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Abstract
The grass-fed cattle obtain nutrients directly from pastures containing limited assimilable

energy but abundant amount of fiber; by contrast, grain-fed steers receive a diet that is com-

prised mainly of grains and serves as an efficient source of high-digestible energy. Besides

energy, these two types of diet differ in a large number of nutritional components. Addition-

ally, animals maintained on rich-energy regimen are more likely to develop metabolic disor-

ders and infectious diseases than pasture raised individuals. Thus, we hypothesize that

spleen–a relevant immune organ–may function differently under disparate regimes. The

objective of this study was to find the differentially expressed genes in the spleen of grass-

fed and grain-fed steers, and furtherly explore the potential involved biopathways. Through

RNA sequencing (RNA-Seq), we detected 123 differentially expressed genes. Based on

these genes, we performed an Ingenuity Pathway Analysis (IPA) and identified 9 significant

molecular networks and 13 enriched biological pathways. Two of the pathways, Nur77 sig-

naling in T lymphocytes and calcium-induced T lymphocyte apoptosis which are immune

related, contain a pair of genes HLA-DRA and NR4A1 with dramatically altered expression

level. Collectively, our results provided valuable insights into understanding the molecular

mechanism of spleen under varied feeding regimens.

Background
In many countries, cattle constitute a main source of protein and other nutrients, such as lipids
and minerals. Among several breeds specialized for meat production, Aberdeen Angus stands
out for its extensive contribution to the beef industry, especially in the United States. Using this
breed, numerous and valuable research has been performed to improve growth and meat qual-
ity traits. Interestingly, many studies demonstrated that different feeding regimens could alter
the nutritional composition of beef. Stearic acid, the only saturated fatty acid exerting impact
on serum cholesterol, displays higher level in grass finished beef compared with grain-fed beef
[1]. Several investigators also reported significant differences in omega-3: omega-6 ratio
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between grass-fed and grain-fed cattle [2,3]. Beta-carotene, the precursor of vitamin A, is sig-
nificantly higher in muscle of pasture-fed steers compared to grain-fed animals [4]. Addition-
ally, vitamin A could contribute for the integrity of mucous membrane and skin, protecting
individuals against bacterial and viral infection [5,6]. Meanwhile, vitamin A could also modu-
late immune function through influencing white blood cells [7,8]. Several studies suggested
that the amount of α-tocopherol (the most biologically active form of vitamin E) is higher in
the meat of cattle finished on pasture than the grain-fed cattle [9–11]. Moreover, it was demon-
strated that the variation of the dietary protein concentration could influence the expression of
the immune genes, altering the immunological system [12,13]. It also has been reported that
high-energy diets fed to maximize individuals’ performance could lead to higher incidence of
metabolic disorders [14]. Therefore, grain-fed cattle suffer stronger metabolic stress than pas-
ture-fed steers; and they tend to easily have respiratory and infectious disease.

Spleen–the largest lymphatic organ in the body–plays a critical role in the immune system.
It constitutes the main filter of the body for blood-borne antigens and pathogens, as well as an
important organ for erythrocyte homeostasis and iron metabolism [15]. The spleen is com-
posed of red and white pulp. The white pulp contains B cell and T cell zones, and generates
antigen-specific immune response protecting individuals against viral, bacterial and fungal
infection. The red pulp mainly filters blood and regulates iron recycling from aged red blood
cells. However, limited information about spleen transcriptome has been reported and the
molecular mechanism of bovine spleen remains largely unknown.

In this project, we hypothesized that the spleen transcriptome might exhibit distinct charac-
teristics under grass-fed and grain-fed regimes, which could result in different spleen function,
especially affecting the immune response. To test it, we sampled spleen tissues from grass-fed
and grain-fed Angus steers and performed a comparative study of gene expression using
RNASeq method. Then, based on the differentially expressed genes (DEGs), we implemented a
functional analysis and identified potential mechanisms that could contribute to the difference
observed between both groups.

Materials and Methods

Sample collection
We collected spleen samples from two randomly chosen animals per group, totaling four sam-
ples. The animals were born and raised at the Wye Angus farm, which has produced genetically
similar progenies. The genetic resemblance among individuals permitted us to better control
the variation between experimental individuals, constituting an excellent resource to perform
scientific research. All animals included in this study received the same diet until weaning.
Next, we assigned the animals to one certain diet at random, and exclusively raised them under
that regimen until termination. The diet of grain-fed group consisted of soybean, shelled corn,
corn silage and trace minerals. The grass-fed steers normally received alfalfa harvested from
land without any fertilizers, pesticides or other chemicals; during wintertime, bailage was sup-
plied. Grass-fed individuals ate no animal, agricultural or industrial byproducts and never con-
sumed any type of grain. Grain–fed animals reached the market weight around 14 month-old;
however, grass-fed steers needed approximately 200 additional days to achieve the same
weight. Immediately after termination at the Old Line CustomMeat Company (Baltimore,
MD), a small piece of spleen was incised, washed and frozen at -80°C for posterior processing.

RNA extraction and sequencing
We extracted total RNA individually (two animals per group) by using Trizol (Invitrogen,
Carlsbad, CA, USA) followed by DNase digestion; Qiagen RNeasy column was utilized for
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purification (Invitrogen, Carlsbad, CA, USA). RNA samples were dissolved in RNAse-free
H2O, and checked for integrity and quality with a NanoDrop 1000 spectrophotometer and a
1.5% agarose gel. The samples were labeled through adding 6-bp adaptors and then pooled for
sequencing. Finally, the RNA-seq library was sequenced using an Illumina HiSeq 2000 device,
as described previously [16].

Data analysis and bioinformatics
First, we checked the quality of the raw reads through FastQC, which is an online tool that
thoroughly examines the reads and generates a detailed and extensive quality assurance report
[17]. Then, employing Bowtie (Ultrafast, memory-efficient short read aligner), we aligned the
reads to the reference genome (Bos_taurus_UMD3.1/bosTau6) downloaded from the UCSC
(http://genome.ucsc.edu/). During this step, we trimmed the first 15 bases of each read (50 bp)
to avoid low Phred quality scores, which resulted in 35 bp tags. Via the summarizeOverlaps
function implemented in R, we executed the reads counting for each gene. Subsequently, we
identified the differentially expressed genes using the generalized linear model (GLM)
approach included in the edgeR software package, which required a designed matrix to
describe the two treatment conditions grass-fed and grain-fed. The edgeR package estimated
an effective library size applying a scaling factor based on the library size. The normalization in
this approach is model-based and the original counts remain the same without any type of
transformation. For variance calculation, we first estimated a common dispersion for all reads
and then forced the tagwise variation towards the common dispersion based on a Bayesian
strategy, which resulted in higher sensitivity for detection. Finally, we applied the false discov-
ery rate (FDR) of<0.1 as a threshold to call the genes with different expression levels.

After we obtained the DEGs list, we performed a GO enrichment analysis and examined the
biological processes, cellular components and molecular functions associated with those DEGs
through the online software DAVID Bioinformatics Resources 6.7 [18]. Fisher’s exact test was
used to determine the enrichment of the GO terms. Additionally, we identified the enriched
networks, molecular functions and pathways in the Ingenuity Pathways Analysis (IPA, Ingenu-
ity Systems, and www.ingenuity.com) platform, which was a highly convenient application
[19–21]. During the IPA analysis, the p-value obtained via Fisher’s exact test was used as a sig-
nificance criterion.

Quantitative real-time polymerase chain reaction (qRT-PCR) analysis
Through qRT-PCR on the iCycler iQ PCR system (Bio-Rad, Hercules, CA, USA), we validated
and compared the expression of 9 randomly selected DEGs from the RNA-Seq analysis. We
obtained the template cDNA by employing the iScript First Strand Synthesis System Kit (Bio-
Rad) for reverse transcription PCR with 500 ng of total RNA. The qRT-PCR reactions were
performed with a QuantiTect SYBR Green PCR Kit (Qiagen, Valencia, CA, USA) according to
the manufacturer’s instructions. We designed the primers using an online tool (http://frodo.wi.
mit.edu/primer3/); the primer sequences are provided in S1 Table. We chose GAPDH as the
control gene [22]. For each sample, we performed three technical and two independent biologi-
cal replicates.

Results

Alignment of Reads and Gene Expression Analysis
We totally had four experimental samples; the alignment levels were 70.73%, 65.92%, 82.10%
and 81.54%, respectively (Fig 1). For the statistical analysis, we applied the edgeR package
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implemented in R to detect the genes with divergent expression profiles in the spleen of grass-
fed and grain-fed steers. The threshold of FDR<0.1 was used to call the significant difference.
Following this strategy, we finally found 123 genes with distinct expression levels in both
groups (Fig 2). From those genes, we found that 87 were highly expressed and the other 36
genes were down regulated in the spleen of grass-fed bovines compared with the grain-fed
group. According to the log2FC�5 criteria, 52 genes in grass-fed steers spleen expressed higher

Fig 1. Alignment level of RNA-Seq reads to the Bovine Genome.

doi:10.1371/journal.pone.0135670.g001

Fig 2. Differentially expressed spleen genes between grass-fed and grain-fed steers.MA-plot was
obtained from two independent biological replicates at an FDR of 0.1. The black points represent the genes
without expression difference. FC means fold-change. CPMmeans counts per million.

doi:10.1371/journal.pone.0135670.g002
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than in grain finished group and only 9 genes increased their activity in the grain-fed animals.
The top 10 DEGs in the spleen of both groups can be seen in Table 1. Among these genes, the
expression levels of ENDOU, CD9, TMEM45B, SLC4A9, HADH, OVOL1 and FGFBP1 in
grass-fed animals exceeded the levels observed in the grain-fed group, whereas the expression
abundance of the genes LOC534630, RBMX2 and DOCK6 diminished in grass-fed steers. The
complete list of DEGs between these two groups can be found in S2 Table.

Validation of DEGs
We used qRT-PCR to confirm the expression level of 9 genes, which were randomly selected
from the DEGs list. Through contrasting the qRT-PCR result with the RNA-Seq analysis, we
found 100% consistency (Fig 3). Genes SLCO4A1 and DOCK6 were dramatically over
expressed in grain-fed spleen. The other 7 genes showed less activity in grain finished steers

Table 1. Top 10 differentially expressed genes in the spleen of grass-fed and grain-fed Angus Cattle.

Ensemble Gene ID Symbol Log2 FC(grass/grain) FDR

ENSBTAG00000006252 LOC534630 -3.56744 5.72×10−5

ENSBTAG00000014771 RBMX2 -3.03993 1.24×10−4

ENSBTAG00000012275 ENDOU 6.41496 1.98×10−4

ENSBTAG00000014764 CD9 3.95444 1.09×10−3

ENSBTAG00000017602 TMEM45B 9.20076 1.58×10−3

ENSBTAG00000021775 SLC4A9 8.99572 1.58×10−3

ENSBTAG00000002049 HADH 3.20592 1.67×10−3

ENSBTAG00000012656 OVOL1 9.07147 1.80×10−3

ENSBTAG00000009569 DOCK6 -2.65744 2.06×10−3

ENSBTAG00000031497 FGFBP1 7.08732 2.52×10−3

doi:10.1371/journal.pone.0135670.t001

Fig 3. Validation of differentially expressed genes. The mean value of log2 (fold-change) for each group
was compared in the bar chart for the 9 selected genes. qPCR data was normalized by GAPDH expression
for each sample. Means of significant (FDR�0.1) fold changes were computed for qPCR and DESeq using
sample from the same 4 animals in each analysis. FC means fold-change.

doi:10.1371/journal.pone.0135670.g003
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compared with the grass-finished group. Collectively, the qRT-PCR validation of those 9 genes
proved the accuracy of the RNA-Seq analysis.

Gene Ontology Analysis
We used the online software DAVID (version 6.7) to perform the Gene Ontology (GO) enrich-
ment analysis and identify functional characteristics of the DEGs discovered in our present
study. We primarily focused on biological process, cellular component and molecular function
remarkably enriched with the gene set. The result could be seen in Table 2. The most significant
GO terms were peptide cross-linking in biological process, plasma membrane part for cellular
component and growth factor binding in molecular function. Most of the biological processes
are related to development, adhesion and membrane transport. For cellular component, the
GO terms enriched with the DEGs have large influence on plasma membrane and cell junction.
However, in terms of molecular function, we only found one significant GO term: growth fac-
tor binding.

Ingenuity Pathway Analysis
We employed the Ingenuity Pathway Analysis (IPA) online software to detect the canonical
pathways involving the DEGs. The thirteen most significant ingenuity canonical pathways can
be seen in Table 3. A large proportion of the pathways acted on biosynthesis and the function
of T lymphocyte, which would provide valuable insights into explaining the molecular mecha-
nism of spleen function.

Table 2. Gene Ontology (GO) terms enriched with differentially expressed genes (P<0.05).

GO terms Observed* P FDR

Biological process
GO:0018149~peptide cross-linking 3 0.00409 0.89321

GO:0022610~biological adhesion 7 0.00744 0.86978

GO:0007155~cell adhesion 7 0.00744 0.86978

GO:0006811~ion transport 8 0.02458 0.98922

GO:0060073~micturition 2 0.02814 0.97969

GO:0046903~secretion 4 0.02995 0.96387

GO:0015672~monovalent inorganic cation transport 5 0.03012 0.93815

GO:0008544~epidermis development 3 0.03150 0.91762

GO:0007398~ectoderm development 3 0.03514 0.91294

Cellular component

GO:0044459~plasma membrane part 14 0.00100 0.08851

GO:0005886~plasma membrane 18 0.00208 0.09247

GO:0005911~cell-cell junction 5 0.00399 0.11648

GO:0030054~cell junction 6 0.01322 0.26613

GO:0034702~ion channel complex 4 0.03040 0.43681

Molecular function

GO:0019838~growth factor binding 3 0.03435 0.99883

*Number of the differentially expressed genes in the category

doi:10.1371/journal.pone.0135670.t002

Spleen Transcription

PLOS ONE | DOI:10.1371/journal.pone.0135670 September 14, 2015 6 / 12



Molecular subnetwork
We can examine the gene networks to predict the participation of other interacting molecules
in the pathways. Those molecules might also play diverse key roles in spleen function. To assess
this, we performed Fisher’s exact test based on the IPA molecular library, and found a total of 9
significant molecular networks (S3 Table). Fig 4 shows the 4 most remarkable networks. The
first network (Fig 4A) consists of 22 DEGs and its most essential functions constitute cancer,
cell morphology and cell death, and survival. The second network includes 17 DEGs and the
functions of cancer, cell-to-cell signaling and interaction, respiratory system development and
function are enriched in this structure (Fig 4B). The main functions of the third network
involve cancer, inflammatory disease and connective tissue disorders; 16 genes from the DEGs
list participate in this system (Fig 4C). The fourth network, which incorporates 14 DEGs,
principally relates to cancer, nucleic acid metabolism, organismal injury and abnormalities
(Fig 4D).

Discussion
Since the appearance of organic products, the reality about their benefits and disadvantages has
become controversial. Thus numerous studies have been performed to detect the true differ-
ence between organic and conventional food, and the possible consequence for the human and
animal health [23–25]. Transcriptome sequencing constitutes an effective method to estimate
gene expression through counting extensive number of sequenced reads [26]. Transcriptome
analysis of different species including Caenorhabditis elegans, yeast, plants and mammals has
been completed for diverse purposes [27–30]. However, transcriptomic data for spleen of
bovines under different diets has not been disclosed. Considering that different feeding regimes
would contribute to disparate probabilities in getting metabolic and infectious disease, and that
spleen constitutes one of the most important immune organs; we expected to observe the
DEGs associated with immune response as a result of distinct diets. The identification of those
genes will lead to a better understanding of the functional mechanism of spleen in particular
conditions. Several investigators have reported that the levels of the precursor of Vitamin A
and E and cancer fighting antioxidants, including glutathione and superoxide dismutase

Table 3. Canonical pathways enriched with differentially expressed genes by Ingenuity Pathway Analysis (IPA) (P < 0.05)

Ingenuity Canonical Pathways Observed* P value FDR

Ketogenesis 2 0.0011 0.1275

Ubiquinol-10 Biosynthesis (Eukaryotic) 2 0.0016 0.0930

Retinoate Biosynthesis I 2 0.0118 0.4602

Retinoate Biosynthesis II 1 0.0199 0.5821

Branched-chain α-keto acid Dehydrogenase Complex 1 0.0199 0.4657

Ceramide Biosynthesis 1 0.0248 0.4836

Pregnenolone Biosynthesis 1 0.0297 0.4964

Nur77 Signaling in T Lymphocytes 2 0.0332 0.4856

eNOS Signaling 3 0.0339 0.4407

Epithelial Adherens Junction Signaling 3 0.0370 0.4329

Calcium-induced T Lymphocyte Apoptosis 2 0.0409 0.4350

Ketolysis 1 0.0442 0.4310

Histidine Degradation VI 1 0.0442 0.3978

*Number of the differentially expressed genes in the category

doi:10.1371/journal.pone.0135670.t003
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activity, were different between pasture-fed and grain-fed beef [31,32]. Additionally, previous
studies suggested that modification of the protein abundance in the diet could alter the expres-
sion of immune-related genes, further regulating and reshaping the immune response [12,13].

Studies on chicken showed that 177 genes exhibited different expression levels in the spleen
after Salmonella enteritidis infection; among these genes, 99 were down-regulated and the
other 78 were up-regulated [33]. In our present study, we detected 123 DEGs between grass-
fed and grain-fed spleen of Angus cattle. In the grass-finished group, 87 were up-regulated
while the other 36 decreased their gene activity. Regarding the top 10 most statistically signifi-
cant genes, CD9 encodes a member of the transmembrane 4 superfamily and associates with
lymphoid tissue structure and development, immune cell trafficking, hematopoiesis, lipid
metabolism and inflammatory response; studies suggested that CD9 congregating at the T-cell

Fig 4. The top four molecule networks identified by Ingenuity Pathway Analysis (IPA). A: The most significant molecular network identified IPA. B: The
second most significant molecular network identified by IPA. C: The third most significant molecular network identified by IPA. D: The fourth most significant
molecular network identified by IPA.

doi:10.1371/journal.pone.0135670.g004
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side of the immunological synapse (IS) participates in the immune response and might support
the integrin-mediated signaling at the IS [34,35]. SLC4A9, DOCK6 and FGFBP1 mainly inter-
act with cancer. TMEM45B also showed altered expression level; however, limited information
about TMEM45B existed; we hypothesized that this might be a potential gene to regulate the
function of spleen. In our DEGs list, we also detected the same gene Notch4, which was discov-
ered as the differentially expressed gene in the developmental process of spleen [36]. This gene
is one of the members of Notch signaling pathway; it can regulate cell fate decisions and inhibit
endothelium apoptosis [37].

Via GO enrichment analysis, we identified the genes CHRNA3, CLIC1, SLC4A9, SLC9A2,
SLC5A1 and ATP1A2 which participate in the process of iron transport exerting effects on bac-
terial virulence and host immune response [38]. We also found a large number of genes func-
tioning in the plasma membrane; four genes CHRNA3, CLIC1, KCTD1 and KCNMA1 were
discovered in iron channel complex; except KCTD1, all others were associated with cancer.
Meanwhile, the IPA analysis unveiled that HLA-DRA and NR4A1 were integrated into the
Nur77 Signaling in T Lymphocytes pathway. These two genes were also associated with the cal-
cium-induced T lymphocyte apoptosis pathway, which could exert effects on immunization.
Additionally, several studies reported that HLA-DRA could affect tumors and NR4A1 has
been correlated with various carcinomas [39,40]. Although considerable research has examined
these two genes, no literature addressing their functions in the spleen has been published.
Accordingly, it might be interesting to perform functional experiment of these genes on spleen
to better understand their function in the immunological system.

Our results provide general information regarding the molecular mechanism and functional
difference of spleen under variable feeding regimes. However, we recognized that our study suf-
fered some limitations. Identification of the DEGs and the follow-up pathway/network analysis
were conducted merely relying on the computational strategy; extensive experimental valida-
tion work is still needed. Therefore, overexpression and inhibition of relevant genes should be
advisable for functional validation of our findings.

Conclusions
In this study, we identified the genes and pathways that may influence the function of spleen in
different diets. Totally, 123 DEGs were discovered between grass-fed and grain-fed cattle.
According to those DEGs, 13 significant molecular networks involved in cancer, inflammatory
and respiratory disease, were found in the IPA system. Most of the pathways enriched with the
DEGs were associated with T lymphocyte and biosynthesis. In conclusion, our results contrib-
uted insights into understanding the mechanism of spleen to strengthen the disease resistance
of animals.

Supporting Information
S1 Table. Primers used for quantitative real-time PCR validation.
(XLS)

S2 Table. Differentially expressed genes in the spleen of grass-fed and grain-fed cattle at a
strict false discovery rate (FDR)<0.1.
(XLS)

S3 Table. The 8 most significant molecular networks found by Fisher’s exact test in the IPA
system.
(XLS)
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