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Abstract: For the sustainable development of spintronic devices, a half-metallic ferromagnetic film
needs to be developed as a spin source with exhibiting 100% spin polarisation at its Fermi level at room
temperature. One of the most promising candidates for such a film is a Heusler-alloy film, which has
already been proven to achieve the half-metallicity in the bulk region of the film. The Heusler alloys
have predominantly cubic crystalline structures with small magnetocrystalline anisotropy. In order
to use these alloys in perpendicularly magnetised devices, which are advantageous over in-plane
devices due to their scalability, lattice distortion is required by introducing atomic substitution
and interfacial lattice mismatch. In this review, recent development in perpendicularly-magnetised
Heusler-alloy films is overviewed and their magnetoresistive junctions are discussed. Especially,
focus is given to binary Heusler alloys by replacing the second element in the ternary Heusler alloys
with the third one, e.g., MnGa and MnGe, and to interfacially-induced anisotropy by attaching
oxides and metals with different lattice constants to the Heusler alloys. These alloys can improve the
performance of spintronic devices with higher recording capacity.

Keywords: Heusler alloys; half-metallic ferromagnets; giant magnetoresistance; perpendicular
magnetic anisotropy

1. Introduction

Since the discovery of giant magnetoresistance (GMR) by Fert [1] and Grünberg [2] independently,
magnetoresistive (MR) junctions have been used widely in many spintronic devices [3,4], e.g., a read
head in a hard disk drive (HDDs) [5], and a cell in a magnetic random access memory (MRAM) [6].
The maximum GMR ratio achieved in a [Co (0.8)/Cu (0.83)]60 (thickness in nm) junction was reported
to be 65% at 300 K [7]. Here, the MR ratio is determined by

MR ratio = ∆R/R = (RAP − RP)/RP, (1)

where RP and RAP represent the resistance measured for parallel and antiparallel configurations of the
ferromagnet magnetisations, respectively. In parallel, tunnelling magnetoresistance (TMR) [8] has been
observed by utilising an oxide barrier instead of a non-magnetic spacer at room temperature (RT) [9,10],
and have been improved its ratio very rapidly to 81% in a Co0.4Fe0.4B0.2 (3)/Al (0.6)-Ox/Co0.4Fe0.4B0.2

(2.5) (thickness in nm) junction at RT [11]. By replacing amorphous AlOx with epitaxial MgO [12,13]
as theoretically predicated [14,15], 604% TMR ratio has been achieved in a Co0.2Fe0.6B0.2 (6)/MgO
(2.1)/Co0.2Fe0.6B0.2 (4) (thickness in nm) junction at RT [16]. Such drastic increase in the TMR ratio has
increased the areal density of HDD by almost four times over the last decade, for example [3].

For further improvement in HDD and MRAM, it is critical to satisfy two criteria: (i) low resistance-
area product (RA) and (ii) perpendicular magnetic anisotropy. The low RA is important to reduce
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power consumption and resulting unfavourable side effects, such as Joule heating and possible damage
on spintronic devices. The perpendicular anisotropy is essential to achieve faster magnetisation
switching [17,18] and to minimise stray fields from a MR junction and the associated cross-talk
between the junction cells for MRAM. The recent development in MR ratios and RA is summarised in
Figure 1. Figure 1 also includes the target requirements to achieve 1 Gbit MRAM, 10 Gbit MRAM and
2 Tbit/in2 HDD [19].
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CoFeB/MgO/CoFeB junctions. As shown as open triangles with a blue fit in Figure 1, in-plane 
CoFeB/MgO/CoFeB magnetic tunnel junctions (MTJs) have successfully satisfied the requirement for 
the 10 Gbit MRAM by achieving RA = 0.9 Ω·µm2 and TMR = 102% at RT [21]. Later, a perpendicularly-
magnetised MTJ (p-MTJ) also achieved the requirement for the 1 Gbit MRAM with RA = 18 Ω·µm2 
and TMR = 124% at RT [22], which requires further improvement for the 10 Gbit MRAM target. Such 
MTJs will replace the current-generation 256 Mbit MRAM with perpendicular magnetic anisotropy 
produced by Everspin [23]. 

For the 2 Tbit/in2 HDD, on the other hand, the MTJs cannot be used as the requirement for RA is 
almost one order of magnitude smaller than that for the 10 Gbit MRAM [24]. One attempt is nano-
oxide layers (NOL), which restrict the current paths perpendicular to the GMR stack by oxidising a 
part of the Cu or Al spacer layer [25]. In a Co0.5Fe0.5 (2.5)/Al-NOL/Co0.5Fe0.5 (2.5) junction, RA = 0.5~1.5 
Ω·µm2 and MR = 7~10% at RT has been achieved. These values are below the requirement for the 2 
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Figure 1. Relationship between magnetoresistance (MR) and resistance-area product (RA) of
magnetic tunnel junctions (MTJs) with CoFeB/MgO/CoFeB (blue triangles), nano-oxide layers (NOL,
green squares) and Heusler alloys (red circles) with in-plane (open symbols) and perpendicular
magnetic anisotropy (closed symbols) together with that of giant magnetoresistive (GMR) junctions
with Heusler alloys (orange rhombus). The target requirements for 2 Tbit/in2 hard disk drive (HDD)
read heads as well as 1 and 10 Gbit magnetic random access memory (MRAM) applications are shown
as purple and yellow shaded regions, respectively.

For the 1 Gbit MRAM, the junction cell diameter (fabrication rule) should be <65 nm with
RA < 30 Ω·µm2 and MR ratio > 100% [19]. For the 10 Gbit MRAM, the cell diameter should
be <20 nm with RA < 3.5 Ω·µm2 and MR ratio >100%. Here, low RA is required to satisfy the
impedance matching [20] with a transistor attached to one MRAM cell and a large MR ratio is
essential to maintain a signal-to-noise ratio allowing for a read-out signal voltage to be detected
by a small-current application. In order to achieve these requirements, intensive research has been
performed on the CoFeB/MgO/CoFeB junctions. As shown as open triangles with a blue fit in
Figure 1, in-plane CoFeB/MgO/CoFeB magnetic tunnel junctions (MTJs) have successfully satisfied
the requirement for the 10 Gbit MRAM by achieving RA = 0.9 Ω·µm2 and TMR = 102% at RT [21].
Later, a perpendicularly-magnetised MTJ (p-MTJ) also achieved the requirement for the 1 Gbit MRAM
with RA = 18 Ω·µm2 and TMR = 124% at RT [22], which requires further improvement for the 10 Gbit
MRAM target. Such MTJs will replace the current-generation 256 Mbit MRAM with perpendicular
magnetic anisotropy produced by Everspin [23].

For the 2 Tbit/in2 HDD, on the other hand, the MTJs cannot be used as the requirement for RA is
almost one order of magnitude smaller than that for the 10 Gbit MRAM [24]. One attempt is nano-oxide
layers (NOL), which restrict the current paths perpendicular to the GMR stack by oxidising a part of the
Cu or Al spacer layer [25]. In a Co0.5Fe0.5 (2.5)/Al-NOL/Co0.5Fe0.5 (2.5) junction, RA = 0.5~1.5 Ω·µm2 and
MR = 7~10% at RT has been achieved. These values are below the requirement for the 2 Tbit/in2 HDD,
and hence further improvement in GMR or TMR junctions are crucial.
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2. Heusler-Alloy Junctions

For the further improvement in the MR junctions to meet the requirements for 10 Gbit
MRAM and 2 Tbit/in2 HDD, a half-metallic ferromagnet needs to be developed to achieve 100%
spin polarisation at the Fermi energy at RT, leading to an infinite MR ratio using Equation (1).
The half-metallicity is induced by the formation of a bandgap only in one of the electron-spin bands.
There have been five types of half-metallic ferromagnets theoretically proposed and experimentally
demonstrated to date: (i) oxide compounds (e.g., rutile CrO2 [26] and spinel Fe3O4 [27]); (ii) perovskites
(e.g., (La,Sr)MnO3 [28]); and, (iii) magnetic semiconductors, including Zinc-blende compounds
(e.g., EuO and EuS [29], (Ga,Mn)As [30] and CrAs [31]) and (iv) Heusler alloys (e.g., NiMnSb [32]).
Magnetic semiconductors have been reported to show 100% spin polarisation due to their Zeeman
splitting in two spin bands. However, their Curie temperature is still below RT [33]. Low-temperature
Andreev reflection measurements have confirmed that both rutile CrO2 and perovskite La0.7Sr0.3MnO3

compounds possess almost 100% spin polarisation [34], however, no experimental report has been
proved the half-metallicity at RT. As the most promising candidate for the RT half-metallicity, a Heusler
alloy has been studied extensively as detailed in the following sections [35–37].

2.1. Heusler Alloys

2.1.1. Crystalline Structures

Since the initial discovery of ferromagnetism in a ternary Cu2MnAl alloy, consisting of
non-magnetic elements by Heusler in 1903 [38], the Heusler alloys have been studied for various
applications, including magnetic refrigeration [39] and shape memory [40]. The Heulser alloys are
categorised into two types: full- and half-Heusler alloys in the forms of X2YZ and XYZ, respectively,
where X and Y are transition metals and Z is a semiconductor or non-magnet. Figure 2a shows a
schematic crystalline structure of the full-Heusler alloy in the perfectly ordered L21-phase. By mixing Y
and Z, the alloy forms the partially-mixed B2-phase, while further mixing among X, Y, and Z makes the
fully-disordered A2-phase. By replacing a half of X atoms with Y-site atoms, Y atoms with Z-site atoms
and Z atoms with X-site atoms, inverse Heusler alloys in the D03-phase can be formed. The removal
of a half of the X atoms makes the half-Heusler alloys in the C1b-phase. Additionally, a part of the
constituent atoms can be replaced with the other atoms, allowing for controlling their crystalline and
magnetic properties, such as lattice constants, magnetic moments, and magnetic anisotropy.
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Figure 2. (a) Schematic unit cell of the L21-ordered full-Heusler alloy consisting of X2YZ atoms (X: red,
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Due to the above complicated crystalline structures for the Heusler alloys, they require very
high temperature (typically >1000 K in the bulk form and >650 K in the thin-film form) for their
crystallisation [41]. This prevents the Heusler alloys to be used in spintronic devices. Recently,
layer-by-layer growth in the Heusler alloy (110) plane (see Figure 2b) has been reported to decrease the
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crystallisation energy, i.e., the annealing temperature, by over 50% [42]. A similar crystallisation process
has been demonstrated at higher temperature to uniformly crystallise the Heusler-alloy films [43].

2.1.2. Magnetic Properties

The robustness of the half-metallicity depends on the size and definition of the bandgap formed
in one electron-spin band in the vicinity of Fermi energy. The bandgap is formed by the strong d-band
hybridisation between the two transition metals of X and Y, according to ab initio calculations [34].
Typically, the bandgap of 0.4~0.8 eV is expected to be formed at 0 K [36]. At a finite temperature,
however, the bandgap becomes smaller and the edge definition of the gap becomes poorly-defined.
The bandgap has been measured by detecting photon absorption of circularly-polarised infrared light
with energy corresponding to the bandgap [44].

The other advantage of the Heusler alloys is their controllability of their magnetic properties,
such as their saturation magnetisation and Curie temperature. The total spin moments per Heusler
alloy formula unit (f.u.) (Mt) have been reported to follow the generalised Slater-Pauling curve as
Mt = Zt − 24 (full-Heusler) and Mt = Zt − 18 (half-Heusler), where Zt is the total number of
valence-band electrons (see Figure 3) [45]. The atomic substitutions of any constituent atoms in
the Heusler alloys can continuously change their magnetic moments and allows for customising
the alloys for a specific application. There are over 2500 combinations to form Heusler alloys [36],
among which a few tens of alloys have been reported to become half-metallic ferromagnets according
to theoretical calculations. The atomic substitution further increase the applicability of the alloys for
custom design.
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2.2. Heusler Alloy Junctions with In-Plane Magnetic Anisotropy

2.2.1. Tunnelling Magnetoresistive Junctions

(1) Co2(Cr,Fe)Z

A pioneering work on a Heusler-alloy junction has been carried out by Block et al. [46]. They have
reported a large negative MR ratio at RT in a quarternary full-Heusler Co2Cr0.6Fe0.4Al alloy,
which experimentally demonstrates the controllability of the magnetic properties of the alloys by
substituting their constituent elements. They report 30% MR at RT with pressed powder compacts,
which acts as a series of MTJs. The Co2(Cr,Fe)Al alloys have then been used in MTJs in their polycrystalline
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form. A MTJ with the structure of Co2Cr0.6Fe0.4Al/AlOx/CoFe shows 16% TMR at RT [47], which is later
improved up to 19% at RT by the barrier optimisation [48].

Recently, an epitaxial L21-Co2Cr0.6Fe0.4Al film sputtered onto MgO(001) substrate has been adopted
for a fully epitaxial MTJ, consisting of Co2Cr0.6Fe0.4Al/MgO/CoFe, showing 42% at RT (74% at 55 K) [49].
Even though this film possesses the crystalline relationship Co2Cr0.6Fe0.4Al(001)[100]||MgO(001)[110],
the magnetic moment is estimated to be 3.3 µB/f.u., which is smaller than the calculation (3.7 µB/f.u.) [50].
This indicates that the film contains an atomically disordered phase, which is also suggested from the
decrease in the TMR ratios that are measured below 55 K. Further optimisation results in the TMR ratio to
become 109% at RT and 317% at 4 K with RA ~3 × 104 Ω·µm2 [51].

The half-metallicity of the Co2Cr1-xFexAl full-Heusler alloys has been found to be robust against
the atomic disorder using first-principles calculations by Shirai et al. [52]. In the Co2CrAl alloys,
the atomic disorder between Cr and Al, which eventually deforms the crystalline structure from
L21 into B2 at a disorder level of 0.5, maintains the very high spin polarisation (P) of 97% for L21

and 93% for B2. The Co-Cr type disorder, however, destroys the half-metallicity rapidly, i.e., P to
zero at a disorder level of 0.4 and Mt to be 2.0 µB/f.u. at the full disorder. For the Fe substitution x
with Cr, high P is calculated to be maintained above 90% up to x = 0.35. Similarly, the CrFe-Al type
disorder preserves both spin polarisation and the magnetic moment to be above 80% and 3.7 µB/f.u.,
respectively, up to the disorder level of 0.5, while the Co-CrFe disorder eliminates P at the disorder
level of 0.3. These findings may explain the decrease in the measured TMR ratios as compared with
the theoretically predicted value due to the interfacial disorder.

Strain also affects the half-metallicity in the Co2CrAl alloy, according to calculations [53]. P stays
100% in the lattice strain range between 1 and +3%, and is even higher than 90% up to +10% strain.
The bandgap is also maintained against the strain and can be maximised under +3% strain. P also
remains 100% against the tetragonal distortion in the range of ±2%, which is a great advantage for the
epitaxial growth study on a GaAs substrate [54] and the other seed layers.

Unlike Co2CrAl, Co2FeAl is not theoretically predicted to be half-metallic [50]. Even so, Epitaxial
Co2FeAl films are grown on GaAs(001) with the relationship Co2FeAl(001)[110]||GaAs(001)[110].
Accordingly, an epitaxial full Heusler Co2FeAl film with the L21 structure is also applied for a MTJ but
shows only 9% TMR at RT [54]. These small TMR ratios may be caused by the selective oxidation at
the interface between the Heusler films and the oxide barriers. The TMR ratios have been increased to
330% at RT (700% at 10 K) with RA = 1 × 103 Ω·µm2 in a MTJ with Co2FeAl/MgO/Co0.75Fe0.25 by
utilising the ∆1-band connection between Co2FeAl and MgO [55]. Using a MgAlOx barrier instead
of MgO to maintain the ∆1-band connection and to make better lattice matching with B2-Co2FeAl,
TMR ratios are found to be increased to 342% at RT (616% at 4 K) with RA = 2.5 × 103 Ω·µm2 [56].
The departure of the TMR ratios from theoretically predicted almost infinity may also be due to the
interfacial atomic disorder, due to the presence of a light element of aluminium.

By replacing a half of Al with Si in Co2FeAl to stabilise the crystallisation, MTJs with an
oriented MgO barrier for which TMR ratios of 175% have been achieved at RT when using
B2-Co2FeAl0.5Si0.5 [57]. Using L21-Co2FeAl0.5Si0.5, the TMR ratios of 386% at RT and 832% at 9 K with
RA = 80 × 103 Ω·µm2 has been reported later [58]. The decrease in the TMR ratio with increasing
temperature is much faster than the temperature dependence of the magnetisation T3/2, suggesting
that a small fraction of atomically disordered phases cannot be ignored in the spin-polarised electron
transport at finite temperatures [59]. The elimination of such disordered interfacial phases improves
the TMR ratios further and realises the half-metallicity at RT.

Theoretical calculations suggest that the interface states within the half-metallic bandgap formed
at the half-metal/insulator interfaces prevent the highly spin-polarised electron transport [60]. This is
because the tunneling rate is slower than the spin-flip rate, and therefore the interface states for the
minority spins are effectively coupled to the metallic spin reservoir of the majority spin states. In order
to avoid the spin-flip scattering, a sharp interface without the interface states is crucially required.
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(2) Co2MnZ

Another pioneering work on the growth of full Heusler alloy films has been performed for a
Co2MnGe/GaAs(001) hybrid structure by Ambrose et al. [61]. They achieve an epitaxial Co2MnGe
film with a slightly enhanced lattice constant as compared with bulk. Mt is estimated to be 5.1 µB/f.u.,
which almost perfectly agrees with the bulk and theoretically predicted value from the generalised
Slater-Pauling curve. Consequently, systematic study has been widely carried out over Co2Mn-based
full Heusler alloys to realise the RT half-metallicity: Co2MnAl [62,63], Co2MnSi [64,65], Co2MnGa [66],
and Co2MnSn [64]. For example, an epitaxial Co2MnAl film has been grown on a Cr buffer layer by
sputtering with the crystalline relationship Co2MnAl(001)[110]||Cr(001)[110]||MgO(001)[100] with
the B2 structure [60]. For Co2MnSi, the L21 structure has been deposited by using both dc magnetron
sputtering [67] and MBE [68].

Calculations imply that the strain induced can control the half-metallicity in the Co2MnZ alloys.
For Co2MnSi, for example, the lattice compression of 4% increases the bandgap by 23%, and a similar
behavior is expected for the other alloy compounds [69]. Similarly, ±2% change in the lattice constant
preserves the half-metallicity in the Co2MnZ alloys [33].

A MTJ with an epitaxial L21-Co2MnSi film has been reported to show very large TMR ratios of
70% at RT and 159% at 2 K with RA = 106 Ω·µm2 [70]. These values are the largest TMR ratios obtained
in a MTJ employing a Heusler-alloy film and AlOx barrier. This is purely induced by the intrinsic P
of the Heusler electrodes. Similarly, a MTJ with Co2MnAl/AlOx/CoFe shows 40% TMR at RT [63],
followed by the further improvement up to 61% at RT (83% at 2 K) [71]. All of these Heusler films in
the MTJs have been reported to be B2 structure. By comparing the TMR ratios at RT with those at
low temperature, the TMR ratios are found to show very weak temperature dependence as similarly
observed for a conventional metallic MTJ. On the contrary, a MTJ with a highly ordered Co2MnSi film
shows strong temperature dependence; 33% at RT and 86% at 10 K [72], and 70% at RT and 159% at 2 K [70].
Such rapid decrease in the TMR ratio with an increasing temperature is similar to that observed in MTJs
with Co2(Cr,Fe)Al.

By replacing AlOx with MgO, a fully epitaxial MTJ, consisting of Co2MnSi/MgO/Co2MnSi,
has been reported to achieve much higher TMR ratios, 217% at RT (753% at 2 K) [73] and 236%
at RT (1135% at 4 K), but with larger RA of 3 × 107 Ω·µm2 [74]. Further improvements in the
TMR ratio to be 354% at RT (1995% at 4 K) have been achieved in the same system [75], followed
by 366% at RT (2110% at 4 K) with RA = 108 Ω·µm2 [76]. Partial substitution of Mn with Fe in
these MTJs to form Co2Mn0.73Fe0.27Si, TMR ratios are increased to 429% at RT (2610% at 4 K) with
RA = 7 × 107 Ω·µm2 [77], which is the largest TMR ratio reported to date. A similar MTJ with
Co2MnGe/MgO/Co2MnGe has been fabricated to show similar TMR ratios of 220% (650% at 4 K),
but with large RA of 2.2 × 106 Ω·µm2 [78].

(3) Ni2MnZ

Even though Ni2MnZ alloys are not predicted to become half-metallic ferromagnets by calculations,
detailed studies on epitaxial growth on GaAs and InAs has been reported by Palmstrøm et al. [79]. By using
a Sc0.3Er0.7As buffer layer on GaAs(001), both Ni2MnAl [80] and Ni2MnGa [81,82] films are epitaxially
grown with the crystalline relation-ship Ni2MnGa(001)[100]||GaAs(001)[100] [83]. All the films are slightly
tetragonally elongated along the plane normal as compared with the bulk values due to the minor lattice
mismatch with the semiconductor substrates. First-principles calculations demonstrate that a broad energy
minimum of tetragonal Ni2MnGa can explain stable pseudomorphic growth of Ni2MnGa on GaAs despite
a nominal 3% lattice mismatch [84].

(4) Half-Heusler

After the first theoretical prediction of the half-metallicity of the half-Heusler NiMnSb alloy [30],
this alloy has been intensively investigated to confirm its half-metallicity experimentally. Mt and the
bandgap are calculated to be approximately 3.99 µB/f.u. and 0.5 eV [85], respectively, resulting in
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calculated spin polarisation of 99.3% [86]. Epitaxial NiMnSb(001) growth on GaAs(001) has also been
studied systematically by van Roy et al. [87]. An epitaxial half Heusler NiMnSb film has been first
used as an electrode in a MTJ, showing 9% TMR at RT [88].

2.2.2. Giant Magnetoresistive Junctions

Similar to the TMR junctions as discussed in Section 2.1.1, GMR junctions with Heusler-alloy
films have been studied over the last decades. For example, a GMR junction, consisting of Co2MnGe
(6)/V (1.6)/Co2MnGe (3)/Fe (0.3)/ZnSe (50)/GaAs(001) (thickness in nm) have been fabricated and
measured along the two [110] directions [89]. The GMR ratio is measured to be less than 1%. Since then,
a series of GMR juncstions have been designed and evaluated. An epitaxial film is deposited on a
MgO(001) substrate with the crystalline relationship Co2Cr0.6Fe0.4Al(001)[100]||MgO(001)[110]. Here,
by repeating [Co2Cr0.6Fe0.4Al (10)/Cu (2.5)/Fe0.1Co0.9 (8.1)] stack, current-in-the-plane (CIP) GMR has
been measured, showing only 2% GMR at RT (4% at 15 K) [90]. Further enhancement has been reported
in CPP-GMR devices, consisting of Co2FeAl0.5Si0.5 (2.5)/Ag (5)/Co2FeAl0.5Si0.5 (2.5) (thickness in nm),
to be GMR ratios and RA of 34% and 8 × 10−3 Ω·µm2 at 290 K (80% at 14 K) [91].

Simultaneously, a large GMR ratio of 42% has been reported using Co2FeGe0.5Ga0.5/Ag/
Co2FeGe0.5Ga0.5 junctions [92]. Theoretically, a larger GMR ratios are expected, e.g., 90% and ~60%
for L21- and B2-Co2MnAl/Ag/Co2MnAl junctions, respectively [93]. These junctions clearly have the
capability of being used as a next-generation read head.

Similar argument can be applied for the GMR junctions with the half-Heusler-alloy films.
PtMnSb films are deposited on Al2O3(0001) by sputtering to form spin-valve structures, PtMnSb(111)/
CuMnSb(111)/PtMnSb(111)/MnFe, showing 0.47% GMR at RT [94]. This may also be due to the empty
site disorder. Calculations suggest the decrease in the surface spin polarisation dependent upon the
terminated layers: spin polarisation of ~46% and 22% for the MnSb and Pt termination, respectively [95].
The other half Heusler alloy CoMnSb shows a similar decrease in the surface spin polarisation and the
bandgap change by the strain: +2% and −2% lattice deformation shifts the bandgap by 0.8 eV and +0.9 eV,
respectively [96]. Recently, current-perpendicular-to-the-plane (CPP)-GMR ratios of 8% at RT (21% at 4 K)
has been reported in fully-epitaxial NiMnSb (20)/Ag (5)/NiMnSb (7) (thickness in nm) junctions with the
(001) orientation [97]. The junctions achieve RA = (26 ± 1) × 10−3 Ω·µm2, which is highly advantageous
for device applications with further improvement in the GMR ratios. By repeating two sets of epitaxial
GMR junctions, consisting of NiMnSb (9)/Ag (5)/NiMnSb (3)/Ag (5)/NiMnSb (9) (thickness in nm),
an increase in the CPP-GMR ratio up to 11% (41% at 4 K) has been reported later [98]. Here, RA is found to
be reduced to 3.9 × 10−3 Ω·µm2, which is favourable for device application.

2.3. Heusler Alloy Junctions with Perpendicular Magnetic Anisotropy

2.3.1. Tunnelling Magnetoresistive Junctions

By replacing Y atoms with X atoms, binary Heusler alloys can be formed. For example, Mn3Ga
shows ferrimagnetic behaviour in the tetragonal D022-phase with perpendicular magnetic anisotropy,
as schematically shown in Figure 4a,b. The ferrimagnetic Mn3Ga has been reported to possess a large
uniaxial anisotropy of 1 × 107 erg/cm3 [99] and high Curie temperature of around 770 K [100]. Mn3Ga has
been used in a MTJ, consisting of Mn3Ga/MgO/CoFe and has shown 9.8% TMR at 300 K with the
perpendicular anisotropy of 1.2 × 107 erg/cm3 [101]. The TMR ratio has then been improved by adjusting
the Mn-Ga composition to be 40% at RT for the MTJ, consisting of Mn0.62Ga0.38 (30)/Mg (0.4)/MgO
(1.8)/CoFeB (1.2) (thickness in nm) (see Figure 4c) [102]. This improvement may be due to the increase in
the perpendicular anisotropy to be 5 × 106 erg/cm3 in a similar MTJ [103], which is almost the same with
that for the film reported above. However, the MTJ has 20 × 103 Ω·µm2, which requires further reduction
for the spintronic device applications.
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positions all couple ferromagnetically [104]; (c) Perpendicular magnetoresistance (MR) loops for 
Mn0.62Ga0.38 (30)/Mg (0.4)/MgO (1.8)/CoFeB (1.2) (thickness in nm) measured at 300 K (blue solid 
squares) and 5 K (red open squares). The inset shows the temperature dependence of parallel and 
antiparallel resistances (RP and RAP) [102]. 
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layer can induce perpendicular anisotropy in the half-metallic Co2MnSi layer, which is expected to 
achieve a large TMR ratio. Experimentally, TMR ratios of 10% at RT and 65% at 10 K have been 
achieved [105], which is smaller than the Mn-Ga/MgO/Mn-Ga junctions, as above. Additionally, the 
Co2MnSi magnetisation is in tilted states during the reversal process, which makes the TMR curves 
to be not well-defined. 

Similar to the CoFeB/MgO/CoFeB systems, as described in Section 1, perpendicular anisotropy 
has been induced by attaching a MgO tunnel barrier. In a p-MTJ, consisting of 
Co2FeAl/MgO/Co0.2Fe0.6B0.2, a TMR ratio of 53% has been reported at RT (see Figure 5) [106]. By 
inserting a 0.1-nm-thick Fe (Co0.5Fe0.5) layer between the MgO and Co0.2Fe0.6B0.2 layers, the TMR ratio 
was significantly enhanced to 91% (82%), due to the improved interface. The corresponding RA is 
1.31 × 105 Ω·µm2. By further improving the MTJ quality, consisting of Co2FeAl (1.2)/MgO (1.8)/Fe 
(0.1)/CoFeB (1.3) (thickness in nm), it has been reported to show TMR = 132% and RA = 1 × 106 Ω·µm2 
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Figure 4. (a) The ferrimagnetic structure of D022 Mn3Ga or D022 Mn3Ge. There is overall c-axis
anisotropy but the structure is noncollinear and the 2b sublattice has a soft, in-plane component,
which is indicated by small circles; (b) Ferromagnetic structure of L10 MnGa. The Mn atoms in the
4d positions all couple ferromagnetically [104]; (c) Perpendicular magnetoresistance (MR) loops for
Mn0.62Ga0.38 (30)/Mg (0.4)/MgO (1.8)/CoFeB (1.2) (thickness in nm) measured at 300 K (blue solid
squares) and 5 K (red open squares). The inset shows the temperature dependence of parallel and
antiparallel resistances (RP and RAP) [102].

By inserting Co2MnSi between Mn-Ga and MgO, the perpendicular anisotropy of the Mn-Ga
layer can induce perpendicular anisotropy in the half-metallic Co2MnSi layer, which is expected to
achieve a large TMR ratio. Experimentally, TMR ratios of 10% at RT and 65% at 10 K have been
achieved [105], which is smaller than the Mn-Ga/MgO/Mn-Ga junctions, as above. Additionally,
the Co2MnSi magnetisation is in tilted states during the reversal process, which makes the TMR curves
to be not well-defined.

Similar to the CoFeB/MgO/CoFeB systems, as described in Section 1, perpendicular
anisotropy has been induced by attaching a MgO tunnel barrier. In a p-MTJ, consisting of
Co2FeAl/MgO/Co0.2Fe0.6B0.2, a TMR ratio of 53% has been reported at RT (see Figure 5) [106].
By inserting a 0.1-nm-thick Fe (Co0.5Fe0.5) layer between the MgO and Co0.2Fe0.6B0.2 layers, the TMR
ratio was significantly enhanced to 91% (82%), due to the improved interface. The corresponding RA
is 1.31 × 105 Ω·µm2. By further improving the MTJ quality, consisting of Co2FeAl (1.2)/MgO (1.8)/Fe
(0.1)/CoFeB (1.3) (thickness in nm), it has been reported to show TMR = 132% and RA = 1 × 106 Ω·µm2

at RT [107].
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Figure 5. Tunneling resistance, R, as a function of out-of-plane magnetic field, H, measured at RT
and 10 K for a p-MTJ, consisting of Co2FeAl (1.2)/MgO (1.8)/Fe (0.1)/CoFeB (1.3) (thickness in nm).
Wide arrows illustrate the magnetisation states (P or AP) of bottom and top electrodes. The dashed lines
with arrows represent sweeping directions of the magnetic fields with different traces. The directions
of the magnetisations of the bottom and top electrodes were determined from M–H loops by checking
the differences in magnetic moments and switching fields, respectively [107].

A perpendicularly magnetised seed layer has also been used to induce perpendicular anisotropy
onto the Heusler-alloy films. For example, a MTJ stack with L10-CoPt/Co2MnSi/MgO/FePt has been
demonstrated [108], as similarly reported in a conventional CoFeB/MgO/CoFeB junctions.

2.3.2. Giant Magnetoresistive Junctions

Recently, body-centred cubic (bcc) seed layers have been used to minimise the interfacial mixing
with face-centred cubic (fcc) Heusler-alloy layer. For a bcc vanadium seed layer, X-ray analysis shows
that 25-nm-thick vanadium introduces a strong (110) orientation in the Co2FeSi Heusler alloy [109].
The B2-texture of the Co2FeSi is found to match that of the vanadium proving that the texture is defined
by the seed layer. Reduction of the Co2FeSi thickness is found to result in a reduction in the strength
of the in-plane anisotropy, as expected from the cubic nature. Since the perpendicular magnetic
anisotropy (PMA) is induced at the interface between the Co2FeSi and vanadium, a second vanadium
interface is added and found to increase the observed PMA. Further reduction in the thickness of the
Co2FeSi layer lead to an increase in the PMA where 4-nm-thick Co2FeSi exhibited a strong PMA (see
Figure 6a). Here, the magnetic moment of the Co2FeSi layers all fell short of the bulk value with the
saturation magnetisation (MS) of 700~800 emu/cm3. This may indicate magnetic dead layers at the
interfaces due to roughness or intermixing; or could be due to a lack of full L21-ordering resulting in a
drop in net moment.

Vanadium and tungsten are similar materials in that both are transition metal elements, which
crystallise in a bcc structure. They have similar lattice parameters of aV = 0.3030 and aW = 0.31648 nm,
leading to 3.3% and 17% strain in Co2FeSi, respectively. Tungsten is, however, of much lower bulk
resistivity with a value of 5.6 × 10−6 Ω·cm [110], which is around half the value for vanadium to be
1.9 × 10−5 Ω·cm [111]. As such, tungsten should give similar if not superior results to vanadium as a
seed layer.

Accordingly, tungsten layers of 10~20 nm are deposited under 5-nm-thick Co2FeSi, resulting
in the (110) texture in Co2FeSi, as similarly observed for the V seed samples. However, the W seed
layer is found to be heavily oxidised [112]. X-ray reflectivity (XRR) indicates a smooth film with low
interfacial roughness of 0.4 nm for W/WOx/Co2FeSi, which is comparable with 0.5 nm for V/Co2FeSi.
The sample with a 20 nm W/WOx seed layer exhibited clear in-plane anisotropy with a typical
out-of-plane hard axis loop. The value of the anisotropy is low at only 1.58 × 104 erg/cm3. This low
value is due to the low value of MS of ~400 emu/cm3. The 10 nm thick W/WOx sample, however,
exhibited a strong PMA in the Co2FeSi layer.
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Figure 6. (a) Magnetisation curves of a Co2FeSi film grown on a V seed layer, consisting of Si sub./
V (25)/Co2FeSi (4)/V (1.5)/Ru (3) (thickness in nm) measured under the magnetic field application
in-plane (red) and perpendicular to the plane (blue); (b) Magnetisation curves of a Co2FeSi film grown
on a W seed layer, consisting of Si sub./W (25)/Co2FeSi (4)/W (1.5)/Ru (3) (thickness in nm) measured
under the magnetic field application in-plane (red) and perpendicular to the plane (black).

In an attempt to improve the quality of the tungsten seed layers, high temperature growth was
utilised. The substrate is preheated to 673 K before deposition of 20 nm of tungsten. The resulting film
shows a drastic reduction in oxidation with strongly crystallised tungsten. However, there is a lack
of global texture as demonstrated by the multiple phases of tungsten. Scherrer analysis of the (110)
peak gives an approximate crystallite size of 9 nm. The magnetisation of the W/Co2FeSi sample is
measured to be 400 emu/cm3 with the perpendicular anisotropy of 8 × 105 erg/cm3. These properties
are summarised in Table 1.

Table 1. List of measured saturation magnetisation (MS) and perpendicular magnetic anisotropy (PMA)
for major Heusler alloys.

Heusler Alloy MS (mu/cm3) PMA (erg/cm3)

MnGa [113] 200 3 × 106

Co2FeAl/MgO [114] 731 1.9 × 106

V/Co2FeSi 700 1.75 × 103

W/WOx/Co2FeSi 400 4.00 × 103

W/Co2FeSi 600 –

3. Towards Device Implementation

Since the crystalline plane induced by the bcc seed layers is (110), which is a favourable orientation
to promote the layer-by-layer crystallisation, low-temperature crystallisation has been demonstrated
with PMA [115]. Samples consisting of W (10)/Co2FeAl0.5Si0.5 (12.5)/W (1.2)/Co2Fe Al0.5Si0.5 (2.5)/Ta
(2) (thickness in nm) have been deposited with pre-growth heating at 300 ≤ T ≤ 370 K. Increasing
temperature is found to cause a large increase in the crystallinity in the W(110) direction. As the heating
time is increased, the position of the peak relaxed towards the bulk location, as shown in Figure 7a,
corresponding a change in lattice spacing ∆d = (0.0053 ± 0.0001) nm out-of-plane, i.e., a change in
strain of ∆s = (−2.4 ± 0.1) %. The position of the Heusler-alloy peak is not changed by increased
deposition heating time. However, the intensity of the reflection increased significantly, indicating an
increased crystallisation, as expected.
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Figure 7. (a) W lattice constants calculated from the W(110) peak positions measured by X-ray
diffraction for the W-seed sample, consisting of Si sub./W (10)/Co2Fe Al0.5Si0.5 (12.5)/W (1.2)/Co2Fe
Al0.5Si0.5 (2.5)/Ta (2) (thickness in nm), as a function of pre-growth heating between 300 ≤ T ≤ 370 K.
The bulk value is shown as a reference. (b) Corresponding evolution of saturation magnetisation and
coercivity (Hc) calculated from magnetisation curves.

Magnetic characterisation of the samples is performed under both in- and out-of-the-plane fields.
All of the samples with heated substrates showed perpendicular anisotropy. Figure 7b shows the
coercivities (HC) and saturation magnetisations (MS) for the samples. HC and MS both increase
monotonically with substrate temperature in agreement with the XRD data. The increased moment
is due to the increase in the crystallisation of the material. After T = 305 K (30 s) the loop squareness
decreases from MR/MS = 1, but remains high (>0.8) up to T = 370 K (120 s). MS reaches almost
1060 emu/cm3, which is almost 85% of the theoretically predicted value, and it is ideal for device
implementation due to the low-temperature crystallisation.

Due to band-structure matching silver makes an ideal conduction layer for Heusler alloy
CPP-GMR devices. A 3 nm thick layer of Ag was deposited into a device structure Si sub./W
(10)/Co2FeAl0.5Si0.5 (12.5)/Ag (3)/Co2FeAl0.5Si0.5 (5)/Ru (3) where thicknesses are in nm. These were
patterned using e-beam lithography into elliptical devices with dimensions from (1000 × 500) nm2

to (150 × 100) nm2. The ∆R vs. field of these devices with a perpendicular applied field is shown in
Figure 8 where a small but distinct GMR of 0.03% is observed at room temperature.
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in Figure 8 where a small but distinct GMR of 0.03% is observed at room temperature. 

The shape of the MR curve matches that of the hysteresis loop for the sample, where domain 
rotation occurs to the antiparallel state, followed by a rapid nucleation reversal. This explains the 
asymmetry of the GMR peak, with a slow approach to a high resistance state, but a rapid return to 
the low resistance state at a definite field. 
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Figure 8. (a) Current-perpendicular-to-the-plane giant magnetoresistance (CPP-GMR) effect
measured under perpendicular fields for the (a) V- and (b) W-seed Co2FeSi junctions, consisting
of W (10)/Co2FeAl0.5Si0.5 (12.5)/Ag(3)/Co2FeAl0.5Si0.5 (5) (thickness in nm) with dimensions of
(a) (1000 × 500) µm2 and (b) (150 × 100) µm2.
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The shape of the MR curve matches that of the hysteresis loop for the sample, where domain
rotation occurs to the antiparallel state, followed by a rapid nucleation reversal. This explains the
asymmetry of the GMR peak, with a slow approach to a high resistance state, but a rapid return to the
low resistance state at a definite field.

4. Materials and Methods

Epitaxial Heusler-alloy films have been deposited using ultrahigh vacuum (UHV) sputtering
or molecular beam epitaxy (MBE) with precise control of compositions to satisfy their stoichiometry.
For the UHV sputtering, compositions of targets need to be carefully optimised or combinatorial
sputtering needs to be employed. For UHV MBE, simultaneous deposition is typically used on a
single-crystal substrate. Polycrystalline Heusler-alloy films, on the other hand, have been grown by
high-target utilisation sputtering system (HiTUS) [116]. In both of the films, substrate heating is often
utilised to assist crystalline formation of the Heusler alloys. Here, the sputtering has higher energy on
the materials to be deposited than those for UHV MBE by almost three orders of magnitude, allowing
for the deposited films to be atomically well-mixed to form complex crystalline structures, as described
in Section 2.1.1.

The deposited films have been characterised structurally and magnetically. The crystalline
structures of the films are determined by X-ray diffraction (XRD, Rigaku, Tokyo, Japan) with chemical
composition analysis, such as energy dispersive X-ray spectroscopy (EDX) and electron energy loss
spectroscopy (EELS). Cross-sectional transmission electron microscopy (TEM, JEOL, Tokyo, Japan)
is also used to investigate atomic ordering and interfacial structures of the films. The magnetisation
loops of the films are measured using a vibrating sample magnetometer (VSM, MicroSense, Lowell,
MA, USA) or similar methods under elevating temperatures. Temperature-dependent electrical
resistivity measurements can also reveal the detailed scattering mechanism by defects in the films [52].
The half-metallicity can be determined by point-contact Andreev reflection (PCAR) [32] and infrared
photoexcitation [42]. Additionally, X-ray magnetic circular dichroism (XMCD) with synchrotron
radiation can reveal spin and orbital moments per constituent atoms [34].

The optimised Heusler-alloy films can be used as a ferromagnetic electrode in TMR and GMR
junctions. The TMR junctions can be characterised using current-in-plane tunneling (CIPT) [117],
which provides accurate TMR ratios. The GMR junctions can also be analysed by a conventional
four-terminal method in a current-in-the-plane (CIP) configuration, which is more than one order of
magnitude smaller than that in a CPP configuration. Therefore, these films are required to be patterned
into nanometre-scale pillar junctions by electron beam lithography (EBL) and Ar-ion milling. The TMR
or GMR junctions are patterned into nanopillars by EBL and Ar-ion milling, followed by the insulator
deposition to isolate the pillars. For preparing the sample for electrical measurement, the top and the
bottom of the pillar were connected to large contact pads via two-step lithography. Finally, smaller
contacts were fabricated by EBL, and then the large contact pads were made by optical lithography.

5. Conclusions

The importance of the development of half-metallic ferromagnetic films for room-temperature
operation has been increasing significantly. Among candidates for them, Heusler-alloy films
have the greatest potential and have attracted intensive attention. Even though the bulk of the
Heusler alloys have already been proven to be half-metallic, the film form still suffers from the
interfacial atomic disorder against the neighbouring tunnelling barrier or non-magnetic spacer
in magnetic tunnel or giant magnetoresistive junctions, respectively. For further improvement,
the optimisation of growth conditions and the selection of better seed or barrier/spacer layers
are crucial. Such improvement can also induce perpendicular magnetic anisotropy for the device
miniaturisation. MgO- or bcc-seed-induced perpendicular anisotropy may lead to the Heusler-alloy
films to satisfy the requirements for the next-generation spintronic devices.
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