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Lanzhou, China, 4Department of Radiology, Gansu Provincial Hospital, Lanzhou, China
Purpose: The purpose of this study was to evaluate the diagnostic accuracy of

artificial intelligence (AI) models with magnetic resonance imaging(MRI) in

predicting pathological complete response(pCR) to neoadjuvant

chemoradiotherapy (nCRT) in patients with rectal cancer. Furthermore,

assessed the methodological quality of the models.

Methods: We searched PubMed, Embase, Cochrane Library, and Web of

science for studies published before 21 June 2022, without any language

restrictions. The Quality Assessment of Diagnostic Accuracy Studies 2

(QUADAS-2) and Radiomics Quality Score (RQS) tools were used to assess

the methodological quality of the included studies. We calculated pooled

sensitivity and specificity using random-effects models, I2 values were used

to measure heterogeneity, and subgroup analyses to explore potential sources

of heterogeneity.

Results: We selected 21 papers for inclusion in the meta-analysis from 1562

retrieved publications, with a total of 1873 people in the validation groups. The

meta-analysis showed that AI models based on MRI predicted pCR to nCRT in

patients with rectal cancer: a pooled area under the curve (AUC) 0.91 (95% CI,

0.88-0.93), sensitivity of 0.82(95% CI,0.71-0.90), pooled specificity 0.86(95%

CI,0.80-0.91). In the subgroup analysis, the pooled AUC of the deep learning

(DL) model was 0.97, the pooled AUC of the radiomics model was 0.85; the

pooled AUC of the combined model with clinical factors was 0.92, and the

pooled AUC of the radiomics model alone was 0.87. The mean RQS score of

the included studies was 10.95, accounting for 30.4% of the total score.
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Conclusions: Radiomics is a promising noninvasive method with high value in

predicting pathological response to nCRT in patients with rectal cancer. DL models

have higher predictive accuracy than radiomics models, and combined models

incorporating clinical factors have higher diagnostic accuracy than radiomics

models alone. In the future, prospective, large-scale, multicenter investigations

using radiomics approaches will strengthen the diagnostic power of pCR.

Systematic Review Registration: https://www.crd.york.ac.uk/prospero/,

identifier CRD42021285630.
KEYWORDS
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Introduction

More than 700,000 people are diagnosed with rectal cancer each

year in the world, 70% of which are locally advanced rectal cancer

(LARC) (1). The current standard treatment for LARC is

neoadjuvant chemoradiation followed by total mesorectal excision

(TME) (2–4). However, individual responses to neoadjuvant

chemoradiotherapy (nCRT) are highly heterogeneous, ranging

from pathological complete responses(pCR) with no viable cancer

cells to small groups of cancer cells or even a small group of patients

with tumorprogression.Previous studies reported that about 15-27%

of patients present pCR after nCRT (5). For those patients, organ

preservation methods, such as “wait-and-see” and local excision (6),

can achieve a comparable survival rate with pCR as TME, decreasing

TME-related morbidity and functional problems (7). However, at

present, pathological complete responses can only be confirmed by

histopathological examination of surgically resected specimens, so in

the personalized medicine of LARC, there is an urgent need to

accurately predict pCR in a timely and non-invasive manner before

implementing nCRT.

In rectal cancer patients, tumor response to nCRT can be assessed

by computed tomography (CT), Positron emission tomography-

computed tomography (PET/CT), or rectal ultrasound. However,

magnetic resonance imaging (MRI) is the most accurate method to

assess and predict pCR after nCRT (8–10). MRI is the imaging

modality with the highest soft-tissue contrast. Rectal MRI can

accurately evaluate the tumor location, tumor stage, invasion depth,

extramural vascular invasion (EMVI), and circumferential resection

margin (11). Multiparametric MRI can also reflect the

pathophysiological information of rectal cancer, including dynamic

contrast-enhanced magnetic resonance imaging (DCE-MRI),

diffusion-weighted imaging (DWI), and proton magnetic

spectroscopic imaging (12–14). Changes in image morphology and

image parameters extracted from contrast-enhanced MRI and DWI

can help predict treatment response (15). To that end, mrTRG, a
02
classification system similar to Mandard’s tumor regression grade

(TRG) system, has been developed, based on hypointensity in T2-

weighted sequences of fibrotic tissue in the lesion (16). However, the

low predictive value and poor consistency of mrTRG methods for

pathological TRG hinder its clinical application (17).

Artificial intelligence(AI) has been frequently and successfully

applied in the field of medical image analysis and can automatically

identify complex patterns in imaging. Machine learning(ML) is a

branch of AI that has been widely used in rectal cancer, including

radiomics and deep learning(DL). Radiomics can transform clinical

images into mineable data for quantitative analysis through high-

throughput extraction (18). Thus, providing non-visual information

related to tumor heterogeneity and underlying pathophysiology.

Combining AI algorithms and MRI is a promising tool for

improving the prediction of diagnosis or prognosis in patients

with rectal cancer. In rectal cancer patients, radiomics has been

widely used in rectal cancer staging classification (19), rectal cancer

liver metastasis (20), distant metastasis (21), colorectal cancer KRAS

gene status (22), MSS status (23), aquaporin-1 expression (24) and

predicting the early stage of neoadjuvant chemoradiotherapy

progress (25).In recent years, several studies based on radiomics

have emerged to predict the pathological response to nCRT in

patients with rectal cancer, including traditional machine learning

models, deep learning models, and delta models. However, no

comprehensive review of current research on artificial intelligence

(AI) models for predicting pathological responses to nCRT in rectal

cancer patients has been conducted, and the overall effectiveness of

this prediction model is unknown. Furthermore, because radiomics

research is a complicated process with several phases, it is critical to

evaluate the method’s quality to assure reliable and repeatable

models before putting it into clinical applications.

The purpose of this systematic review was to describe available

research on radiomics predicting pathological response to nCRT,

evaluate the overall effectiveness of predictionmodels, and evaluate

the methodological quality and bias risk in radiomics workflows.
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Methods

The Standards for the Reporting of Diagnostic Accuracy Studies

(STARD) (26) and Preferred Reporting Items for Systematic

Reviews and Meta-Analyses (PRISMA) (27) guidelines were

followed. CRD 42021285630 is the registration number.
Search strategy

We searched from the databases of PubMed, Embase,

Cochrane Library, and Web of science, for studies conducted

before June 20, 2022. Using the technique of blending topic and

free words. The key topic terms were “Rectal Neoplasms”,

“Artificial Intelligence”, and “Magnetic Resonance Imaging”, as

well as related terms. The search strategy and detailed

procedures are demonstrated in Table S1.
Inclusion and exclusion criteria

Studies that matched the following criteria were chosen after

duplicate literature was eliminated (1): Pathologically proven

locally advanced rectal cancer patients (T3/T4 and/or N1+) (2);

All patients received neoadjuvant chemoradiation treatment

(traditional long course and trial regimens were included) (3);

Use of MRI as the examination modality (if other imaging

modalities are used, as long as MRI has been studied

separately) (4); Predicting pathological responses in patients

using artificial intelligence models (5); Provided the

information necessary for the reconstruction of 2 × 2

contingency tables (6); Any study design, including

retrospective and prospective observational studies (7); the

language of the publication was English.

The following criteria were used to exclude our studies (1):

each study had at least 10 patients (2); Case reports, review

articles, letters, meeting reports, and editorials (3); Studies that

included neoadjuvant chemotherapy only (4); Studies that

included neoadjuvant radiotherapy only (5); Classification of

patients as responsive and non-responsive, rather than

pathological complete and non-pathological complete

responses (6); No validated studies. The titles and abstracts of

all identified studies were examined first, followed by a full-text

review of possibly suitable articles.
Data extraction

The following information was extracted from the eligible

articles (1): study characteristics: authors (years of publication),

country of corresponding author, study type, and study design (2);

participants characteristics: neoadjuvant chemoradiotherapy,
Frontiers in Oncology 03
operation, standard reference, image examination interval, MRI

scan parameters (3); model characteristics: image, region of interest

(ROI) segmentation, input data, feature selection, modeling

methods, verification methods (4); AI model performance: AUC,

sensitivity, specificity, pCR population and non-pCR population.
Assessment of study quality

The Quality Assessment of Diagnostic Accuracy Studies 2

(QUADAS-2) and Radiomics Quality Score (RQS) were used to

evaluate the included studies’ methodological quality and study-

level risk of bias, respectively. The RQS was proposed by Lambin

(28) in 2017 to evaluate radiomics research based on five stages of

radiomics research (data selection, medical imaging, feature

extraction, exploratory analysis, and modeling). The RQS tool

has a total of 16 key items for quantifying the radiomics workflow.

Details are in Table S2. The QUADAS-2 standard consists of four

parts: patient selection, index test, reference standard, and flow

and timing (29), which are detailed in Table S3. To obtain a

consensus, two graduate students separately rated the quality and

discussed disputes with the evidence-based medicine teacher.
Statistical analysis

We analyzed the raw data with the Midas command in Stata

software (30), and we estimated the pooled sensitivity,

specificity, positive likelihood ratio (PLR), negative likelihood

ratio (NLR), and diagnostic odds ratio (DOR) with 95% CI using

a bivariate random-effects model. We created a receiver

operating characteristic curve (ROC) with sensitivity on the X-

axis and specificity on the Y-axis, as well as the area under the

curve (AUC) to demonstrate the diagnostic power of the

included research (31).

We used linked forest plots to compare research and

discover heterogeneity in confluent sensitivity and specificity

(32). We initially visually inspected ROC images and forest plots

to examine heterogeneity between study results. The I2 measure

was used to assess heterogeneity in studies. I2 values >75% are

highly heterogeneous (32). Two-sided P<0.05 was considered

statistically significant. We plan to perform subgroup analyses to

investigate potential sources of heterogeneity. As possible

sources of heterogeneity, we considered modeling methods

(radiomics and deep learning), sample size (whether greater

than 100), radiomics feature extraction software (PyRadiomics

and Others), regions of interest (2D and 3D), validation methods

(external validation and internal validation) and inclusion of

clinical factors (combined models and separate imaging feature

models) were performed in subgroup analyses, which also

allowed us to assess the impact of various factors on the

model’s diagnostic performance.
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We used a funnel plot visual asymmetry evaluation to

identify publication bias (33), which we first published using

measurements of effect magnitude plotted against measures of

study accuracy. We then officially analyzed test accuracy using

Deeks’ test and diagnostic odds ratio (DOR).
Results

Literature search

Through searches of PubMed, Embase, Cochrane Library, and

Web of Science databases, a total of 1562 articles were retrieved.

We browsed the titles and abstracts of 1048 studie, reviewed the

full text of 298 studies, and finally reported from 90 articles. The

application of AI models in neoadjuvant chemoradiotherapy for

rectal cancer was evaluated, and finally, 21 articles were eligible for

meta-analysis. The selection process is shown in Figure 1.
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Characteristics of included studies

The 21 included studies were published between 2018 and

2022. More than half of the studies (11/21) were based on a

population from China (34–44), three from South Korea (45–

47), three from Italy (48–50), two from the USA (51, 52), one

from Brazil (53), and one from Belgium (54). Two studies were

prospective, and all the remaining studies (19/21) had a

retrospective design. These 21 studies included a total of 6913

patients with sample sizes ranging from 95 to 1033 (median:

186). The definition of pCR was the same among most of the

included studies(17/21), four studies not describing the

definition of pCR. Long-course radiotherapy dosesrangeg from

41.8-50.6 Gy with different concurrent chemotherapy (Table 2).

Eleven studies used both 1.5T and 3.0T MRI scan types,

seven studies only used 3.0T MRI scan, and two studies used

1.5T MRI scan. Most studies (15/29) used two or more

sequences to build their predictive models. Five studies used
FIGURE 1

Flow diagram of the study selection process for this meta-analysis.
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TABLE 1 Summary of general study characteristics.
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only T2WI sequences to construct the models, and the

remaining one used DWI sequences (44). All studies included

image slice thicknesses between 2.00mm and 8.0mm.

The most used segmentation software is ITK.SNAP (7/21),

followed by 3D Slicer (3/21). Most studies performed manual

segmentation (15/21), two studies performed semi-automatic

segmentation, and one study performed automatic segmentation

(39), The segmentation method was not described in the remaining

three studies. Ten studies used two-dimensional(2D) segmentation,

nine studies used three-dimensional(3D) segmentation, and the

other two studies used an unknown segmentation approach.

The most commonly used image feature extraction software

is PyRadiomics (6/21), followed by MATLAB (3/21). The

number of radiomic features extracted from the images varied

from 34 to 8524. To avoid possible overfitting when developing

radiomic models, feature selection and dimensionality reduction

must be performed because radiomic features often exceed

sample size. Each study used a different approach to feature

selection and dimensionality reduction, and some studies

performed more than one-dimensionality reduction approach.

The most commonly used are Pearson correlation and Least

Absolute Shrinkage and Selection Operator (LASSO) regression.

Repeatability evaluation of imaging features can also be used for

feature selection. The thresholds for robust features were set at

0.6-0.915 in seven studies that performed inter-class correlation

coefficient (ICC) analysis. Extracted features were described in

12 studies, of which texture features were found in 11 studies,

and the features extracted in 9 studies were unknown.

Five studies used deep learning(DL) methods to build models,

and the remaining sixteen studies used ML methods to build

models. The most common ML classifier is logistic regression.

Nine studies used external validation, eleven studies used

randomization validation, and the remaining one used cross-

validation (53). Fifteen studies used radiomics features alone to

construct models, and six studies constructed comprehensive

models that combined clinical factors and radiomics features.

The study characteristics and results are summarized in

Table 1 and Table 2.
RQS and risk of bias assessment

The included studies’mean RQS score was 10.95, accounting

for 30.4% of the overall score. Only one research (37) found the

maximum RQS score of 24 (67%). Approximately half of the

studies received a score of 10 or above. Because no study took

into account the four elements “Phantom study on all scanners”,

“Imaging at multiple time points”, “Cut-off analyses”, and “Cost-

effectiveness analysis”, they obtained a score of zero. Other

factors with poor average scores were “biological correlations,”

“Prospective study”, “Potential clinical utility”, and “Open

science and data” (Figure 2). A detailed description of the RQS

scores is provided in Table S4.
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TABLE 2 Summary of artificial intelligence-based prediction model characteristics described in included studies.

Study VOI Segmentation ROI Feature extraction Imaging features No. of extraced ICC evaluation
(threshold)

Algorithm architecture Validation

No RF External
validation

No Linear regression logistic External
validation

No LASSO regression External
validation

Yes (0.8) Logistic regression Split sample

Yes(0.701 -0.915) LASSO regression Split sample

Yes (0.6) SVM External
validation

No RF FivefoldCV

Yes (0.75) RF External
validation

Not applicable DL Split sample

Not applicable 3D RP-Net External
validation

No LR, xgboost, lightgbm,RF,
MLP, Ensemble

Split sample

Yes Logistic regression External
validation

No TsraU-Net External
validation

No SVM,RF,J48, Naive bayes,KNN External
validation

No Logistic regression Split sample

Yes (0.75) Not reported Split sample

Yes (0.8) Lasso logistic regression Split sample
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software software feature

Antunes
2021

3D Slicer Manual 2D MATLAB Textural features 764

Boldrini
2022

Not
reported

Manual 2D MODDICOM Skewness, Entropy Not reported

Bulens
2021

Not
reported

Manual 2D Not reported Not reported 8524

Cheng
2021

ITK.SNAP Manual 3D Pyradiomics First-order, shape-based, texture features 5901

Cui 2019 ITK.SNAP Manual 2D AK Histogram parameters, texture features,
factor features

1188

Feng 2022 ITK.SNAP Manual 2D Pyradiomics Texture Features, First-order Features,
Wavelets Features

2106

Horvat
2018

ITK.SNAP Manual 2D MATLAB Texture Features 34

Horvat
2022

ITK.SNAP Manual 3D Not reported Texture features, Haralick textures, Gabor
edges

91

Jang 2021 Not
applicable

Not applicable 3D MATLAB Not applicable Not applicable

Jin 2021 Not
reported

Not applicable 3D Not reported Not applicable Not applicable

Lee 2021 3D Slicer Semi-automatic 3D Pyradiomics Features on the tumor shape,voxel
intensity histogram, texture of tumor

areas

3740

Nardone
2022

Not
reported

Manual 3D LifeX Texture Features Not reported

Pang 2021 U-Net Automatic 2D PyRadiomics Not applicable Not applicable

Rengo
2022

Not
reported

Not reported Not
reported

WEKA Not reported Not reported

Shaish
2020

3D slicer Manual 3D Pyradiomics First-order statistics, 3D shape-based,
gray-level cooccurrence matrix, gray-level
run length matrix, gray-level size zone
matrix, neighboring gray-tone difference
matrix, gray-level dependence matrix

3190

Shin 2022 3D Slicer Semi-automatic 3D PyRadiomics Not reported 1132

Wan 2019 Not
applicable

Manual Not
applicable

Not applicable Not applicable Not applicable
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Figure 3 depicts the risk of bias and applicability concerns

for twenty-one diagnostic-related studies using QUADAS-2. In

each category, the majority of research revealed a low or

uncertain risk of bias (Figure S1). In terms of patient selection,

eleven studies were deemed to have an uncertain or high risk of

bias due to ambiguous methods of participant selection and/or

ambiguous detailed exclusion criteria. Concerning the index test,

all studies were deemed to have a high or uncertain risk of bias

since it was unclear if a threshold was employed or the threshold

was not pre-specified. Only one research was deemed to have an

unknown risk of bias due to the lack of a description of the

reference standard. Concerning the time course, nine studies

were deemed to be at high or unclear risk of bias, owing to

unclear gaps between indicator tests and reference standards

and/or the inability to determine if all subjects got the same

reference standards (Supplemental Table S5).
Meta-analysis

A total of 21 studies were included in the meta-analysis, we

only evaluated the validation cohorts of those studies, and

radiomics assessed the efficacy of pCR after neoadjuvant

chemoradiotherapy in rectal cancer: the pooled sensitivity 0.82

(95% CI,0.71-0.90), pooled specificity 0.86(95% CI,0.80- 0.91),

pooled PLR 6.0 (95% CI,4.0-8.9), pooled NLR 0.21(95% CI,0.12-

0.35)and DOR 29(95% CI,14-61) respectively, and the pooled

AUC was 0.91 (95% CI,0.88-0.93).

When we calculated pooled estimates, we discovered significant

heterogeneity between studies in terms of sensitivity (I2 = 78.76%)

and specificity (I2 = 90.92%). Figure 4 shows the forest plot, and

Figure 5 shows the noticeable discrepancy between the 95%

confidence and 95% prediction areas from the SROC curve,

showing a significant probability of variability between studies.
Subgroup analysis

To explore potential sources of study heterogeneity, we

performed a subgroup analysis of 21 studies, including six

different conditions and twelve subgroups. Radiomics models

vary in modeling methods (radiomics and DL), sample size

(whether greater than 100), radiomics feature extraction software

(PyRadiomics and Others), regions of interest (2D and 3D), and

validation methods (external validation and internal validation)

and the inclusion of clinical factors (combinedmodels and separate

imaging feature models) showed moderate to high diagnostic value

in various subgroups. The results are shown in Table 3.
Publication bias

We investigated publication bias for the 21 included papers

by first seeing that the funnel plot was symmetric, and then
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formally assessing it with the Deek test (P=0.20) (Figure 6),

demonstrating that there was no publication bias.
Discussion

This systematic review and meta-analysis explored whether

radiomics can be accurate in predicting pathological response to

neoadjuvant chemoradiotherapy in patients with rectal cancer,

using the QUADAS-2 and RQS tools to assess the quality of

included studies. The results showed that the radiomic models

had high diagnostic value in predicting pCR, with sensitivity,

specificity, and AUC of 0.82(95% CI,0.71-0.90), 0.86(95%
Frontiers in Oncology 09
CI,0.80- 0.91), and 0.91(95% CI,0.88-0.93), respectively.

Confirmation of this information will aid in the development

of effective therapeutic regimens for rectal cancer patients. For

example, If a patient with rectal cancer shows a pCR after

neoadjuvant chemoradiotherapy, TME surgery is not required

but waiting and observation.

In several studies, first-order features including skewness,

kurtosis, entropy, and energy were found to distinguish

pathological complete responses from non-pathological

complete responses (34, 35, 37, 51–53). Lower kurtosis was

found in pCR patients in one study (53), however, this has not

been validated in other studies. Second- and higher-order

features also have some predictive power. Texture features are
A

B

FIGURE 2

Methodological quality was evaluated by using the Radiomics Quality Score (RQS) tool. (A). The proportion of studies with a different RQS
percentage scores. (B). Average scores of each RQS item (gray bars stand for the full points of each item, and red bars show actual points).
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FIGURE 3

Grouped bar charts of the risk of bias and applicability concerns of the included studies were assessed by using a revised tool for the Quality
Assessment of Diagnostic Accuracy Studies (QUADAS-2).
FIGURE 4

Coupled forest plots of pooled sensitivity and specificity of diagnostic performance of predicting pathological complete response to neoadjuvant
chemoradiotherapy in rectal cancer. The numbers are pooled estimates with 95% CIs in parentheses; horizontal lines indicate 95% CIs.
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changes in image intensity in an image. Texture Analysis (TA)

enables researchers to attempt to quantify heterogeneity within

the target tumor site, thereby determining the unobservable with

more valuable parameters detected (55, 56). Many scholars (35–

37, 41, 42, 48, 50–53) have demonstrated that texture features

can predict pathological complete response to nCRT. In general,

tumors that ultimately failed to achieve pCR after nCRT

exhibited elevated or more image heterogeneity, similar to

previous findings in breast and lung cancer (57, 58), which

demonstrated higher intratumor heterogeneity in patients with a

poorer prognosis, including poorer treatment response. Our

review also found that combining radiomics signatures across

various radiomics categories was more likely to be accurate in

predicting nCRT response. This is similar to the literature review

by Horvat et al. (59), who found that studies using advanced

predictive models had AUCs ranging from 0.72 to 0.93.

The mean RQS score of the 21 included articles was 10.95

(30.4% of the total score). Four items of the RQS in which all

included studies performed zero are “Phantom study on all

scanners”, “Imaging at multiple time points”, “Cut-off analyses”,

and “Cost-effectiveness analysis”. The purpose of a phantom study

is to detect different potential feature differences between scanners

and suppliers. Many studies included image data from different

MRI types (3.0T, 1.5T), vendors (Siemens, Philips), and different

medical centers, and phantom studies are a suitablemeans to gauge

these uncertainties and identify features that rely on the vendor.

Imaging at multiple time points is based on organ motion or
Frontiers in Oncology 11
expansion or contraction of the target volume resulting in

changes in radiomics characteristics, using remeasurement data

(twoormore image data sets of a patient acquired in a short period)

to obtain stable radiomics features are necessary, especially for the

peristaltic hollow organ of the colorectum, however, considering

the usual clinical practice work, it is difficult to do this for

retrospective studies. Cut-off analyses identified risk groups by

medians, previously published cutoff values, or reporting

continuous risk variables. Reduce the risk of models with overly

optimistic results. Cost-effectiveness analysis is a health economic

consideration that argues that cost-quality-adjusted life-year

comparisons should be performed with or without radiomics to

more accurately determine the economic potential of such studies.

The five items where all studies underperformed were “biological

correlates”, “Prospective study”, “Potential clinical utility” and

“Open science and data”. Only one study combined pathological

factors with radiomic features to build predictive models and

discussed their biological relevance. Prospective studies are

critical enough to link radiomics data to clinical outcomes in

appropriate patient populations, however, only two studies were

prospective. Three studies considered current and potential

applications of models in clinical settings, using decision curves

to show the clinical utility of specific models. The openness of data

and code contributes to the reproducibility and replicability of

radiomics. Radiomics includes multiple complex processes, each

one influenced by a variety of factors, including the use of

nonstandard nomenclature, the definition of parameters, and the
FIGURE 5

SROC curve of the diagnostic performance of artificial intelligence for the prediction of pathological complete response to neoadjuvant
chemoradiotherapy in rectal cancer patients. An obvious difference was detected between the 95% CI and 95% prediction regions, indicating a
high possibility of heterogeneity across the studies.
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TABLE 3 The results of subgroup analysis.

Subgroup Number of
study

Sensitivity
(95% CI)

I2 (%) Specificity I2 (%) PLR I2 (%) NLR I2 (%) AUC

Modeling methods

Radiomic
algorithm

16 0.77(0.71,0.81) 61.9 0.74(0.71,0.76) 82.1 3.47(2.66,4.54) 68.5 0.34(0.24,0.48) 54.3 0.8538

Deep learning 5 0.79(0.71,0.85) 89.5 0.94(0.91,0.96) 0.0 11.66
(7.98,17.02)

0.0 0.22(0.06,0.86) 94.1 0.9724

Sample size

<100 15 0.80(0.72,0.86) 70.6 0.85(0.81,0.87) 77.6 4.82(3.30,7.05) 64.2 0.27(0.15,0.49) 70.7 0.9009

>100 6 0.76(0.71,0.81) 82.9 0.77(0.74,0.80) 95.4 4.59(2.54,8.30) 92.6 0.29(0.16,0.54) 89.1 0.8771

Radiomic software

PyRadiomics 6 0.76(0.70,0.82) 51.9 0.69(0.66,0.73) 79.6 2.92(2.07,4.12) 74.4 0.37(0.26,0.53) 30.3 0.8146

others 11 0.80(0.73,0.86) 78.0 0.88(0.85,0.90) 84.3 5.91(3.40,10.27) 80.4 0.20(0.08,0.48) 84.5 0.9227

Segmentation

2D 10 0.79(0.71,0.87) 75.5 0.84(0.80,0.87) 81.7 5.11(3.16,8.28) 71.1 0.26(0.12,0.56) 78.4 0.9030

3D 9 0.76(0.70,0.81) 79.7 0.78(0.75,0.80) 93.2 4.45(2.72,7.26) 89.1 0.31(0.18,0.54) 83.6 0.8829

Validation

External validation 9 0.77(0.68,0.84) 72.2 0.83(0.79,0.86) 84.6 4.36(2.55,7.47) 74.5 0.33(0.18,0.62) 78.0 0.8775

Split sample 11 0.77(0.72,0.82) 78.6 0.78(0.76,0.81) 92.1 5.03(3.19,7.93) 87.6 0.26(0.15,0.46) 80.9 0.9025

Models

Radiomics model 15 0.73(0.68,0.78) 75.6 0.79(0.77,0.82) 91.1 4.66(3.12,6.97) 82.5 0.36(0.25,0.54) 75.3 0.8749

Combined model 6 0.89(0.81,0.94) 37.8 0.82(0.78,0.86) 78.9 5.06(2.88,8.91) 79.5 0.18(0.09,0.34) 35.4 0.9187
Frontiers in Oncolo
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AUC, Area Under Curve; NLR, negative likelihood ratio; PLR, positive likelihood ratio; 2D, Two-Dimensional; 3D, Three-Dimensional.
FIGURE 6

Effective sample size (ESS) funnel plots and the associated regression test of asymmetry, as reported by Deeks et al. A p-value < 0.10 was
considered evidence of asymmetry and potential publication bias.
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selectionof software. If researchersdonot reveal these complexities,

reproducibility, and replicability in radiomics are impossible. As a

result, it is expected that various practical concerns, such as

radiomics model repeatability, imaging protocol standardization,

model overfitting, and external validation of prediction models,

should be thoroughly addressed before transferring these models

into routine clinical use.

The QUADAS-2 quality assessment revealed some problems

with the 21 studies included in the systematic review. Some studies

did not state whether the patients were included in continuous or

randomsampling,whichmay lead to selectionbias.All studieswere

at risk of bias on the index test, and it was unclear whether

thresholds were used or not pre-specified, which may have led us

to overestimate the diagnostic performance of our models. Nine

studies did not indicate the time interval between imaging and

pathological evaluationof resected tissue after rectal cancer surgery.

Future studies should avoid patient selection bias and clarify the

time interval between imaging and pathological evaluation of

resected tissue after surgery.

Our study was highly heterogeneous, with the heterogeneity of

78.76% and 90.92% for sensitivity and specificity, respectively. We,

therefore, performed subgroup analyses using six key factors to

explore sources of heterogeneity. In the subgroup analysis, we

compared the diagnostic performance of DL and radiomics

models, and the diagnostic performance of the DL subgroup was

higher than that of the radiomicsmodel, (AUC: 0.97 > 0.85), which

may be becauseDL is trained in the capabilities of multi-layer deep

neural networks (60). Compared with ML feature extraction

methods, DL is more computationally intensive and can extract

more image features (61). ML models are traditionally trained to

perform useful tasks using manually specified features retrieved

from rawdata or features learned by other simplemachine learning

models (62). DL allows computers to acquire meaningful

representations and characteristics automatically, directly from

raw data, avoiding this time-consuming and challenging process

(63). DL models are dominated by various versions of artificial

neural networks, although there are others. Themajor trait thatDL

approaches have in common is their emphasis on feature learning:

autonomously learning data representations (64). This is the key

distinction betweenDL andmore “traditional”MLmethodologies.

Discovering features and accomplishing a task are combined into

one challenge and so improved concurrently during the training

phase.However, there areonlyfiveDLstudies in thismeta-analysis.

More DL studies are needed to confirm this conclusion. Another

subgroup analysis showed that the combined model with clinical

factors and radiomics features was more powerful than the

radiomics feature alone. Because of the constraints of univariate

prediction, its prediction performance is less outstanding, however,

the multivariate prediction model can overcome these restrictions.

A multifactorial pCR prediction model was established based on

this approach,which is also thepath for future study, andadditional

imaging and non-imaging data need to be retrieved to construct

stronger prediction models (28).
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Two of the twenty-one studies we included used the delta

model, which is a new radiomics approach that has been developed

that accounts for feature variations at different acquisition times

(65).With thismethod, it is possible to study the impact of changes

incharacteristics after a specific step in apatient’sworkflow(ie, after

specific treatment, time, or biological event). Wan and Nardone

et al. (41, 48)used delta models to study changes in radiomics

parameters throughout the treatment process and showed that the

deltamodelwas a goodpredictor of patient response.Availabledata

suggest that adelta radiomics approachcanalso successfullypredict

tumor behavior in terms of synchronous or metachronous distant

metastasis (DM), disease-free and overall survival (66, 67).

Our research has several limitations. First, the heterogeneity of

research is obvious.We investigated the causesofheterogeneityusing

subgroup analyses and discovered that heterogeneity was model-

related (DL and radiomics), but because heterogeneity was observed

in diagnostic test accuracy reviews features (68), we cannot know the

source of all the heterogeneity. Second, because the model was not

verified, many large-sample studies were excluded from the meta-

analysis.Unvalidatedmodels have low relevance, andvalidation is an

essential aspect of a thorough radiomics study (28). Finally, we only

evaluated pCR studies and did not include studies on tumor

regression grading (TRG) and T downstaging, it is known that

pathologic evaluation of TRG and T downstaging is more

subjective than pCR evaluation (69, 70). Precise and objective

pathological criteria are lacking for TRG and T downstaging.
Conclusions

In conclusion, our meta-analysis suggests that radiomics is a

promising noninvasive approach with a high value for pCR

prediction in patients with rectal cancer to neoadjuvant

chemoradiotherapy. This has important guiding significance for

the individualized treatment of rectal cancer patients in clinical

practice. The prediction performance of the DLmodels for pCRwas

superior to the radiomics models, and the combined models

incorporating clinical factors were superior to the radiomics

model alone. Furthermore, more prospective, large-scale,

multicenter studies employing radiomics approaches are required

in the future to increase pCR preoperative prediction ability.
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