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1 | INTRODUCTION
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Abstract

The development of medical imaging artificial intelligence (Al) systems for eval-
uating COVID-19 patients has demonstrated potential for improving clinical
decision making and assessing patient outcomes during the recent COVID-19
pandemic. These have been applied to many medical imaging tasks, including
disease diagnosis and patient prognosis, as well as augmented other clinical
measurements to better inform treatment decisions. Because these systems
are used in life-or-death decisions, clinical implementation relies on user trust
in the Al output. This has caused many developers to utilize explainability tech-
niques in an attempt to help a user understand when an Al algorithm is likely
to succeed as well as which cases may be problematic for automatic assess-
ment, thus increasing the potential for rapid clinical translation. Al application
to COVID-19 has been marred with controversy recently. This review discusses
several aspects of explainable and interpretable Al as it pertains to the eval-
uation of COVID-19 disease and it can restore trust in Al application to this
disease. This includes the identification of common tasks that are relevant to
explainable medical imaging Al, an overview of several modern approaches
for producing explainable output as appropriate for a given imaging scenario,
a discussion of how to evaluate explainable Al, and recommendations for best
practices in explainable/interpretable Al implementation. This review will allow
developers of Al systems for COVID-19 to quickly understand the basics of sev-
eral explainable Al techniques and assist in the selection of an approach that
is both appropriate and effective for a given scenario.
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methods as “black box” algorithms, which require little
or no explicit human intervention, it can be difficult to

Over the past decade, machine intelligent techniques
that attempt to emulate human information process-
ing and decision making have experienced a strong
emergence in medicine." These techniques span a
variety of medical tasks, including computer-aided diag-
nosis (CAD) systems and drug discovery, providing
augmented information to improve patient manage-
ment and clinical outcomes.'~'° However, a key obsta-
cle in applying artificial intelligence (Al) systems is the
lack of transparency in technology contributing to crit-
ical decisions."’='3 Because of the perception of Al

ethically justify their use in high-stake decisions, espe-
cially because this type of technique lends little indica-
tion of when itis likely to fail."'='® Thus, the investigation
of methods that can explain why an Al system provided
a particular prediction is critically important.

In medical imaging, machine learning (ML) is typi-
cally applied to improve medical image assessment and
workflow, including CAD, automatic image segmentation,
and image review scheduling (e.g., triaging high-priority
images that require immediate attention).>9.16-26 The
choice in ML method is dictated by the imaging task,
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Explainability

What type of features
provide appropriate disease
characterization?

Interpretability

Do quantitative features

correspond to physical
interpretation of disease?

Does the Al system correctly
identify disease?

What are the practical
limitations of the Al system?

FIGURE 1 Examples of questions
regarding “explainability” and “interpretability”
as defined in this review. While the two imply
similar meaning, the intended audience and
implementation of the model output is
different between the two

Building trust in medical Al systems

which then influences which interpretability techniques
may be appropriate. In this paper, we review several
approaches to providing interpretable radiological Al
systems.

The terms “explainability” and “interpretability” have
been increasingly discussed in the Al community, par-
ticularly as they pertain to Al performance and ethics,
and have raised several important questions.?’~2° Wil
radiologists more heavily weigh Al output with improved
interpretability? Can the incorporation of explainable
techniques also benefit model performance? Who is
responsible when inappropriate decisions are made
based on Al output? These and similar questions
have instigated several attempts to define “explainabil-
ity” and “interpretability” in Al; however, many defini-
tions have considerable overlap or clash2’~2% In our
review, “explainability” refers to techniques applied by a
developer to explain and improve the Al system, while
“interpretability” refers to understanding algorithm out-
put for end-user implementation. Questions portraying
the intended meaning of each term are given in Figure 1.

Several groups have provided excellent surveys of
explainable Al and visualization.!"28:30-34 However,
such reviews tended to focus on more general problems
in both medical and nonmedical disciplines (e.g., nonim-
age assessments), whereas our review prioritizes rapid,
seamless implementation and discussion from a prac-
tical perspective for both radiology developer and end-
user standpoints. In Section 2, we define several relevant

medical imaging tasks, then proceed in Section 3 with a
brief discussion of general methods. In Sections 4-6,
we categorize techniques into three groups, providing
brief discussion of their function, advantages, and dis-
advantages, as well as example applications from devel-
oper and end-user perspectives. Finally, we discuss
appropriate metrics for explainable Al evaluation in Sec-
tion 7, applications to problems specific to COVID-19
in Section 8, and provide recommendations for use in
Section 9.

2 | MEDICAL TASKS OF INTEREST

The most common task in medical imaging Al is dis-
ease detection and diagnosis, which include methods
that predict the presence or absence of a condition,
the classification between different subtypes of a con-
dition, and/or the localization of a condition within the
image.” 353 While these tasks are often performed
using separate models, they can be treated similarly.
For example, does a “normal” image class contain only
images with no underlying disease, or does this classifi-
cation imply the possibility of presence of other abnor-
malities? Is there a region of the image where local-
ization would be nonsensical, such as disease identi-
fication outside of the body? These distinctions have
important implications for understanding the true perfor-
mance of an Al system and should be clearly defined.
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FIGURE 2 Portrayal of the tradeoff
between learning performance, which is often
associated with the number of learned
parameters, and explainability. Note that deep
networks are among the most common
techniques for ML-based medical image
evaluation, but also have generally low
interpretability. There has been a strong push
in recent years to develop techniques for
general explanation of neural network
predictions. Image acquired from Gunning
(publicly available presentation with open
distribution)®”

Neural Nets

Deep
Learning

Examples of detection/diagnosis tasks include screen-
ing CXR images for the presence of COVID-19 and
identifying regions in an image that are indicative of
COVID-19. Note that detection within an image can
include a localization task, that is, the Al determines
that the image contains an abnormality, then locates the
abnormality, and finally classifies it. Thus, detection indi-
cates potential disease and diagnosis works to classify
the detection as disease or not.

Disease prognosis is often considered similarly to dis-
ease detection and diagnosis, but with a different med-
ical interpretation. Prognosis tasks include severity or
subtype classifications or direct classifications into prog-
nostic subgroups that are predictive of future patient
developments, including disease progression, response
to therapy, and mortality. Often, the “normal” subclass is
absent from prognostic Al systems with the assumption
of prior disease diagnosis. Further, the form of disease
severity quantification can vary depending on the dis-
ease in question (e.g., lung opacity and size of tumor),
so the Al technique and interpretability/explainability
approach must be chosen appropriately for the given
task as well as be understandable by the intended audi-
ence. Prognostic evaluations often have life or death
implications, thus the explainability of such decisions is
a necessity for aiding the physician and patient in mak-
ing informed treatment decisions.

3 | OVERVIEW OF
EXPLAINABILITY/INTERPRETABILITY
APPROACHES

In general, a tradeoff exists between the complex-
ity/depth of an Al system and its interpretability, with
classical, shallow algorithms, such as decision trees,
providing more explainable output with a potentially
reduced performance.3*37-3 Figure 2 depicts this phe-
nomenon for several commonly used algorithms. It is
important to note that finding the optimal operating point

Learning Techniques (today)
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between system performance, which will improve patient
management, and system interpretability, which will lead
to more frequent implementation and trust in radiologi-
cal practice, is critical.

4 | FEATURE ANALYSIS FOR
EXPLAINABLE AND INTERPRETABLE Al
4.1 | Feature distribution analysis

Feature extraction has been a mainstay in ML for
decades. Early on, features were handcrafted func-
tions (i.e., human-engineered features) that attempted
to identify intuitive information for computer vision tasks,
such as shape, intensity, and morphology, while recent
studies utilize automatically identified deep learning
features either solely or in fusion with handcrafted
features.” 392 Feature distribution analysis can pro-
vide information for improving both performance and
understanding of Al systems. For example, plotting
data in feature space can enable the visualization of
class distributions and decision boundaries. However,
this is infeasible for cases with high-dimensional feature
spaces of most modern deep learning networks. Thus,
several techniques have been developed for feature
dimensional reduction (DR), including principal compo-
nent analysis (PCA), t-distributed stochastic neighbor
embedding (t-SNE), and uniform manifold approxima-
tion and projection (UMAP), among others*3~4> Each
DR technique provides different advantages and dis-
advantages for feature distribution analysis, some of
which are addressed below. Note one critical tradeoff
for data visualization and explainability: as discussed
by Mclnnes et al., DR methods tend to prioritize the
maintenance of either local or global structural trends in
feature space.*® In general, local structure preservation
has proven more effective for visualization purposes, but
the loss of global structure is potentially detrimental for
other aspects of Al techniques, such as classification
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performance.*® Potentially, a balance between the two
will be most effective.

PCA is one of the oldest techniques for feature
DR and visualization and is still widely used in many
fields, including medical imaging.*® Briefly, PCA iden-
tifies orthogonal bases that provide uncorrelated fea-
tures ranked in order of highest to lowest by degree
of variation. Plotting data in the feature space with the
first two/three principal components allows for visualiza-
tion that, in some cases, can account for a large degree
of total variance within the dataset. Thus, class distri-
butions can be visualized in this simple, deterministic
approach. There are considerable weaknesses to PCA
though; it is likely that the first few principal components
(which would likely be those chosen for low-dimensional
visualization) only account for a moderate percentage
of the total variance within a dataset. Additionally, PCA
prioritizes global structure preservation in a linear fash-
ion over local preservation; while this may be more use-
ful for ML system performance, it is likely suboptimal for
explainable/interpretable output.

Alternatively, t-SNE is a DR approach specifically
developed for data visualization using information
theory techniques** This technique optimizes the
Kullbeck—Leibler divergence between joint probabilities
in the high-dimensional feature space and the low-
dimensional embeddings used for visualization, allow-
ing for the identification of local neighborhoods within
a dataset. Since its inception in 2002, t-SNE has been
widely implemented in medical imaging feature visual-
ization. Compared to PCA, t-SNE has several advan-
tages. It allows for nonlinear transformation and preser-
vation of local structure, which may be beneficial for
visualization as previously mentioned. Several variants
of t-SNE have been developed to overcome its major
flaws, including run-time improvements and parametric
t-SNE to allow for transform application to unseen data
and variants that can effectively scale to large amounts
of data*®*” From a purely interpretive/explanatory per-
spective, the transformation performed by PCA has
clearly identifiable geometric explanations, whereas t-
SNE does not.

UMAP is a promising approach to DR for visualization
that potentially improves upon t-SNE through scalability
to large amounts of data, flexibility of embedding dimen-
sionality, and potentially superior preservation of global
structure while maintaining visualization quality of local
structures compared to t-SNE. A relatively recent pub-
lication, the original paper on UMAP directly compares
the algorithm to t-SNE and LargeVis,***® another com-
monly used visualization technique. Essentially, UMAP
constructs local fuzzy simplicial sets followed by an opti-
mized spectral embedding. Because of the recency of
UMAP development, there are still several questions that
are under investigation, including the impact of hyper-
parameter selection and the preservation of global and
local structures in the embedded space. While investiga-

tions into these and other topics are ongoing, the current
indication is that UMAP is generally superior to other
modern feature analysis techniques, particularly for fea-
ture visualization.

4.2 | Visualization of feature space

There are several critical problems that must be
addressed before Al systems can be applied to medi-
cal imaging problems both from the developer and end-
user perspectives. For example, understanding which
unseen cases will be difficult for automatic assessment
is critical; a developer can adjust the model accord-
ingly based on failed experimental cases and an end-
user is more likely to trust the algorithm if there is prior
knowledge of which cases may be problematic. Fea-
ture distribution analysis can provide insight into devel-
oping solutions to these problems; thus, the discussion
below will provide examples of how these algorithms
can be applied to improve developer understanding and
build end-user trust for problems related to COVID-19
assessment.

4.2.1 | Developer perspective

As a developer, the use of feature analysis is dependent
on the imaging task. Thus, this section focuses on dis-
ease detection and prognosis evaluations from a devel-
oper’s standpoint.

The difficulty of determining presence or absence of
disease is largely dependent on the disease in ques-
tion. For example, it may be easier to detect a broken
bone in a right arm radiograph, where it is unlikely that
other abnormalities will be visible in the image, than to
detect the presence of COVID-19 pneumonia on a tho-
racic CT scan, which could present several other con-
founding presentations (e.g., other viral pneumonias).
Visualizing feature space can identify those cases that
are difficult to accurately classify. Consider a detec-
tion/diagnosis problem in which a binary classification
must be made between radiographs of patients with
COVID-19 and those without COVID-19. Using feature
DR techniques, all data can be plotted in a visualizable
space (e.g., t-SNE/UMAP space) and colored to repre-
sent the ground truth disease present within each image.
This will allow the developer to identify if there are spe-
cific cases, such as those that also present lung can-
cers or other viral pneumonias, that will potentially be
confusing during classification and overlap with the dis-
ease in question, that is, COVID-19. The developer can
then make better choices in algorithm selection or model
adjustment accordingly in order to attempt to correct
the overlap between confusing cases, for example, by
including more difficult cases in the training set or using
bootstrapping.



A REVIEW OF EXPLAINABLE AND INTERPRETABLE Al

MEDICAL PHYSICS——

(a)
NoCOVID-19- ,.."." . *  COVID-19 Positive
A hae . Without significant GGO
'y 4 A
P THys
S 1 COVID-19 Present
(b)
y ‘r\fnl-:i/No Diseas
Y s :
Severe Disease
FIGURE 3 (a) Example of embeddings for a diagnosis task. Red

points show positive embeddings, while green and black points show
negative embeddings. The ovals depict distributions estimated from
the points, with the different ovals referencing different presentations
of disease. For example, presentations of COVID-19 on CT images
include ground glass opacities, crazy paving, and architectural
distortions. The black oval indicates a positive presentation that
significantly overlaps with the negative class distribution, indicating
that these cases are problematic and may need a larger prevalence
in the training set. (b) Example of embeddings for prognostic clinical
evaluation. Green, yellow, and red points refer to healthy/mild,
intermediate, and severe disease stages with corresponding
distributions depicted through ovals. Clinically, this could be used to
help identify in which stage a patient lies and appropriately guide
clinical decisions

Alternatively, these techniques could also be applied
to predict patient prognosis. Cohen et al. present
this concept by showing how UMAP embeddings can
change between patients who are healthy, patients who
are unlikely to recover from disease, and patients who
are in indeterminate.*® However, as Cohen discusses
and we present in Figure 3, there are case embeddings
of patients who recovered that appear within the gen-
eral distribution of “embeddings of no return*? This
overlap is highly undesirable for clinical implementa-
tion. An end-user may identify that an unseen case lies
within this distribution and incorporate that information
into their assessment of survival likelihood; however, if
there is a significant number of cases with good out-
comes overlapping with this distribution, then including
such information could be misleading and lead to patient

mismanagement and poorer outcomes. Thus, adjusting
the model to minimize overlap is critical.

4.2.2 | End-user perspective
From an end-user’s perspective, the key goals of Al sys-
tems include providing useful information and added
comprehension that will enhance diagnostic perfor-
mance and/or reduce reading time. One aspect of this is
enabling user trust in the model, which can be conveyed
through visualization of dimensionally reduced features.
Examining the prognosis example given from the
developer perspective can also provide insight into how
to build trust for the end-user. One option for provid-
ing interpretable information is identifying the similari-
ties between the test case and training data. This could
include highlighting the k-nearest training set neighbors
of the test case with color coding to identify the neighbor
classes, or a heatmap/distribution overlay highlighting
class distributions as in Figure 3. Each of these would
inspire trust in model output if, for example, all neigh-
bors belong to the same class. In some cases, the test
case can be visualized in the embedded space if the DR
transformation can be reapplied (e.g., PCA and UMAP),
which could also assist in interpretability. For problems
with more concrete decision, such as detection and diag-
nosis, visualizing other aspects of the feature space,
such as the decision boundary, could also increase trust.

5 | INFLUENTIAL REGION
IDENTIFICATION

While image classification algorithms have achieved
high performance for many tasks, many have posed
questions about what in the image caused a classifi-
cation decision to be made. Because of this, several
groups have developed methods that attempt to identify
the region(s) of input images, which were influential in
the classification decision; ideally, these methods high-
light the diseased tissue within an image. In this section,
we review current methods of influential region visual-
ization and discuss how these can be used by develop-
ers to improve models and develop trust for the end-user.

5.1 | Region proposal

Generally, region proposal refers to techniques that
attempt to determine which regions of an image
are likely to be of interest. These techniques have
been developed and investigated over the past 25
years, including approaches that predate the current
ML boom, culminating with state-of-the-art approaches,
such as Mask R-CNN that integrate region proposal and
object detection.°® However, these techniques can be
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computationally expensive, so methods with a lower
memory footprint may be useful if there is minimal drop
in performance.

While there are several region proposal approaches
that do not utilize deep learning, such as classical slid-
ing window techniques, selective search rises to the top
due to fast runtime and high recall.>' Essentially, selec-
tive search first provides semantic oversegmentations
following a graph-based method,>? followed by region
segmentation through hierarchical similarity measures
comparing size, shape, color, and texture. Bounding
boxes are generated based on similar regions, which
can then be used for downstream tasks, such as image
classification or for interpretable output. While selective
search is effective and more easily understandable than
deep network-based algorithms, the runtime is generally
longer (although this may be practically irrelevant in clini-
cal practice) and performance fails to match that of deep
networks.

More recently, state-of-the-art region proposals have
been produced through a class of deep networks called
region proposal networks (RPNs).>3-56 RPNs evaluate
an input image to produce a set of potentially impor-
tant regions by applying a sliding window to the out-
put of a convolutional layer in a deep network. A slid-
ing window technique moves multi-scale shift invariant
anchor windows of varying input size and shape across
all points within the image and classify if an anchor cen-
tered at a given location identifies a region of interest.
As is often the case for deep networks, RPNs provide
improved performance and runtime at the expense of
decreased interpretability of why a given bounding box
was selected/classified. However, the use of RPNs as
an interpretability tool reduces the need for understand-
ing the network output as the purpose of the RPN is
to provide guidance to the radiologist, not to provide a
computer classification based on the RPN output.

5.2 | Heatmap visualization

Compared to region proposals, heatmaps can convey a
more complete representation of the influential regions
of an input image and provide a heightened sense of
interpretability. Heatmaps serve as a powerful explana-
tory tool that are typically produced from some com-
ponent of a deep network (nondeep learning image
heatmaps exist but will not be discussed here). How-
ever, because the method of production can change
the appearance and intended meaning of the heatmap,
they should be used cautiously and with clear intent
for end-user interpretation. They could unnecessarily
increase reading time or cause confusion if used inap-
propriately, thus, heatmap utility should be assessed
on a per task basis before clinical implementation.
Note that several methods discussed below have been

successfully applied to a broad range of fields, but this
discussion will be restricted to application in medical
imaging.

There are multiple components of deep networks that
can be utilized in heatmap production. The simplest
and most generally applicable approach is the use of
saliency maps, which refer to a set of techniques that
aim at identifying the regions of an input image that
are influential in the final classification decision.°” These
techniques are varied, including the use of deconvo-
lutional networks®® and backpropagation gradients at
different layers of the network,®’ culminating in guided
backpropagation, a common approach to saliency map
production.’® Guided backpropagation algorithms serve
as the basis for many explainable/interpretable Al tech-
niques, providing fast heatmaps with a relatively fast
runtime.

While saliency maps are determined from the inter-
mediate layers of the network, a more recent approach
to heatmap production stems from the final layers of
a convolutional neural network (CNN) instead. Class
activation mapping (CAM) algorithms derive a weight-
ing factor from the final layers of a CNN immediately
prior to classification; in the original variant of CAM, this
weighting factor was simply the learned model weight
applied to a global pooling layer for classification .5 More
advanced techniques, such as Gradient-weighted CAM
(Grad-CAM), improve upon this approach by calculat-
ing weight factors based on the gradient information
from the final convolutional layer rather than the global
pooling layer®! This allows for improved versatility in
architecture applicability and improved performance for
coarse heatmap production. Further, Grad-CAM can be
combined with the guided backpropagation algorithm to
produce more finely resolved heatmaps, which may be
desirable depending on the typical size and shape of a
desired anatomical region of interest.

The final approach to heatmap production discussed
here is attention gating, a technigue commonly used
to improve network performance that may be used
to provide interpretable output2-5° Essentially, activa-
tion gates attempt to enhance Al system performance
by emphasizing potentially important regions and
suppressing background/irrelevant signal. This is often
accomplished by producing learned weighting maps
and performing element-wise multiplication between an
attention map and a corresponding input signal (e.g.,
an intermediate CNN layer). While CAM approaches uti-
lize characteristics of the network with no influence on
the classification performance, activation gates are a
learned component of the network that can have a sig-
nificant impact on network output. Many recent efforts
have attempted to implement the self-attention mecha-
nisms used in vision transformer architectures for com-
puter vision techniques, which can provide both global
and local attention %°
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5.3 | Developer perspective

In contrast to feature space visualization, the visual-
ization of influential image regions provides a more
specific, detailed evaluation of classification models
and their potential misuses can be identified through
influential region identification. Here, three studies are
briefly discussed, which could inform future model
production and improvement based on the use of
heatmaps.

Hu investigated the potential of soft tissue image
inclusion, acquired either through dual energy subtrac-
tion or through other postprocessing techniques, for
automatic COVID-19 diagnosis on chest radiographs.5’
The study trained three classification models for stan-
dard radiographs, soft tissue images, and a variant which
fused features from the two image types, but found no
notable improvement in classification, which was sup-
ported by little difference in Grad-CAM heatmaps from
the different classifiers (Figure 4). Similarly, Oh et al.
utilized a novel Grad-CAM-based method to visualize
classifications of lung patches between normal, COVID-
19 pneumonia, and multiple other lung diseases, includ-
ing other viral pneumonias 8 The visualizations demon-
strate that there is little to no visual signature contributed
from non-COVID-19 diseases to the heatmap output,
indicating that the model appropriately specifies COVID-
19.

Alternatively, Cohen utilized a deep learning model to
predict the extent and opacity of COVID-19 pneumonia
in chest radiographs and incorporate saliency maps to
evaluate model performance and provide interpretable
output® They also provided example heatmaps of
cases that were successful in COVID-19 region identifi-
cation and of cases that were not. Interestingly, they pro-
vided one example that marks a region within the heart,
not the lungs, as a success, claiming that this may indi-
cate that the model uses the heart opacity to determine
the relevant opacity of the COVID-19 involvement. This
result may suggest that certain preprocessing steps,
such as those that remove the heart (e.g., via lung
segmentation) prior to deep network analysis may be
inappropriate for COVID-19 severity assessments. This
contradicts the study by Oh which utilized segmented
images for input to the model, thus the influential region
visualization indicated that one of these models may be
suboptimal.

5.4 | End-user perspective

As a radiologist, the usability of influential region iden-
tification is relatively straightforward. The key ques-
tions to be asked are similar to those from feature
space visualization: does the model and visualization
improve radiologist performance? Is the reading speed

MEDICAL PHYSICS——

significantly decreased and worth the longer reading
time?

6 | CONTRIBUTION AND IMPORTANCE
OF IMAGE FEATURES

Feature importance refers to techniques that assign a
score to input features based on how useful they are
at predicting a target variable. Popular examples of fea-
ture importance scores include statistical correlation
scores, coefficients calculated as part of linear mod-
els, decision trees, and permutation importance scores.
Feature importance scores are the basis for dimen-
sionality reduction and feature selection, which can
improve the efficiency and effectiveness of a predictive
model.

Feature selection methods reduce the number of
features by eliminating features that present redun-
dant information (i.e., features possessing zero vari-
ance between classes) or selecting relevant features.
Doing so can lead to several benefits, such as improved
accuracy, reduced overfitting risk, reduced training time,
increased robustness and generalizability, as well as
enhanced explainability of models. The optimal num-
ber of features to use is dependent on the amount of
data available and by the complexity of the task. The
feature reduction methods can be categorized by how
they are coupled to the ML algorithms, as depicted in
Figure 5. Filter methods select features on the basis of
a calculated score by looking only at the intrinsic prop-
erties of the data, independent of the model. For exam-
ple, one can filter out highly correlated features using
a correlation matrix or use the t-statistic and its multi-
class variant ANOVA to calculate the p-values for every
feature. Wrapper methods, such as forward, backward,
bidirectional, recursive feature elimination, and genetic
algorithms, use the model’s performance as the evalua-
tion criteria when determining which features to include
or exclude. This method can more accurately determine
the optimal feature subset that contributes to the best
model performance than filtering but is more computa-
tionally expensive. In embedded methods, the feature
selection process is an integral part of the classification
model. The performance value for every feature is given
by an ML model based on how much each feature con-
tributes to the model training. Embedded methods also
have less computational costs compared to wrapper
methods because the model is built only once to deter-
mine the feature scores, but they do require a parameter
to specify the cutoff value of the feature scores.

While feature selection is used to determine which
features should be used in an ML model before or during
training, feature importance methods attempt to explain
which features are most influential to a model decision
after the fact.
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Original Image Occlusion Map Guided Saliency Integrated
Backpropagation Gradients
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FIGURE 4 Example heatmaps obtained from a variety of techniques (top)’® and from Grad-CAM (bottom) 7 Each technique may provide
different evaluations of influential regions, both in terms of relative importance and key locations. Further, note that Grad-CAM may identify
regions that are not important to a human observer. Regions outside the lungs were identified with relatively high influence for the network
classification even though a radiologist likely would not use this information in COVID-19 diagnosis. In the examples by Hu (bottom), some of
the Grad-CAM examples demonstrate reasonable heatmap localization (a—c), while others are less intuitive (d, ). Acquired with permission
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FIGURE 5 (a) Filter, (b) wrapper, and (c) embedded feature selection methods. Filter methods perform the feature selection independently
of construction of the classification model. Wrapper methods iteratively select or eliminate a set of features using the prediction accuracy of the
classification model. In embedded methods, the feature selection is an integral part of the classification model.”! Obtained with permission

under MDPI Open Access Policy
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FIGURE 6

Shapley values acquired for classification of several example images. Note that this technique can identify both positively and

negatively influential pixels. In general, these examples follow expectations with peripheral, lower lobe features providing generally more

influence than other regions of the lung for COVID-19 diagnosis

6.1 | Shapley values

SHAP (SHapley Additive exPlanations) is among the
most commonly cited approaches for explainability
quantification.”? This approach adapted from game the-
ory is flexible to any type of deep learning model, includ-
ing computer vision techniques. An estimated Shapley
value is used to identify/explain which features lead to
the prediction a model calculated as the contribution of
a feature value to the difference between the actual pre-
diction and the mean prediction. Features that cause
highly scored predictions (e.g., positive predictions) are
displayed in red (Figure 6), while lowly scored predic-
tions are displayed in blue. One major advantage of
Shapley values is that the difference between a given
prediction and the average prediction is relatively dis-
tributed among the feature values.

6.2 | Local interpretable model-agnostic
explanation

Local interpretable model-agnostic explanation (LIME)
is also a general technique that can be used to explain
any ML/black box classifier, including text from radiolo-
gist reports and medical images.”®> LIME samples input
data used to train a classification model, slightly per-
turbs the training data, and evaluates the perturbed data
with the classification model to evaluate how changes
to input impact output. By repeating this process, LIME
identifies how individual features lead to the prediction
probabilities. A major drawback is that different kernels
may be appropriate for each implementation, thus opti-
mal use of LIME may be an iterative, time-consuming
process. Further, LIME may be detrimentally impacted by
model bias, which may cause distrust for the end-user.

7 | EVALUATION OF EXPLAINABILITY
AND INTERPRETABILITY

While the topic of explainable Al techniques has been
of extreme importance and interest, the evaluation of
these algorithms remains a difficult and as of yet rela-
tively unexplored problem. For example, Adebayo and
Arun attempt to characterize the trustworthiness of
saliency mapping techniques in natural and medical
images, respectively.’*"° It is important to remember
that the end-goal of medical Al systems is for clinical
use, and each end-user may have different preferences
or conditions that allow them, individually, to achieve
their best performance. In this section, we discuss pro-
posed approaches to explainable Al evaluation from
both human and automatic evaluations. Importantly, we
identify that there are two separate yet equally important
aspects of evaluating explainable Al: (1) is clinical per-
formance benefitted by the use of an explanation and
(2) does the model explanation satisfactorily capture the
cause of the Al prediction.

7.1 | Human-based explainable Al
evaluation

The most straightforward approach for explainable Al
evaluation is an observer study comparing radiologist
(i.e., the end user) performance in reading images with
explainable Al output and without explainable Al out-
put (or with a different type of explainable output), while
assessing reading time and performance accuracy. This
approach most closely mimics clinical use, but human
evaluators can be inconsistent and often fail to remain
objective. This can be exacerbated by several factors,
including personal preferences, hot topics in scientific



A REVIEW OF EXPLAINABLE AND INTERPRETABLE Al

© | \EDICAL PHYSICS

literature, and desired outcome of a study, thus the
removal of subjectivity from human-based evaluations
of explainable Al systems is of paramount importance.

Metrics for explainable Al assessment through human
observation should be evaluated as in a multi-reader
multi-case (MRMC) approach.’®’” The use of multiple
readers and a large set of diverse cases is important, as
observer variability can strongly impact the actual per-
formance of computer-aided (Al-aided) systems.’8-80
With that in mind, MRMC studies that utilize receiver
operating characterisitic (ROC) and precision-recall
analyses with proper statistical characterization of vari-
ance are ideal for determining if an explanation benefits
clinical performance. Other metrics include Cohen’s «,
F1 score, and changes to accuracy and response time.

Understanding if an Al explanation adequately cap-
tures the root cause of a prediction (e.g., COVID-19 pos-
itive or negative) is a more difficult problem that requires
further exploration. One approach to this issue is pro-
posed by Hase and Bansal through forward simulation
and counterfactual simulation studies®' Forward simu-
lations describe a scenario in which a reader, given some
input, attempts to predict a model output, while counter-
factual simulations involve predicting how a model out-
put changes given a perturbation to the input. On the
topic of explainable Al evaluation, this approach cap-
tures the question, “does the radiologist understand why
a prediction was produced?” This kind of study can be
approached in many ways. For example, Doshi-Velez
and Kim proposed to evaluate forward studies by pro-
viding an observer with model input and explanation;
however, Hase and Bansal argue that a true objective
evaluation of understanding requires that the explana-
tion not be provided because this causes many cases to
be trivial 8:82 In reality, both approaches are useful and
can provide valuable insight into how an approach can
be improved and translated to the clinic. In these scenar-
ios, the study aims to assess understanding, not perfor-
mance, thus ROC analysis and precision-recall analysis
are inappropriate. Instead, evaluations should consider
the rate at which an observer is able to appropriately
predict a model’'s inference/change in inference upon
input perturbation.

7.2 | Automatic explainable Al
evaluation

In general, there has been little exploration of automatic
evaluations of computer-based explainable Al output,as
may be expected due to the goal use of human inter-
pretation. It is insensible to consider the question “does
explainable Al improve clinical performance”in this case,
as the explanation is meant for radiologist interpreta-
tion rather than model performance. Thus, we only focus
on the second question of understanding input per-
turbation effects. Currently, most attempts to produce

automatic explanation evaluations utilize counterfactual
simulations as identified above in combination with a
feature importance metric. The features deemed impor-
tant to a classification (ideally, those features/regions
indicating COVID-19 positivity) are removed from the
input and the change in model output is evaluated.
For example, the influential pixels of an input image
may be identified by guided backpropagation, altered
to reflect an unimportant region (e.g., patch of random
noise and GAN-based synthetic region adjustment), and
the corresponding output should reflect a significantly
reduced likelihood of positive classification. Notably, this
approach can be used not only for counterfactual simu-
lation, but also for important feature identification (Sec-
tion 6.3). Studies have utilized a variety of metrics for
this type of approach, with the area over the perturba-
tion curve and switching point, which briefly evaluate
the change in model output as a different amount of
input features are removed from the classification step.
Additionally, this change can be evaluated by assess-
ing how the output traverses through feature space
through feature removal and how this impacts class
probability.

Finally, more standard semiautomatic approaches
that are based on either manually or automatically pro-
duced ground truth may be appropriate depending on
the explanatory task. For a simple case, consider a
model trained to detect COVID-19 with explanation pro-
vided through CAM. Any COVID-19 presence, if visible,
would likely be the most influential region as identified
by a radiologist. If the model and explanation provide
appropriate identification of this region, then the CAM
heatmap would also highlight the region of COVID-19
involvement. To evaluate if this is true, a threshold can be
applied to the heatmap and compared to a radiologist’s
delineation of this region using a segmentation metric,
such as the Dice coefficient or intersection over union.
If the explanation significantly overlaps with the man-
ual segmentation for a large, diverse image set, then the
explanation may be deemed effective and understand-
able. This also allows for identification of those images
for which the model explanation does not behave as
expected by the radiologist and, in turn, can inform
the developer and radiologist on which cases are most
appropriate for Al system implementation. In this way, Al
evaluation techniques that are standard in current liter-
ature can be applied to evaluate explanations if applied
in an appropriate manner.

8 | ADDRESSING COVID-19 THROUGH
EXPLAINABLE Al

To fully understand the clinical application of explain-
able Al for COVID-19 assessments, we must first under-
stand the data associated with COVID-19. While reverse
transcription polymerase chain reaction (RT-PCR) tests
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are the most common tool for COVID-19 detection, both
radiography and CT can supplement RT-PCR testing
to improve detection accuracy and throughput 3 How-
ever, no single radiography or CT finding is sufficient for
COQOVID-19 diagnosis, thus understanding the subtle dif-
ferences between COVID-19 and non-COVID-19 pneu-
monias makes differential diagnosis a difficult task and
requires a complete view of all chest findings to pro-
vide high classification performance?3-8° Explainable
Al has the potential to fill this role and augment diagno-
sis tools for improved detection accuracy and differential
diagnosis.8° Further, standardized language for describ-
ing COVID-19 and the construction of publicly avail-
able imaging datasets can satisfy data requirements
and standardize model evaluation8” This includes
large-scale efforts, such as the NIH-funded Medical
Imaging and Data Resource Center, which is comprised
of multi-institutional, multi-modal data acquired through
the Radiological Society of North America, the Ameri-
can College of Radiology, and the American Associa-
tion of Physicists in Medicine. Further, while this review
has primarily focused on the use of radiography and
chest CT, other modalities, including PET/CT, lung ultra-
sound, and MRI, may play a role in COVID-19 patient
management8®

In many ways, the development of Al systems for
COVID-19 assessment is unchanged from development
for other disease evaluations. In the current literature,
the most common use of explainable Al for COVID-19
evaluation is to ensure that the model correctly focuses
on regions of interest in the input image that are indica-
tive of disease presence, usually through heatmap visu-
alization, as implemented by Mei, Bai, Wehbe, and Mur-
phy with varying degrees of success?8°" In particu-
lar, Murphy and Wehbe demonstrate heatmaps for both
positive and negative COVID-19 cases, noting especially
that the negative examples show low influence within
the lungs.?%°" Alternatively, the heatmaps shown by Bai
correctly highlight COVID-19 within lung segmentations
but also identify regions with no content (e.g., outside the
lung mask) as influential to the classification decision 8
This finding provides limited understanding of model
performance and should be further investigated prior to
clinical implementation.

In the case of COVID-19, the problem is also slightly
more nuanced than other diseases because of other
confounding disease presentations that could be easily
mistaken for COVID-19, particularly those which present
similar, nonspecific imaging findings to COVID-19, such
as other viral pneumonias. This is effectively demon-
strated by Jin et al., who partitioned 11 356 CT scans
into four disease categories, no pneumonia, influenza,
community-acquired pneumonia, and COVID-19 pneu-
monia, and identify phenotypic errors that occurred for
both human and Al readers®? Jin et al. utilized both
Grad-CAM and Guided Grad-CAM to visual influential
image regions and provide segmentations of diseased
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regions.’? Similar to Bai’s work, Grad-CAM indicates
that the model identifies regions both inside and out-
side the lungs as highly influential, while Guided Grad-
CAM improves heatmap visualization but does not cap-
ture all diseased lung tissue®® Further, they utilize t-
SNE to visualize feature embeddings of the different
disease classes and identify image features that are
problematic to the classification decision.?> Importantly,
there is overlap between embedded COVID-19 and the
no pneumonia classes. Thus, explainable Al systems
that are translated to the clinic must include validation
with explainable output tested on an independent set
of cases, which have similar imaging findings to confirm
model performance.

Another unique application of explainable Al for
CQOVID-19 evaluation is presented by Zhang et al. in
which quantitative lesion features and clinical metadata
are utilized to construct classifiers for predicting patient
prognosis.’® Zhang et al. utilize Shapley values to eval-
uate how individual features impact the risk classifier in
terms of both the overall importance of each feature
and whether each increased or decreased a prediction
output?® Further, they evaluate different drug admin-
istrations and how the patient responded to treatment
based on the lesions from which they extracted quantita-
tive features. Because COVID-19 is a relatively new dis-
ease, this type of analysis for understanding image con-
tent that is indicative of high risk, especially in conjunc-
tion with clinical metadata, is incredibly valuable and has
implications in treatment decisions, such as how aggres-
sively a patient should be treated and which drug should
be used for the treatment. This is a clear example of how
imaging paired with explainable Al can shape our under-
standing of COVID-19 patient risk and be implemented
clinically to assist with treatment decision making.

9 | RECOMMENDATIONS
As Al systems are increasingly implemented worldwide,
the inclusion of explanatory components becomes an
increasingly important problem. The European Union
has released guidelines for building trustworthy Al and
will propose regulations on high-risk Al use in 2021, thus,
the incorporation of explanations should be a serious
consideration of any systems produced for clinical use.

In many cases, the choice of explanation type may fol-
low logically from the chosen Al approach. For example,
if PCA or UMAP are already utilized in an Al pipeline,
then there is little reason to not plot data in feature
space to evaluate class distributions. Further, most con-
volutional neural network architectures are conducive to
Grad-CAM application, which has quickly become one
of the most widely applied explainability techniques in
medical imaging.

The question of interpretability technique then arises
when the choice is not obvious based on a given
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Al pipeline. In this situation, one must consider sev-
eral important points to provide an Al explanation. Is
there an interpretable technique that can be directly
applied to the current algorithm? Would an architec-
ture alteration for incorporation of interpretable output
affect model performance? What is the end-goal of the
explanation?

In general, this question is easier to answer for end-
user application than developmental investigation. End-
users value ease of use, clarity, and general perfor-
mance improvement. In this regard, heatmaps are the
most widely accepted approach and Grad-CAM is the
current primary standard. However, for nonclinical appli-
cation, the choice is significantly more impacted by the
question at hand. UMAP is the most flexible and gen-
erally appropriate technique for feature space visualiza-
tion, while individual feature evaluations may contribute
more easily interpretable information, such as under-
standing the physical implications of a given feature. In
all, the choice in explanation technique should provide
useful, actionable information for a developer and gain
trust for end-users.

Eventually, superior-performing Al systems may not
require interpretability output if the output is generaliz-
able, exhibiting high performance, robust performance,
and unbiased performance. Over time, the end user will
trust the output, as clinicians do now with various medi-
cal tests, such as blood tests.

10 | CONCLUSIONS

The recent COVID-19 pandemic made clear that rapid
clinical translation of Al systems may be critically
important for assisting treatment-related decisions and
improving patient outcomes. This review has identi-
fied several approaches for providing explainable and
interpretable Al output and discussed their advantages
and disadvantages for key medical imaging scenarios
related to COVID-19 patient management. Further, this
review provides recommendations for appropriate incor-
poration of these techniques to improve ML models and
evaluate their performance.
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