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Abstract: The three complexes [Fe(opo)3], [Cu(opo)2], and [Zn(opo)2] containing the non-innocent
anionic ligand opo− (opo− = 9-oxido-phenalenone, Hopo = 9-hydroxyphenalonone) were synthe-
sised from the corresponding acetylacetonates. [Zn(opo)2] was characterised using 1H nuclear
magnetic resonance (NMR) spectroscopy, the paramagnetic [Fe(opo)3] and [Cu(opo)2] by electron
paramagnetic resonance (EPR) spectroscopy. While the EPR spectra of [Cu(opo)2] and [Cu(acac)2] in
dimethylformamide (DMF) solution are very similar, a rather narrow spectrum was observed for
[Fe(opo)3] in tetrahydrofuran (THF) solution in contrast to the very broad spectrum of [Fe(acac)3] in
THF (Hacac = acetylacetone, 2,4-pentanedione; acac− = acetylacetonate). The narrow, completely
isotropic signal of [Fe(opo)3] disagrees with a metal-centred S = 5/2 spin system that is observed
in the solid state. We assume spin-delocalisation to the opo ligand in the sense of an opo− to FeIII

electron transfer. All compounds show several electrochemical opo-centred reduction waves in the
range of −1 to −3 V vs. the ferrocene/ferrocenium couple. However, for CuII and FeIII the very
first one-electron reductions are metal-centred. Electronic absorption in the UV to vis range are
due to π–π* transitions in the opo core, giving Hopo and [Zn(opo)2] a yellow to orange colour. The
structured bands ranging from 400 to 500 for all compounds are assigned to the lowest energy π−π*
transitions. They show markedly higher intensities and slight shifts for the CuII (brown) and FeIII

(red) complexes and we assume admixing metal contributions (MLCT for CuII, LMCT for FeIII). For
both complexes long-wavelength absorptions assignable to d–d transitions were detected. Detailed
spectroelectrochemical experiments confirm both the electrochemical and the optical assignments.
Hopo and the complexes [Cu(opo)2], [Zn(opo)2], and [Fe(opo)3] show antiproliferative activities
against HT-29 (colon cancer) and MCF-7 (breast cancer) cell lines in the range of a few µM, comparable
to cisplatin under the same conditions.

Keywords: Iron; copper; zinc; 9-oxido-phenalenone; antiproliferative; redox

1. Introduction

Although 9-hydroxyphenalenone (Hopo) was first synthesised 80 years ago [1], till
about 10 years ago the coordination chemistry of the anionic 9-oxido-phenalenone (opo−)
ligand (Scheme 1, left) was rather underdeveloped. Most of the reports were on the proton
tautomerism [2–9] and tunnelling effects [10] of the Hopo molecule which are far more
pronounced than for the corresponding parent acetyl acetone system. When coordinating
deprotonated opo− to metals, stable six-ring chelates stabilise the complexes and two one-
electron ligand-centred reductions (opo−/opo2− and opo2−/opo3−) and one one-electron
oxidation of the ligand (opo−/opo) should be accessible (Scheme 1, right). The 13 e−
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opo• and the 15 e− opo•2− are radical species. Not surprisingly, opo complexes of the
main group elements Be, B have been investigated till today towards their conducting
abilities [11–16].
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In contrast to the simplest β-diketonate ligand acetylacetonate (acac−) (Scheme 1), 
which has been used extensively to coordinate main group and transition metals [17–20], 
opo complexes are expected to be quite similar to the corresponding acac complexes, but 
were rather scarce till about 2010. Early reports on opo complexes of MnII, FeIII, CoII, NiII, 
CuII, ZnII, and UO22+ do not contain detailed characterisations or applications [21–23]. A 
number of main-group metal complexes containing BIII [11–16], SiIV [24], GeIV [24], BeII

[11,21], or AlIII [21,25] or the f-elements NdIII [25,26], EuIII [25–27], DyIII [25,28], ErIII [25,26], 
and YbIII [25,26] were studied till 2010, the latter with interesting luminescence properties. 

In a benchmarking study of the opo complexes of RhI, PdII and PtII, their cytotoxic 
activities against HL60 human acute myeloid leukemia cell lines were reported in 2006 to 
be comparable to that of cisplatin [29]. After that, the opo PtII complex [Pt(opo)(NH3)2]+ 
was studied through DFT calculations alongside other PtII-containing complexes with 
anti-cancer activities [30], and very recently [Pt(opo)(dach)](NO3) (dach = 1,2-diaminocy-
clohexane) was found to have high antiproliferative activity in a murine NSCLC (lung 
cancer) tumour model [31]. This is not surprising since derivatives of Hopo [32,33] and 
especially the naturally occurring derivatives Hypocrellin A and B (Scheme 1) have been 
studied for quite some time for their cytotoxic properties [34–36]. Furthermore, Hypocrel-
lin derivatives [37,38] and complexes of ZnII [39], CuII [40], CoIII [41], AuIII, and PtIV [42] 
were investigated for their photonuclease activity. Moreover, a Hypocrellin A ZnII com-
plex was reported for the optical recognition of pyrophosphate [43]. 

Since about 2010, researchers have recognised the enormous potential of the so-called 
non-innocent ligand opo− with its high similarity to the o-semiquinones (Scheme 1) [18,44–

Scheme 1. (a) 9-Hydroxyphenalenone (Hopo), a derivative of acetylacetone (Hacac). Both are able to form six-ring chelates
when deprotonated. Structure of the cytotoxic Hypocrellin A. (b) Selected resonance structures of the anionic 14 valence electron
system 9-oxido-phenaleneone (opo−) with reduced and oxidised forms. (c) The o-quinone–semiquinone–catecholate triad.

In contrast to the simplest β-diketonate ligand acetylacetonate (acac−) (Scheme 1),
which has been used extensively to coordinate main group and transition metals [17–20],
opo complexes are expected to be quite similar to the corresponding acac complexes, but
were rather scarce till about 2010. Early reports on opo complexes of MnII, FeIII, CoII, NiII,
CuII, ZnII, and UO2

2+ do not contain detailed characterisations or applications [21–23].
A number of main-group metal complexes containing BIII [11–16], SiIV [24], GeIV [24],
BeII [11,21], or AlIII [21,25] or the f-elements NdIII [25,26], EuIII [25–27], DyIII [25,28],
ErIII [25,26], and YbIII [25,26] were studied till 2010, the latter with interesting luminescence
properties.

In a benchmarking study of the opo complexes of RhI, PdII and PtII, their cytotoxic
activities against HL60 human acute myeloid leukemia cell lines were reported in 2006 to
be comparable to that of cisplatin [29]. After that, the opo PtII complex [Pt(opo)(NH3)2]+

was studied through DFT calculations alongside other PtII-containing complexes with anti-
cancer activities [30], and very recently [Pt(opo)(dach)](NO3) (dach = 1,2-diaminocyclohexane)
was found to have high antiproliferative activity in a murine NSCLC (lung cancer) tumour
model [31]. This is not surprising since derivatives of Hopo [32,33] and especially the
naturally occurring derivatives Hypocrellin A and B (Scheme 1) have been studied for
quite some time for their cytotoxic properties [34–36]. Furthermore, Hypocrellin deriva-
tives [37,38] and complexes of ZnII [39], CuII [40], CoIII [41], AuIII, and PtIV [42] were
investigated for their photonuclease activity. Moreover, a Hypocrellin A ZnII complex was
reported for the optical recognition of pyrophosphate [43].

Since about 2010, researchers have recognised the enormous potential of the so-called
non-innocent ligand opo− with its high similarity to the o-semiquinones (Scheme 1) [18,44–48].
In complexes of non-innocent ligands, the ligands can have variable charges and oxidation
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states, thus making the metal oxidation state ambiguous [18]. Opo complexes of main-group
and transition metals are therefore intensely studied for their magnetic, electron- and charge-
transfer phenomena [44–55] as well as for their use in electroactive materials [51–59] or in
electron transfer or related catalysis [53,55,57,60–70].

Herein we report on a novel facile synthesis of the simple complexes [Fe(opo)3],
[Cu(opo)2], and [Zn(opo)2] alongside with electrochemical and spectroelectrochemical
studies and their anti-proliferative properties against the cancer cell-lines HT-29 and MCF-
7 We will relate our results to recent benchmarking studies in which these complexes were
applied in various fields, thus giving a brief account on the interesting development the 3d
transition metal complexes of the opo ligand over the last 10 years. For comparison we
have also studied the acetylacetonate derivatives [Fe(acac)3], [Cu(acac)2], [Zn(acac)2] to
probe the impact of the delocalised system of the opo ligand.

2. Results and Discussion
2.1. Determination of the pKa values of Hopo and Hacac

Hopo is completely insoluble in H2O and also mixtures of H2O and MeCN or dimethyl-
formamide (DMF) did not allow dissolving the compound. So we embarked on deter-
mining the pKa values of Hopo and Hacac in MeCN solution using Kim’s voltammetric
method [71]. We observed a shift peak-shift on the first reduction wave of 1,4-benzoquinone
in the presence of Hopo of 192 mV in MeCN solution which translates to a pKa value of
20.7. The corresponding shift for Hacac was 354 mV which corresponds to a pKa value
of 17.8. The reported pKa values of Hypocrellin A and Hacac in H2O are about 7 and 9,
respectively which is in keeping with the expected slightly higher acidity of the phenol
protons in Hyprocrellin A and the resonance stabilisation (see Scheme 1) compared with
Hacac. In MeCN solution Hopo is less acidic than Hacac, which is probably due to the lack
of stabilisation of the resonance form of opo− with two negative charges on the oxygen
atoms and a positive charge on the remote phenyl core (Scheme 1).

2.2. Synthesis and Structure Analysis of the Opo Complexes

[Fe(opo)3] (dark red), [Cu(opo)2] (brown), and [Zn(opo)2] (yellowish) were obtained
by reacting the corresponding acac precursor complexes with Hopo (for details see Section
4) as microcrystalline solids in high yields (78–98%). The driving force of the reaction is
probably in the lower solubility of the opo complexes compared with the acac derivatives,
which is probably due to intermolecular π-stacking through the opo ligands in the solid
state as is frequently observed for opo derivatives and complexes [14,16,56,57,62,68,72].
Elemental analyses are in line with a homoleptic composition of the three complexes as
[Fe(opo)3], [Cu(opo)2] and [Zn(opo)2] with no other or additional ligands (= homoleptic)
(see Section 4). EI–MS(+) confirmed these compositions. In solutions with coordinating
solvents, [Cu(opo)2] and [Zn(opo)2] are suspected to coordinate one or two further ligands.

1H NMR spectroscopy was possible for [Zn(opo)2] (Figure 1), while [Cu(opo)2] and
[Fe(opo)3] are paramagnetic, so no unequivocal spectra were obtained. Compared with
Hopo [73], the hydroxy proton H9 for the Zn(II) complex is missing, and a general high
field-shift of all 1H signals upon coordination was found in agreement with data of the
previously isolated complex [Zn(opo)2(THF)2] from the reaction of Hopo with ZnMe2 in
tetrahydrofuran (THF) [49].
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Single crystals of the dark-red complex [Fe(opo)3] were obtained by slow evaporation 
of a THF solution and submitted for an XRD study. Unfortunately, the obtained crystals 
were of low quality and lacked reflexes in the range of high 2θ angles. Nevertheless, the 
crystal structure could be solved and refined in the triclinic space group P-1. The crystal 
structure of [Fe(opo)3].DMSO (DMSO = dimethyl sulfoxide) was recently published in the 
same space group with Z = 2 representing the two enantiomers of the complex and two 
co-crystallised DMSO molecules in the unit cell [57]. Our structure solution with Z = 6 
showed three enantiomeric pairs of complex molecules, a larger volume V = 4779(2) to 
1207.87(7) Å3 and the c axis more than double that of any axis in the structure of 
[Fe(opo)3].DMSO. Unfortunately, our refinement parameters were quite poor with an Rint 
of 36% (Table S1, Supplementary Materials) which we ascribed to the poor quality of the 
crystal. Nevertheless, the refinement was stable and we found multiple intermolecular π-
stacking in the crystal with interplanar distances ranging from 3.54 to 3.75 Å and a stag-
gered graphite-like stacking (Figures S1–S3 in the Supplementary Materials), similar to 
what has been found for [Fe(opo)3].DMSO [57] and other opo complexes 
[14,16,56,57,62,68,72]. The quality of the molecular structure of [Fe(opo)3], as expressed by 
the thermal ellipsoids and standard deviations, was good enough to assess bond distances 
and angles. The molecular structure of [Fe(opo)3] is depicted in Figure 2, and the pertinent 
metrical data is collected in Table S2, Supplementary Materials. 

Figure 1. 300 MHz 1H NMR spectra of Hopo (top) and [Zn(opo)2] (bottom) measured in acetone-d6. Assignment of Hopo
protons following ref. [73].

Our elemental analysis and MS found no evidence of solvent ligands on the isolated
Zn opo complex, and the 1H NMR spectrum contained only traces of MeOH from the
synthesis. Nevertheless, in the NMR solution, the species [Zn(opo)2(acetone)2] might be
present. The shifts for [Zn(opo)2(THF)2] are 7.96, 7.89, 7.40, and 6.95 ppm, respectively, in
THF–d8. This was very similar to our data and in line with the finding that in the crystal
structure both THF ligands were found in the axial position with very long Zn-O bonds of
2.143(1) Å [49]. Zn(opo) alkyl complexes were recently reported in the organozinc-catalysed
ring-opening polymerisation (ROP) of cyclic esters [68] and intramolecular hydroamination
reactions [69].

Single crystals of the dark-red complex [Fe(opo)3] were obtained by slow evaporation
of a THF solution and submitted for an XRD study. Unfortunately, the obtained crystals
were of low quality and lacked reflexes in the range of high 2θ angles. Nevertheless, the
crystal structure could be solved and refined in the triclinic space group P-1. The crystal
structure of [Fe(opo)3]·DMSO (DMSO = dimethyl sulfoxide) was recently published in
the same space group with Z = 2 representing the two enantiomers of the complex and
two co-crystallised DMSO molecules in the unit cell [57]. Our structure solution with
Z = 6 showed three enantiomeric pairs of complex molecules, a larger volume V = 4779(2)
to 1207.87(7) Å3 and the c axis more than double that of any axis in the structure of
[Fe(opo)3]·DMSO. Unfortunately, our refinement parameters were quite poor with an Rint
of 36% (Table S1, Supplementary Materials) which we ascribed to the poor quality of the
crystal. Nevertheless, the refinement was stable and we found multiple intermolecular π-
stacking in the crystal with interplanar distances ranging from 3.54 to 3.75 Å and a staggered
graphite-like stacking (Figures S1–S3 in the Supplementary Materials), similar to what has
been found for [Fe(opo)3]·DMSO [57] and other opo complexes [14,16,56,57,62,68,72]. The
quality of the molecular structure of [Fe(opo)3], as expressed by the thermal ellipsoids and
standard deviations, was good enough to assess bond distances and angles. The molecular
structure of [Fe(opo)3] is depicted in Figure 2, and the pertinent metrical data is collected
in Table S2, Supplementary Materials.
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Figure 2. Molecular structure (left: thermal ellipsoids at 30% probability level; right: polyhedron visualisation) of [Fe(opo)3],
H atoms omitted for clarity. Shown is the ∆ configured enantiomer. The unit cell contains 3 enantiomeric pairs of the
complex.

The bond distances and angles are very similar to those reported previously for
[Fe(opo)3]·DMSO [57] and also to those of [Fe(acac)3] [74], proving the high similarity of
the two ligands.

[Fe(opo)3] has recently turned out to be a very efficient catalyst for C-H arylation [63]
and was also used as cathode material for a H2O2 fuel cell together with the derivative
[Fe(opo)(phen)Cl2] (phen = 1,10-phenanthroline) [57].

Synthesis attempts using [Ni(acac)2] to target the [Ni(opo)2] complex were unsuccess-
ful. Yellow materials of unclear stoichiometry were obtained. Elemental analysis gave
a 61.12% carbon and 3.73% hydrogen content. This lies between the values expected for
[Ni(opo)2] (69.54% C and 3.14% H) and [Ni(acac)2]n (45.56% C and 5.35% H) but did not fit
the stoichiometry of [Ni(acac)(opo)] (61.07% C and 4.27% H). The problems with [Ni(opo)2]
synthesis might have arisen from the structure of the precursor complex. Anhydrous
[Ni(acac)2]3 is trimeric [75,76] and poorly soluble [77]. With two additional axial ligands
[Ni(acac)2(L)2], the complexes (L = H2O, MeOH, DMF, Py, acetone) were monomeric [78,79],
and the hemihydrate [Ni2(acac)4(H2O)2]·0.5H2O, was dimeric [80]. In addition, Ni(II) acac
cluster compounds [Ni2Ti2(acac)4(OEt)8] [77] and [Ni4(OCH3)4(acac)4(CH3OH)4] [81] were
reported. Such multinuclear complexes contain terminal and bridging acac ligands, the
latter of which might not have been replaced, which means the reaction might have stopped
half-way, leaving material with partly exchanged ligands. Leaving the reaction mixture
for some time yielded polygonal green crystals which were suitable for XRD. Structure
solution and refinement in the monoclinic space group C2/c revealed the structure of a
tetranuclear complex of the formula [Ni4(OCH3)4(acac)4(CH3OH)4] (Figure S12 and Tables
S3–S4 in the Supplementary Materials). This heterocubane-type compound was already
reported [81] as was the phenyl derivative [Ni4(OCH3)4(Phacac)4(CH3OH)4]· 1

2 Et2O [82].
The complex [Ni(opo)2(THF)2] was recently synthesised from Ni(OAc)2·4H2O and

Hopo and used for hydrosilylation and hydroboration catalysis [60,62].

2.3. EPR Spectroscopy for [Cu(opo)2] and [Fe(opo)3]

[Cu(opo)2] is expected to be a square planar complex, similar to [Cu(acac)2] [83–87].
In solution [Cu(acac)2] adds coordinating solvent molecules in the two axial positions to
form hexacoordinate species [Cu(acac)2(L)2] what has been studied in detail using EPR
spectroscopy [84–86] and we assume the same behaviour for [Cu(opo)2]. Very similar
spectra were obtained for the opo and acac complexes (Figure 3). The complexes exhibit
isotropic EPR signals with g values of 2.124 for [Cu(acac)2] and 2.127 for [Cu(opo)2].
The hyperfine splitting (HFS) is also slightly different with ACu = 76 G for [Cu(opo)2]
and ACu = 67 G for [Cu(acac)2] (simulation for [Cu(opo)2] in Figure S4, Supplementary
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Materials). Our values recorded for [Cu(acac)2] are very similar to those from previous
reports [84–89]. The higher HFS is in line with a lower degree of spin delocalisation from
CuII over the ligand for opo− compared with acac−.
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The solid state EPR spectrum of [Fe(opo)3] in the X-band showed broad resonances
with g values of about 4.5 and 2.3 (Figure S5 in the Supplementary Materials), which are
in line with the reported values of 4.52 and 2.34, and the magnetic measurements are in
agreement with a high-field d5 configuration (µeff = 5.7 µB at 298 K) [57]. [Fe(acac)3] in the
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value of 2.013 and a total spectral width of about 150 G, while [Fe(acac)3] exhibits a g value
of 2.060 and a spectral width of more than 5000 G. For [Fe(acac)3] a very similar spectrum
was reported in a toluene solution at room temperature [91]. The narrow, completely
isotropic signal of [Fe(opo)3] disagreed with a metal-centred S = 5/2 spin system. Either this
narrow spectrum was due to marked spin delocalisation from Fe to opo− or we assumed
that we were observing a S = 1

2 spin system with a contribution from a diamagnetic metal,
as inferred from the g value being only slightly higher than 2.0023 for a “free” electron in
an organic molecule and from the moderate width of the signal. This would be in line with
an opo−-to-FeIII electron transfer, yielding a FeII-bound opo• radical complex described as
[FeII(opo•)(opo−)2].

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 18 
 

 

Our values recorded for [Cu(acac)2] are very similar to those from previous reports [84–
89]. The higher HFS is in line with a lower degree of spin delocalisation from CuII over the 
ligand for opo‒ compared with acac‒. 

100 G

 
Figure 3. X-band EPR spectra of [Cu(opo)2] (solid line) and of [Cu(acac)2] (dashed line) both meas-
ured in DMF at 298 K at a frequency of 9.442220 GHz. 

The solid state EPR spectrum of [Fe(opo)3] in the X-band showed broad resonances 
with g values of about 4.5 and 2.3 (Figure S5 in the Supplementary Materials), which are 
in line with the reported values of 4.52 and 2.34, and the magnetic measurements are in 
agreement with a high-field d5 configuration (µeff = 5.7 µB at 298 K) [57]. [Fe(acac)3] in the 
solid shows EPR spectra in the X-band with very similar g components [90,91]. 

The EPR spectrum for [Fe(opo)3] and [Fe(acac)3] in THF solution at 298 K are both 
isotropic but the spectral width is completely different (Figure 4). [Fe(opo)3] exhibits a g 
value of 2.013 and a total spectral width of about 150 G, while [Fe(acac)3] exhibits a g value 
of 2.060 and a spectral width of more than 5000 G. For [Fe(acac)3] a very similar spectrum 
was reported in a toluene solution at room temperature [91]. The narrow, completely iso-
tropic signal of [Fe(opo)3] disagreed with a metal-centred S = 5/2 spin system. Either this 
narrow spectrum was due to marked spin delocalisation from Fe to opo‒ or we assumed 
that we were observing a S = ½ spin system with a contribution from a diamagnetic metal, 
as inferred from the g value being only slightly higher than 2.0023 for a “free” electron in 
an organic molecule and from the moderate width of the signal. This would be in line with 
an opo‒-to-FeIII electron transfer, yielding a FeII-bound opo• radical complex described as 
[FeII(opo•)(opo−)2]. 

3250 3300 3350 3400
Field (G)

[Fe(opo)3] in THF

Frequency: 9.436357 GHz

g = 2.013

 
1000 2000 3000 4000 5000 6000

Field (G)

[Fe(acac)3] in THF

Frequency: 9.441742 GHz

g = 2.06

 
Figure 4. X-band EPR spectra of [Fe(opo)3] (left) and [Fe(acac)3] (right) in THF solution at 298 K. 

The EPR spectrum of [B(opo)2]•+ shows HFS to protons and the B isotopes, and has a 
total width of about only 10 G [11]. The phenalenyl radical shows a total width of about 

Figure 4. X-band EPR spectra of [Fe(opo)3] (left) and [Fe(acac)3] (right) in THF solution at 298 K.



Int. J. Mol. Sci. 2021, 22, 3976 7 of 18

The EPR spectrum of [B(opo)2]•+ shows HFS to protons and the B isotopes, and
has a total width of about only 10 G [11]. The phenalenyl radical shows a total width
of about 40 G [72] which confirms that the metal-contribution of our radical complex in-
creased the overall spectral width, probably by broadening the lines. The reduced complex
[FeII(opo−)3]− is assumed to have a low-spin d6 configuration and is thus diamagnetic [57].
Both support the idea that an opo-centred radical with S = 1

2 bound to diamagnetic FeII is
observed in a THF solution.

2.4. Electrochemistry

Hopo and the three FeIII, CuII, and ZnII complexes were studied through cyclic
voltammetry in parallel with the corresponding acac derivatives. Hopo and the complexes
can be reduced twice in the range from −1 to −2.5 V (Figure 5) in line with previous
observation on Hopo and opo complexes [1,11,15,16,25,44–48,57,59,62,67] while oxidation
was not observed in the range of 0.0 to 3.0 V (Table 1).
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Table 1. Electrochemical properties of Hopo and opo complexes a.

Compound E 1
2
(Mn+1/Mn) E 1

2
(1ligand) E 1

2
(2ligand)

Hopo - −1.52 −2.51
[Fe(opo)3] b −1.19 −1.31 −1.60
[Fe(acac)3] −1.13 −1.41 -
[Cu(opo)2] −0.92 c −1.61 −1.91
[Cu(acac)2] −1.19 d −1.66 −2.51
[Zn(opo)2] - −1.42 −2.50
[Zn(acac)2] - −1.51 -

a Cyclic voltammetry measured in DMF/nBu4NPF6 at 298 K with 100 mV/s scan rate using a glassy-carbon
working electrode; potentials in V vs. ferrocene/ferrocenium. E1/2 = half-wave potentials for reversible processes,
Epc = cathodic peak potentials, Epa = anodic peak potentials. b Measurements using a Pt working electrode
gave −1.25, −1.83, and −2.23 V. c Averaged value from Epc = −1.39 V and Epa = −0.44 V. d Averaged value of
Epc = −1.60 V and Epa = −0.78 V.

For the complex [Zn(opo)2] (Figure 4) no metal centred reduction is expected (ZnII = d10),
thus both observed reduction processes are ligand-centred and show potentials similar to
those of Hopo (Figure S6, Supplementary Materials). For [Zn(acac)2] only one partially
reversible first reduction wave was observed at a slightly more negative potential than for
the opo derivative.

For [Cu(opo)2] the first reductive process divides into two largely separated waves
at Epc = −1.39 V and Epa = −0.44 V which averaged to −0.92 V (Figure 6). This pair
of waves represents the CuII/CuI redox couple. The separation of the two processes is
frequently observed for such complexes and is caused by the huge reorganisation which
is necessary to change the geometry from square planar for CuII towards tetrahedral for
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CuI and backwards [92–95]. The same is observed for [Cu(acac)2] but to a much lesser
extent with a separation of Epc = −1.60 V and Epa = −0.78 V and an averaged value of
−1.51 V markedly lower than for the opo derivative. Previously reported values of −1.57
V (in MeCN) and −1.61 V (in CH2Cl2) [89] fit perfectly to our measurements. As the axial
positions are prone to solvent coordination, the potential of this CuII/CuI couple largely
varies with the solvent.
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[Fe(opo)3] and [Fe(acac)3] have been studied before and the reported values agree
quite well with ours [57]. The first reduction process of both complexes is assigned to
a metal-centred process (FeIII/FeII) with a slightly higher value for the acac complex
indicating a slightly better σ-donation to the metal. The first opo-centred reduction of
[Fe(opo)3] lies at −1.31 and compares to −1.41 V for the acac derivative. A second opo-
centred reduction is recorded at −1.60 V. Remarkably, much more negative values of −1.83
and −2.24 V were reported for [Fe(opo)3] from the previous study for these processes and
there seems to be a large dependence on the material of the working electrode (WE). We
thus repeated our measurement using a glassy carbon (GC) WE using a Pt WE and could
confirm the previous values.

2.5. Absorption Spectroscopy and Spectroelectrochemistry

The absorption spectra of Hopo exhibits absorptions in the range of 300 to 450 nm
attributed to π−π* transitions (Table 2) [26,27,29,35,50,52]. For the Zn complex, most of
the absorption maxima were almost identical to those of Hopo in keeping with the very
similar electrochemical properties (Figure S7 in the Supplementary Materials). In keeping
with previous reports on [Zn(acac)2] [96,97], we assumed that the absorbing species were
the solvent-coordinated complexes [Zn(opo)2(solvent)x] with x = 1 or 2.

For the CuII complex the UV absorptions up to 380 nm are also very similar to
those of Hopo (Figure 7 and Figure S8, Supplementary Materials). The structured band
system peaking at 452 nm is also found for Hopo and assigned to the lowest energy π−π*
transitions, but the intensity of these bands in the CuII complex is much higher (Table 2).
Presumably a metal-to-ligand charge transfer (MLCT) from CuII to the lowest unoccupied
molecular orbital (LUMO) of opo− is admixing to these transitions in keeping with the
rather high (less negative) ligand-centred reduction potentials and reports of such MLCT
bands in OsII and RuII complexes of opo [45–48]. For [Cu(acac)2] this band system is
absent, supporting further the mixed π−π*/MLCT assignment. The very long-wavelength
broad absorption at 651 nm is attributed to the d–d transition. For [Cu(acac)2] we found
this absorption at 642 nm in keeping with a previous report [89]. The lower energy of
the ligand field transition for [Cu(opo)2] translated to a weaker ligand field of the opo
ligand compared with acac, in line with the poorer stabilisation of the opo− anion in
aprotic solvents compared with acac− and the higher acidity of Hacac (vide supra). As
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for [Cu(acac)2] [84–86], we also assumed for [Cu(opo)2] a solvent-coordinated species
[Cu(opo)2(solvent)2] in solution.

Table 2. UV-vis absorption data of Hopo, opo, and acac complexes a.

Compound ε/nm (ε/Lmol−1cm−1) Solvent

Hopo 350(1230), 393(333), 413(606), 428(504), 438(717), 451(133) CH3OH
[Zn(opo)2] 351(1512), 393(328), 414(589), 429(626), 438(705), 453(377) CH3OH

Hopo 350(1231), 393(331), 413(607), 428(502), 438(719), 451(131) DMF

[Cu(opo)2] 294(8600), 358(6400), 403(1070), 426(2470), 452(3520),
651(260) DMF

[Cu(acac)2] 376sh(5480), 639(1120), 642(260) DMF

Hopo 235(950), 257(607), 265(567), 350(1230), 393(296), 414 (538),
430(397), 439(607) THF

[Fe(opo)3] 265(15690), 327(4610), 361(6310), 368(6280), 453(3470),
480(2930), 571(230) THF

[Fe(acac)3] 273(28449), 353(4154), 435(4193) THF
a In the case of the Cu and Zn complexes we assume the species [M(opo)2(solvent)x] to be the absorbing species
as in the case for [M(acac)2(solvent)x] (x = 1 or 2) [84–86,96,97].
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Figure 7. Absorption spectra of [Cu(opo)2] recorded during electrochemical reduction at −1.0 V in
DMF/nBu4NPF6 solution.

The spectrum of [Fe(opo)3] is also dominated by the π−π* transitions of the opo ligand
(Figure S9, Supplementary Materials). However, the high absorption bands are markedly
shifted and have gained enormously in intensity compared with the free ligand Hopo.
Again, the structured π−π*(opo) band system from 400 to 500 nm is far more intense for
the FeIII complex and we assign this to mixed π−π*/ligand(πopo)-to-metal(dFe) charge
transfer (LMCT) transitions. A weak long wavelength absorption band is observed as a
shoulder at 571 nm. Magnetic measurements [57] have previously shown that [Fe(opo)3]
represents an FeIII d5 high-spin system and no spin-allowed d–d transitions are thus
expected. Nevertheless, this long-wavelength band might be due to a d–d transition with
intensity borrowed from the close LMCT bands. The spectrum of [Fe(acac)3] shows an
intense band at 435 in THF which can be assigned to an LMCT transition [98]. Compared
with [Fe(opo)3] the energy of the band for the acac derivative is higher indicative for a
higher lying highest occupied molecular orbital (HOMO) of the opo ligand.

Upon electrochemical reduction of [Cu(opo)2] the visible absorptions are red-shifted
and the band at 358 nm bleaches leaving a sharp absorption at 339 nm (Figure 7). Both
UV bands are markedly increased in intensity without a change in energy. We assume
that the geometry re-organisation from CuII square planar (+ two solvent ligands) to
tetrahedral CuI changes the probabilities for the π−π* transitions in the opo ligands, while
the π−π*/MLCT bands in the visible get a red-shift from the stabilisation of the Cu HOMO
(d9 to d10). The loss of the long-wavelength absorption at 651 nm additionally confirms
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the CuII/CuI redox couple. The resulting species is best described as [CuI(opo−)2]•−. A
contribution of the resonance form [CuII(opo•2−)(opo−)]•− can be ruled out as a species
containing opo•2− is characterised by intense dark colours in the visible range of the
spectrum [45–50,52,54,55,57].

Upon the reduction of [Fe(opo)3] at −1.0 V the π−π*/LMCT bands from 400 to 500 nm
get a slight blue-shift and lose intensity. The band system at 360 nm bleaches leaving a
sharp absorption at 339 nm (Figure 8). All absorption bands of the reduced Fe complex
look very similar to those of the reduced [Cu(opo)2]•− complex. Only the band at 264 nm is
more intense than the 290 nm absorption for Cu, while for Fe these intensities are reversed.
Previously, the first reduction of [Fe(opo)3] has been assigned to a FeIII/FeII couple under
the assumption that in [Fe(opo)3]•− the FeII is in a low-spin state [57]. Our experiments
confirm the underlying FeIII/FeII couple.
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Figure 8. Absorption spectra of [Fe(opo)3] recorded during electrochemical reduction at −1.0 V in
THF/nBu4NPF6 solution.

As for the Cu complex, no evidence of an opo-based reduction of [Fe(opo)3] leading
to species containing the intensely coloured radical dianion opo•2− was found. Both
reduced complexes clearly contained only opo− ligands and CuI or FeII, respectively. There
was also no hint of an opo−-to-FeIII electron transfer in the parent complex found in our
UV-vis experiments, leaving the narrow EPR signal of [Fe(opo)3] in solution without an
unequivocal explanation.

When reducing the complex [Zn(opo)2] at about −0.7 and at −1.3 V which both
lie higher than the first reduction wave observed in CV we recorded slight shifts in the
two main band systems at 350 and 450 nm. At -0.7 these were only slight red-shifts of
both bands, while at −1.3 V the 350 nm band disappeared leaving the sharp feature at
339 nm as observed for the CuII and FeIII complex after metal-centred reduction (Figure S10,
Supplementary Materials). Furthermore, the long-wavelength band system shifted further
to slightly lower energies. We assigned these spectroscopic features to geometry changes
through the polarisation effects on the working electrode comparable to what had been
observed for the reduced CuI and FeII complexes, which contained the parent opo−

ligand. Upon reduction at −2 V corresponding to the potential of the first reduction wave
observed in the CV, the sharp 339 band and the structured absorption centred at 460 nm
disappeared and broad bands at 420 and 630 nm grew in (Figure S11, Supplementary
Materials). We assigned these bands to typical transitions involving a reduced opo•2−

ligand [45–50,52,54,55,57] and describe the complex as [ZnII(opo•2−)(opo−)]•−.

2.6. Antiproliferative Properties

In a benchmarking study, [Rh(opo)(CO)2], [Pt(opo)(NH3)2](NO3) and (Bu4N)[Pt(opo)Cl2]
were found to have high antiproliferative activity towards human acute myeloid leukemia
cells with IC50 values ranging from 1.7 to 3.4 µM [29]. Very recently [Pt(opo)(dach)](NO3)
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(dach = 1,2-diaminocyclohexane) was found to be active against an A549 human lung
cancer cell line with activities two times higher than oxaliplatin [31]. This called for a study
of Hopo and the three complexes against the common cancer cell lines HT-29 (colon cancer)
and MCF-7 (breast cancer). For Hopo and the complexes, we found quite low IC50 values
in the range of cisplatin (Table 3).

Table 3. Antiproliferative properties—IC50 values/µM.

HT-29 MCF-7

cisplatin 7.0 ± 2 [99] 2.0 ± 0.3 [99]

Hopo 6.65 µM ± 0.70 5.11 µM ± 1.81
[Cu(opo)2] 10.40 µM ± 0.36 5.52 µM ± 1.06
[Fe(opo)3] 5.32 µM ± 0.71 4.73 µM ± 1.06
[Zn(opo)2] 4.17 µM ± 0.29 3.67 µM ± 1.26

Remarkably, already the Hopo molecule shows quite high activity in line with other
high antiproliferative activities of Hopo derivatives, e.g., against Leishmania [32,33]. The
activities of the Fe and Zn complexes are only gradually higher but lie in the range of the
reported RhI, and PtII complexes [29–31]. While for the previously studied opo PtII com-
plexes DNA intercalation and cisplatin-like behaviour was assumed [29,31], the apoptosis
resulting from the Hopo and the FeIII, CuII and ZnII complexes might be also caused by
oxidative damage. Our spectroscopic and electrochemical findings are in line with such
redox behaviour in the cell leading to reactive oxygen species, thus inducing cell damage.
But in all cases, the de-coordinated ligand might be the main cause of activity and the
observed differences in activity reflect the bio-availability (solubility + de-coordination
rate) of Hopo or its anion. To gain more insight, we will head for the so-far unreported
homoleptic PtII and PdII complexes of opo and compare their antiproliferative activities
and redox chemistry (in the presence and absence of O2) with those of the ZnII, CuII and
FeIII derivatives reported here and study their impact on healthy and cancerous cells in
further studies.

3. Conclusions

The three homoleptic complexes [Fe(opo)3], [Cu(opo)2], and [Zn(opo)2] containing
the redox-active, so-called non-innocent ligand 9-oxido-phenalenone opo− (Hopo = 9-
hydroxyphenalenone) were synthesised from the corresponding acetylacetonates. [Zn(opo)2]
was studied using 1H NMR spectroscopy, the paramagnetic [Fe(opo)3] and [Cu(opo)2]
by EPR spectroscopy. While the EPR spectra of [Cu(opo)2] and [Cu(acac)2] in the DMF
solution are very similar, a rather narrow spectrum was observed for [Fe(opo)3] in the
THF solution in contrast to the very broad spectrum of [Fe(acac)3] in THF. The narrow,
completely isotropic signal of [Fe(opo)3] disagreed with a metal-centred S = 5/2 spin
system that is observed in the solid state. We assume spin-delocalisation from the Fe to
the opo ligand through an opo−-to-FeIII electron transfer. All compounds show several
electrochemical reduction waves in the range of −1 to −3 V vs. the ferrocene/ferrocenium
couple. While for Hopo and the ZnII complex all of them are opo-centred, for CuII and
FeIII the very first one-electron reductions are metal-centred. Electronic absorption in the
UV to vis range are due to π−π* transitions in the opo core, giving Hopo and [Zn(opo)2] a
yellow-to-orange colour. The structured bands ranging from 400 to 500 for all compounds
are assigned to the lowest energy π−π* transitions. They show markedly higher intensities
and slight shifts for the CuII (brown) and FeIII (red) complexes and we assume admixing
metal contributions (MLCT for CuII, LMCT for FeIII). For both complexes long-wavelength
absorptions assignable to d–d transitions were detected. Detailed spectroelectrochemical
experiments confirm both the electrochemical and the optical assignments but cannot find
any evidence for electron transfer in the parent [Fe(opo)3] (described as [FeII(opo•)(opo−)2])
as was inferred from the narrow EPR signal in solution nor for species containing the re-
duced opo radical opo•2−. UV-vis spectroelectrochemistry revealed typical absorption
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bands for the reduced ligand opo•2− in the reduced complex [ZnII(opo•2−)(opo−)]•−.
The failure to observe these bands at 460 and 630 nm when reducing the CuII and FeIII

complexes confirmed the metal-centred CuII/CuI and FeIII/FeII redox pairs. In contrast
to the similar acetylacetonate ligand acac−, the 14-electron aromatic core of opo− led to
interesting optical features, while it reduced the acidity of Hopo compared with Hacac in
organic solvents. Hopo and the ZnII, CuII and FeIII complex showed high antiproliferative
activity against the human cancer cell lines HT-29 and MCF-7.

4. Experimental Section
4.1. Instrumentation

NMR spectra were recorded on a Bruker Avance II 300 MHz spectrometer, using a
triple resonance 1H, nBB inverse probe head. The unambiguous assignment of the 1H
and 13C resonances was obtained from 1H NOESY, 1H COSY, gradient selected 1H, 13C
HSQC and HMBC experiments. All 2D NMR experiments were performed using standard
pulse sequences from the Bruker pulse program library (Bruker, Rheinhausen, Germany).
Chemical shifts were relative to TMS. UV-vis absorption spectra were measured on Varian
Cary50 Scan (Varian Medical Systems, Darmstadt, Germany) or Shimadzu UV-3600 photo
spectrometers (Shimadzu Europe, Duisburg, Germany). Elemental analyses were carried
out using a HEKAtech CHNS EuroEA 3000 Analyzer (HEKAtech, Wegberg, Germany).
EPR spectra were recorded in the X-band on a Bruker System ELEXSYS 500E (Bruker,
Rheinhausen, Germany) equipped with a Bruker Variable Temperature Unit ER 4131VT
(500 to 100 K or an Oxford Instruments helium-cryostat (300 to 4 K); the g values were
calibrated using a dpph sample. Simulation of the EPR spectra were performed using
the PEST Winsim software [100]. Electrochemical experiments were carried out in 0.1 M
nBu4NPF6 solutions using a three-electrode configuration (glassy-carbon working electrode,
Pt counter electrode, Ag/AgCl pseudo reference) and an Autolab PGSTAT30 potentiostat
and function generator (Metrohm, Filderstadt, Germany). The ferrocene/ferrocenium
couple served as internal reference. The voltammetric determination of pKa values was
carried out as described in the literature [71] using freshly sublimed 2,4-benzoquinone.
UV-vis spectroelectrochemical measurements were performed with an optical transparent
thin-layer electrochemical (OTTLE) cell [101,102].

4.2. Crystal Structure Determination

Measurements were performed at 293(2) K using graphite-monochromatised Mo–Ka
radiation (λ = 0.71073 Å) on a IPDS I diffractometer (STOE and Cie., Darmstadt, Germany).
The structures were solved by dual space methods (SHELXT-2015) [103] and refined
by full-matrix least-squares techniques against (SHELXL-2017/1) [104,105]. The non-
hydrogen atoms were refined with anisotropic displacement parameters without any
constraints. The hydrogen atoms were included by using appropriate riding models.
The numerical absorption corrections (X-RED V1.31; STOE and Cie., 2015) [106] were
performed after optimising the crystal shapes using X-SHAPE V1.06 (STOE and Cie.,
1999) [107]. More details on the crystal structures provided in the SI. CCDC 2071044
contain the full crystallographic data for [Fe(opo)3]. These data can be obtained free of
charge at www.ccdc.cam.ac.uk/conts/retrieving.html (accessed on 30 March 2021) or from
the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ UK.
Fax: +44-1223-336-033; Email: deposit@ccdc.cam.ac.uk.

4.3. Antiproliferative Activities.

The antiproliferative effects of the compounds were determined following an estab-
lished procedure [99]. In short, cells were suspended in a cell culture medium (HT-29:
2850 cells/mL, MCF-7: 10000 cells/mL), and 100 mL aliquots thereof were plated in well
plates and incubated at 37 ◦C: 5% CO2 for 48 h (HT-29) or 72 h (MCF-7). Stock solutions of
the compounds in dimethylformamide (DMF) were freshly prepared and diluted with cell
culture medium to the desired concentrations (final DMF concentration: 0.1% v/v). The
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medium in the plates was replaced with medium containing the compounds in graded
concentrations (six replicates). After further incubation for 72 h (HT-29) or 96 h (MCF-7) the
cell biomass was determined by crystal violet staining and the IC50 values were determined
as those concentrations causing 50% inhibition of cell proliferation. Results were calculated
from two independent experiments.

4.4. Materials and Syntheses

Water-free reactions were carried out under inert gas conditions and performed using
Schlenk techniques. Solvents were dried using a MBRAUN MB SPS-800 solvent purification
system. 9-Hydroxyphenalenone (Hopo) was synthesised from cinnamoyl chloride and
2-methoxynaphthalene in 92% yield following a literature procedure [108]. The acac
complexes [M(acac)2] (M = Ni, Cu, Zn) and [Fe(acac)3] were synthesised as published [109].

4.5. Synthesis of the Opo Complexes

[Fe(opo)3]. 200 mg (0.57 mmol) [Fe(acac)3] was -issolved in MeOH, a suspension of
294 mg (1.71 mmol) Hopo in MeOH was added, and the mixture was stirred at an ambient
temperature for 16 h. The resulting precipitate was filtered off, washed with acetone and
dried in vacuo to yield 288 mg (0.45 mmol, 78%) of a dark red solid. Elemental analyses:
calc for C39H21O6Fe (M = 641.43 g mol−1) C 73.03; H 3.30; found: C 73.09; H 3.33. EI-MS(+):
641 [M]+, 446 [Fe(opo)2]+ m/z.

[Cu(opo)2]. 0.50 g (1.9 mmol) [Cu(acac)2] was dissolved in MeOH, a suspension of
0.65 g (3.8 mmol) Hopo in MeOH was added, and the mixture was stirred at an ambient
temperature for 16 h. The resulting precipitate was filtered off and washed with acetone
to yield 0.82 mg (1.8 mmol, 98%) of a brown solid which was dried in vacuo. Elemental
analyses: calc for C26H14O4Cu (M = 453.93 g mol−1) C 68.79; H 3.11; found: C 68.72; H 3.13.
EI-MS(+): 453 [M]+. m/z.

[Zn(opo)2]. 200 mg (0.76 mmol) anhydrous [Zn(acac)2] was suspended in MeOH. a
suspension of 261 mg (1.52 mmol) Hopo in MeOH was added, and the mixture was stirred
at an ambient temperature for 4 h. The resulting voluminous precipitate was filtered off,
washed with acetone and dried in vacuo to yield 283 mg (0.62 mmol, 81%) of a yellowish
solid. 1H NMR (300 MHz, acetone-d6): δ = 8.13 (d, 2H, H2,8), 8.07 (d, 2H, H3,7), 7.52 (t, 1H,
H5), 7.08 (d, 2H, H4,6) ppm. Elemental analyses: calc for C26H14O4Zn (M = 455.78 g mol−1)
C 68.52; H 3.10; found: C 69.07; H 3.15. EI-MS(+): 454 [M]+ m/z.

Reaction of Hopo with [Ni(acac)2]. 200 mg (0.68 mmol) [Ni(acac)2] was dissolved in
MeOH, a suspension of 234 mg (1.36 mmol) Hopo in MeOH was added, and the mixture
was stirred overnight. The resulting yellow precipitate was filtered off and washed with
acetone to yield 305 mg of a yellow-brown solid. Elemental analyses found: C 61.12; H 3.73.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22083976/s1, Figure S1: View on the crystal structure of [Fe(opo)3] along the crystal-
lographic a and b axes., Figure S2: π-stacking interactions in the crystal of [Fe(opo)3], Figure S3:
Further π-stacking in the crystal of [Fe(opo)3], Figure S4: X-band EPR spectrum of [Cu(opo)2] in DMF
at 298 K with simulation, Figure S5: X-band EPR spectrum of solid [Fe(opo)3] at 298 K, Figure S6:
Cyclic voltammogramms of Hopo, Figure S7: UV-vis absorption spectrum of [Zn(opo)2] in MeOH,
Figure S8: UV-vis absorption spectrum of [Cu(opo)2] in DMF, Figure S9: UV-vis absorption spectrum
of [Fe(opo)3] in DMF, Figure S10: Absorption spectra of [Zn(opo)2] recorded during reduction,
Figure S11: Absorption spectra of [Zn(opo)2] recorded during reduction, Table S1: Crystallographic
and structure refinement data of [Fe(opo)3], Table S2: Selected metrical data of [Fe(opo)3], Figure S12:
ORTEP-representations of [Ni4(OCH3)4(acac)4(CH3OH)4], Table S3: Selected distances and angles
of the two cluster type compounds, Table S4: FIR vibration frequencies for the nickel cluster and
[Ni(acac)2].
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