note that it is important
that the radius and codensity parameters vary over similar scales
(through normalization, if necessary), so that the persistence of
topological features is not dominated by the change in one of
the parameters. However, there is no need to specify a particular
density value.

We depict the MPH landscapes for our examples in Fig. 2C.
For 2 Rings we receive a signal above large radius and large
codensity parameters and a signal for small radius and small
codensity parameters in λ(1,~x ). These signals correspond to
one large-radius, sparsely sampled loop and one small-radius,
densely sampled loop respectively. For 3 Rings we receive a sig-
nal above medium radius parameters in λ(1,~x ), λ(2,~x ), and
λ(3,~x ) but not λ(4,~x ). These signals correspond to the three
medium loops of the same scale and density in the point cloud.

Qualitative differences in the landscapes can be visualized
and tested numerically. We sample 30 point clouds from each
of 3 Rings and 2 Rings and compute their MPH landscapes.
The MPH landscapes serve as feature vectors for the 60 point
clouds. In Fig. 2D we plot the 60 feature vectors by their first
two principal components together with the first principal com-
ponent feature vector, illustrating how the landscapes of the two
distributions differ and that the feature vectors may be linearly
separated.

Taking the norm of the landscape vectors outputs a real value.
We plot the distributions of the real values ‖λ(k ,~x )‖ for 3 Rings
and 2 Rings. The large radius loop in 2 Rings causes the norm
of the first landscapes of 2 Rings to be larger than 3 Rings.
The three loops of the same size in 3 Rings cause ‖λ(3,~x )‖�
‖λ(4,~x )‖ for these landscapes.

Interactive examples of 1-PH and MPH accompanying this
work can be found online (35).

MPH Landscapes Characterize Spatial Patterns of Immune Cells.
Given the prognostic and biological significance of tumor-
infiltrating immune cells, their distributions within tumors are of
interest to both clinicians and medical researchers. Therefore, we
analyze the spatial patterns of CD8+, FoxP3+, and CD68+ cells

across whole slide images taken from 16 head and neck tumors.
A pathologist (P.S.M.) annotated the tumor regions within each
image and nonoverlapping 1.5 mm × 1.5 mm regions of inter-
est were then automatically sampled from within the annotated
region until saturation was achieved. Thus, depending upon their
size, tumors contained between 2 and 90 regions of interest, our
samples. For each sample we construct the radius-codensity bifil-
tration and compute MPH (see SI Appendix for details), using the
first MPH landscape (λ(1,~x )) (21) as a feature vector to quan-
tify the spatial patterning. We can then compare the landscape
vectors using traditional analysis techniques. An advantage of
this approach is that where there are multiple regions of inter-
est (≥ 50 samples) we can summarize statistically the average
behavior across the whole tissue and avoid the risk that biological
variation might confound our analysis if we only compared indi-
vidual samples. Such analysis of a single tumor is summarized
in Fig. 3.

Principal component analysis (PCA) of the collection of land-
scape vectors (Fig. 3B) shows that the MPH landscapes capture
differences in the spatial patterning of the three cell types. We
also observe that CD8+ and FoxP3+ cell samples contain regions
with more prominent voids of larger persistence in both the
radius and codensity parameters than the CD68+ samples.

We apply linear discriminant analysis (LDA) as a dimen-
sion reduction technique (48) to the MPH landscape vectors
(Fig. 3B). Our LDA projects the MPH landscape vectors into
a 2D plane which maximizes the separation between the cell
types. We see that the spatial patterning information captured
by the MPH landscapes of the three immune cell types is suffi-
cient to separate the samples into clusters corresponding to their
cell type.

We test the robustness of the MPH landscape LDA cluster-
ing by training an LDA classifier to distinguish the cell types in
each sample using the first MPH landscape. For each pair of
cell types we make a randomized 80/20 training/test split, train
a regularized LDA linear classifier on the training data, and
evaluate the classification accuracy on the test data. Repeating
this process 100 times we attain average pairwise classifica-
tion accuracies: CD8+ vs. FoxP3+ 74.7%, CD8+ vs. CD68+

65.3%, and FoxP3+ vs. CD68+ 86.3% (see tumor TC in SI
Appendix, Table S10). Using both the first and second MPH land-
scapes (λ(1,~x ),λ(2,~x )) marginally improves these classification
accuracies.

In Fig. 3C we plot radius profiles for each immune cell type:
we compute the mean first MPH landscape across the 1.5 mm ×
1.5 mm regions and sum these landscapes along the codensity
parameter [

∫
λ(1,~x )dxcodensity] to produce the radius profile. The

radius profile coarsely summarizes the size of the voids formed
by each immune cell type in the tumor. We see that the FoxP3+

(and to a lesser extent CD8+) cells support voids at larger radius
than CD68+ cells in this tumor.

We also sum the MPH landscapes over the range of large
radius parameters so that each sample produces an R-valued
statistic,

∫
yradius>240

λ(1,~x )d~x , which indicates the presence of
large voids formed by the cells. The boxplots in Fig. 3C display
the distributions of these R-valued statistics for a tumor which
showed extensive hypoxia across the panel of markers.

For this specimen, we perform a one-sided permutation test
with null hypothesis that the mean of the R-valued statistics coin-
cide for the group of CD8+ samples and FoxP3+ samples against
the group of CD68+ samples. The statistical test indicates the
mean of the macrophage distribution is less than the means of
the CD8+ and FoxP3+ distributions, which is consistent with our
observation that CD8+ and FoxP3+ cells show voids with large
persistence in both the radius and codensity parameters in con-
trast to the CD68+ cells (see tumor TC in SI Appendix, Fig. S9
and Tables S4 and S7 ).
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Our cohort contains five tumors which are sufficiently large
for us to extract ≥ 50, 1.5 mm × 1.5 mm regions and thus to
derive robust statistical summaries of the average behavior of
each immune cell type across the tumor as a whole (SI Appendix,
Tables S4 and S7). These tumors are heterogeneous, showing
varying extents of hypoxia. Within all tumors, the loops formed
by the FoxP3+ cells have larger radii than the other cell types, but
this is not significant for the best oxygenated tumor. We sum-
marize the topological analysis and expression of the hypoxia
markers for the entire cohort in SI Appendix.

Codensity MPH as a Biomarker for Hypoxia. We next investigate the
relationship between the location of specific immune cells and
the local oxygen levels. The location and spatial patterning of
cell types can be analyzed in small regions, whereas oxygen levels
can change over longer length scales. Alignment of cell loca-
tions and oxygen levels at larger regions poses challenges with
registration.

In this analysis, we focus on a larger region of interest, man-
ually selected for the presence of central necrosis, containing
∼ 104 immune cells of each type (Fig. 4A). Using immunohis-
tochemical and morphological markers we classify the oxygen
environment of each cell, in order of increasing hypoxia: Stroma,
PanCK, CAIX, Pimo, and Necrosis (Fig. 4B). Analyzing the
corresponding large point clouds with MPH techniques poses
computational challenges. Therefore, we use a bootstrap resam-
pling technique, taking 50 subsamples of 1,500 points from the
large point clouds (49). For each subsampled point cloud we con-
struct radius-codensity and radius-hypoxia bifiltrations (Fig. 4C),
compute the first MPH landscapes, and then analyze the dis-
tribution of the integrals of the MPH landscapes for the three
cell types (Fig. 4D). Our MPH analysis (of the hypoxic and
better oxygenated tumor) shows CD68+ cells infiltrate hypoxic
tumor regions to a greater extent than the CD8+ cells (Fig. 4
and SI Appendix, Fig. S12), supporting previous observations
(50). In this analysis the distributions of CD8+ and FoxP3+ T
cells are very similar, and for these cell types, the codensity
parameter appears to be a good proxy for hypoxia (SI Appendix,
Fig. S13).

Discussion
In this paper, we have introduced, implemented, and applied
MPH landscapes, a statistical multiparameter topological anal-
ysis, to synthetic and clinical data of immune cell–tumor interac-
tions. This tool is robust to noise, outliers, and artifacts, which
is desirable for biological datasets. Moreover MPH landscapes
provides a quantitative descriptor across multiple length scales
and can be integrated with data analysis and machine learning
techniques (20). Thus, we can sidestep the standard spatially
averaged measures and surpass limitations of 1-PH.

We showcased the power of MPH landscapes on immune
cell patterns by computing them on multiple samples of noisy,
mislabeled data generated from an ABM, which quantified
the effect of chemotaxis on immune cell infiltration. Further-
more, clinical head and neck cancer histology data provided
a testbed to highlight the utility of MPH landscapes. Specifi-
cally, the LDA classified the cells into clusters corresponding
to their cell type, and the MPH landscapes quantified known
differences between immune cell patterns and allowed us to
investigate the relationship between immune cell location and
tumor hypoxia. Although we require more extensive data for sta-
tistical statements (e.g., more small samples and a larger cohort),
the radius-codensity MPH landscapes appear to be a good proxy
for tumor hypoxia. Based on these positive findings, we suggest
that future work exploring the relationship between topologi-
cal analyses, biological mechanisms, clinical/experimental inter-
ventions, and outcomes is warranted. Although computational
registration of multiple sections cut from the same tissue block

is an established methodology to generate multilabeled out-
put images, the work presented in this manuscript would be
improved by multiplex imaging of multiple markers on a single
tissue section. Our pipeline can be easily adapted to analyze such
data and future work will focus on images generated with this
approach.

The real advantages and limitations of any technique become
apparent once their performance can be evaluated in real-world
applications, which is particularly true for MPH landscapes.
Despite the increase in computational costs of MPH landscapes
compared to 1-PH, we circumvented this by analyzing many
small samples (Fig. 3) or subsampling immune cells from a larger
region (Fig. 4). Therefore, we highlighted the versatility of MPH
landscapes for simultaneously providing statements, on average,
about the different densities and shape distributions of tumor-
infiltrating immune cells in head and neck cancer. Furthermore,
we illustrated that including a second filtration parameter (e.g.,
either codensity or hypoxia) to the radius parameter enables this
technique to overcome anomalies that arise in digital pathol-
ogy. In future, MPH landscapes may be applied to understand
more complex data from a wide range of modeling frame-
works (e.g., stochastic models), as well as other experimental
modalities.

Materials and Methods
All point cloud data are available at https://github.com/
MultiparameterTDAHistology/SpatialPatterningOfImmuneCells.

ABM. All simulations were performed using the open source Chaste frame-
work (51). Simulations are initialized with a well-developed spheroid at its
equilibrium size and composition and 100 macrophages distributed ran-
domly in contact with the spheroid edge. We observe the x, y coordinates
of the macrophages every 4 time units for a duration of 100 time units.
For observations with noise, at each observation, every tumor cell (viable or
necrotic) is mislabeled as a macrophage with probability 0.01.

IHC Data. The (x, y) coordinates for each immune cell are identified by
using an image analysis pipeline, implemented in MATLAB, that combines
superpixellation and pathologist-trained support vector machine classi-
fiers to identify positively stained cells from IHC images. We then use a
modified watershedding algorithm to identify immune cell centers and
extract a 2D point cloud for each image (see https://github.com/JABull1066/
ImageAnalysisScripts). This pipeline has been validated against both humans
and other image analysis software and identifies immune cells within IHC
images with a comparable accuracy to trained pathologists (34).

Spatial Statistics. We apply the PCF, g(r), to point cloud data. The PCF iden-
tifies clustering or dispersal in point patterns; g(r)> 1 implies clustering at
length scale r, and g(r)< 1 implies dispersal at length scale r. Following ref.
34, we consider the maximum of g(r), max g(r), as a summary of the PCF
which can be interpreted as identifying the maximum intensity of clustering
in the point cloud.

TDA. 1-PH calculations were performed using the Dionysus 2 software
package (https://mrzv.org/software/dionysus2/). MPH calculations were per-
formed using the RIVET software package (https://rivet.readthedocs.io/en/
latest/) (15). MPH landscapes were computed using https://github.com/
OliverVipond/Multiparameter Persistence Landscapes (21). All persistence
modules were computed over Z2 coefficients. Statistical tests were per-
formed using the Python package scipy.stats (https://www.scipy.org/).

Data Availability. Anonymized point cloud data have been
deposited in GitHub (https://github.com/MultiparameterTDAHistology/
SpatialPatterningOfImmuneCells).
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