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A B S T R A C T

In the Coronavirus disease-2019 (COVID-19) pandemic, for fast and accurate diagnosis of a large number of
patients, besides traditional methods, automated diagnostic tools are now extremely required. In this paper,
a deep convolutional neural network (CNN) based scheme is proposed for automated accurate diagnosis of
COVID-19 from lung computed tomography (CT) scan images. First, for the automated segmentation of lung
regions in a chest CT scan, a modified CNN architecture, namely SKICU-Net is proposed by incorporating
additional skip interconnections in the U-Net model that overcome the loss of information in dimension
scaling. Next, an agglomerative hierarchical clustering is deployed to eliminate the CT slices without significant
information. Finally, for effective feature extraction and diagnosis of COVID-19 and pneumonia from the
segmented lung slices, a modified DenseNet architecture, namely P-DenseCOVNet is designed where parallel
convolutional paths are introduced on top of the conventional DenseNet model for getting better performance
through overcoming the loss of positional arguments. Outstanding performances have been achieved with an
𝐹1 score of 0.97 in the segmentation task along with an accuracy of 87.5% in diagnosing COVID-19, common
pneumonia, and normal cases. Significant experimental results and comparison with other studies show that
the proposed scheme provides very satisfactory performances and can serve as an effective diagnostic tool in
the current pandemic.
1. Introduction

Early detection and widespread testing are of paramount impor-
tance to control the current situation of Coronavirus Disease (COVID-
19) [1,2]. Currently, the reverse-transcription polymerase chain re-
action (RT-PCR) test is used for the mass screening, which is time-
consuming, prone to high false-negative rates and its capacity is greatly
limited [3,4]. To mitigate the crisis, radiological imaging-based COVID-
19 diagnosis using chest X-ray [5,6] or computed tomography (CT)
scan images can be a faster and efficacious complement to the existing
testing method [7]. In comparison to the chest X-ray images that are
low-resolution by nature, the chest CT scan images provide compar-
atively better visibility of lesion size with well-performed prediction
capability [4,8–10]. It is found that the characteristic signs can be
detected with the help of chest CT scans even if the RT-PCR result
is negative [4]. Manual screening on CT images is a complicated
and tedious job for an individual as lesions in the CT images may
reside in a gradual slice by slice manner [11]. Besides, there are lots
of similar features between viral pneumonia and novel Coronavirus
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pneumonia developed by the COVID-19, making it a more difficult
job to handle [12]. An artificial intelligence (AI)-based network is
therefore earnestly solicited to segment desired regions and classify
accordingly [3].

CT screening has long been an essential tool for diagnosing lung
diseases including lung cancer and pneumonia [12] and it is now being
widely used by the physicians for manually detecting COVID-19. For
automatic classification of COVID-19, community-acquired pneumonia
(CAP) and non-pneumonia from CT slices, in conventional approaches,
CT images are fed directly into the classifier networks [13,14]. In [13],
2D-ResNet-50 deep convolutional neural network (CNN) model is used
for handling three classes but in [14], 2D ResNet-152 deep CNN model
is used to handle two classes, COVID vs. non-COVID. When the CT
images are directly used in a classifier, it may hinder the performance of
the network as unnecessary information (non-lung portions) gets passed
into it as well. In order to remove the unnecessary portions from the
chest CT images, semantic segmentation is generally used, which can
be manual or automatic. Methods that utilize semantic segmentation
vailable online 19 July 2022
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Fig. 1. Pipeline of the proposed method. It includes three fundamental steps: (i) segmenting lung regions from CT images using skip connected version of U-Net (SKICU-Net),
(ii) eliminating redundant information by unsupervised hierarchical clustering and (iii) classifying into COVID-19, common pneumonia and normal healthy lungs by the proposed
architecture (P-DenseCOVNet).
prior to classification stage, generally at first, employ a segmentation
scheme to extract the region of interests from the chest CT images,
such as the two lungs and infected regions and then these segmented
portions are used in the classifier to detect the COVID-19 cases [15–17].
In [15], the region of interests from the CT slices are identified by two
radiologists, which is very time consuming and may not be feasible for
a large amount of data. In [16], lung regions are segmented from the 3D
chest CT scans by using a pre-trained U-Net deep learning model in an
unsupervised manner and then the segmented regions are fed into a 3D
ResNet model. Unsupervised segmentation schemes are advantageous
when there exists a lack of large, properly annotated train datasets, but
they are susceptible to errors [18]. A dual sampling attention network is
developed in the scheme proposed in [17] to separate COVID 19 from
CAP. In this scheme, after segmenting the lungs and infectious areas
using a VB-Net Toolkit [19], a 3D CNN model is used to diagnose the
segmented regions. When 3D networks are used for segmentation or
classification purposes, it makes the system computationally expensive
and more complicated than the 2D networks. Likewise, a multiple
instance learning scheme is proposed by [20] where a Pulmonary
Toolkit is used to extract the lung field with a bounding box. Moreover,
pre-trained Resnet-50 and Xception networks are utilized to capture
deep features. Finally, k-nearest neighbor search differentiates COVID
19 from CAP based on the features obtained. In both supervised and
unsupervised semantic segmentation, U-Net is a widely used network
for segmenting biomedical images, with a propitious performance even
when the dataset consists insufficient number of images [21]. The
segmentation performance of the U-Net is expected to improve further
by incorporating various modifications [22–24]. Apart from U-Net
in [25], a SegNet-based attention gated (AG) mechanism guided by
Dice Loss (DL) and Tversky Loss (TL) is proposed to identify the
region of interests. A Linknet architecture is deployed in [26] where
the concatenation operation of U-Net is replaced by adding a defying
loss of spatial information. With the extracted segmented regions, at
the classification stage, various supervised machine learning schemes
are commonly utilized [15–17]. During the testing phase with a large
number of slices in each CT volume, by proper selection of images
with significant importance can reduce the computational burden.
A complete scheme for accurately detecting COVID-19 images from
normal and pneumonia cases, which offers precise lung segmentation,
2

informative image selection from test CT volume and deep learning-
based effective classification utilizing the segmented images, is still in
great demand.

In this paper, deep learning-based segmentation followed by classi-
fication schemes is proposed to classify COVID-19, normal, and pneu-
monia patients from chest CT scan images, as shown in Fig. 1. For the
purpose of segmenting the lung regions in chest CT images, a skip-
connected version of the U-Net model, namely SKICU-Net, and then
for the classification, a deep CNN based architecture P-DenseCOVNet
are proposed. The proposed SKICU-Net incorporates greater recon-
struction of information than the traditional one by introducing extra
connections between the encoder and decoder parts. The proposed P-
DenseCOVNet upkeeps the positional arguments of the input images
in a more vigorous way by utilizing parallel branches along with the
DenseNet [27] network and classifies the images into three classes
with significant performance. An unsupervised hierarchical clustering
scheme is introduced at the testing stage to consider CT images with
visible lungs-features for the proposed classification network. Extensive
experimentation is carried out on the CT scan image dataset to analyze
and compare the performance of the proposed scheme in detecting the
COVID-19 patients. All the codes and architectures of this study are
publicly available at: https://github.com/fsa125/DualStageCovid.

2. Materials and methods

Three major steps involved in the proposed method are: (a) lung
region segmentation from the chest CT scan images utilizing the pro-
posed skip connected U-Net architecture (SKICU-Net), (b) unnecessary
information elimination by unsupervised clustering, and (c) prediction
of COVID-19 or common pneumonia or normal healthy lungs using
the proposed architecture with DenseNet as the backbone network. In
this section, datasets used in the study are discussed at first, and the
details of the proposed COVID-19 detection scheme are presented in
the following subsections.

2.1. Dataset

In this research work, two different publicly available chest CT
scan datasets are used: (1) COVID-19 CT Lung and Infection Seg-
mentation dataset from Zenodo [28], and (2) dataset from China

https://github.com/fsa125/DualStageCovid
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Table 1
Datasets used for the classification task.

Stage Dataset Volumes Images

Train
COVID-19 Lung CT 167 3410
Pneumonia Lung CT 98 3537
Normal Lung CT 23 3535

Test
COVID-19 Lung CT 40 3442
Pneumonia Lung CT 40 6512
Normal Lung CT 40 3024

Fig. 2. Difference of segmenting performance between traditional U-Net and
SKICU-Net.

Consortium of Chest CT Image Investigation (CC-CCII) [12]. The first
dataset from [28] contains 20 COVID-19 CT volumes which are fully
annotated with left lung, right lung, and infections by two radiologists
and verified by an experienced radiologist [28]. Among them, 16
volumes consisting of 3520 2D CT images, are used for the training
of the proposed segmentation model (SKICU-Net), and the remaining
4 volumes are used at the test phase. The segmentation model trained
on this dataset is later used for segmenting lung regions from the CT
images of the second dataset, the CC-CCII dataset one, which is used
exclusively for the classification study. To ensure the robustness of
our proposed P-DenseCOVNet, 30 volumes of COVID-19 images (30
patients) are tested from ‘‘The Cancer Imaging Archive’’ TCIA1 dataset.

Table 1 summarizes the different types of datasets used for the
classification study. In this study, the terms ‘‘volume’’, ‘‘slice’’ and
‘‘image’’ are used frequently and interchangeably.

2.2. Preprocessing

All the 512 × 512 × 3 CT images from these datasets are resized
to 128 × 128 × 3 before feeding them to the skip connected U-Net
architecture (SKICU-Net). Resize operation is executed to get rid of
time-consuming computations. The resize operation generally affects
the images by introducing ripples and degrades the performance by
some margin depending on the application. However, different inter-
polation techniques, such as nearest-neighbor approximation, bicubic
interpolation, and bilinear interpolation are introduced in order to
preserve the maximum information of an image. In this work, the
‘‘area interpolation’’ technique is used where image shrinking works as
bilinear interpolation, and the 𝑥-axis and 𝑦-axis of the image are shrunk
at the same time keeping a proportionate ratio with the original image.
Relation of the nearest pixels is also ensured with this technique and
therefore, it renders a reliable compression of a large image providing
computational efficiency.

2.3. Lung region segmentation

Lung region segmentation is of paramount importance for detection
purposes, especially in a two-stage pipeline like the one used in this
study [7]. In this work, the goal is to segment lung regions (left lung
and right lung) from a fully annotated dataset with masks of the left

1 https://wiki.cancerimagingarchive.net/display/Public/COVID-19
3

lung, right lung, and consolidations. Traditional U-Net successfully
segments the lung areas but also produces noise as observed in Fig. 2.
The main problems of U-Net and FCNs are the dissolving nature of the
spatial features due to wide pooling operations. Feature concatenation
somewhat tackles the problem but few low-level semantics are hardly
detected [29]. To achieve better performance than that is obtained
by the traditional one, a skip connected version of U-Net, named as
SKICU-Net, is proposed and trained for segmenting lung regions from
the CT scan images. The SKICU-Net consists of two parts contracting
(encoder) and expansive (decoder). The contracting part is made up of
several convolution operations with the same padding which increases
the feature maps. From an RGB image of size 128 × 128 × 3, it gets
the size of 128 × 128 × 16, which means 16 different feature maps are
present at this stage. Max pooling with stride 2 reduces the height and
width of the images by half and the size of the images becomes 64 × 64
with feature maps mentioned above. Again convolution operation is
applied to the image to create more multi-channel feature maps. These
steps are continued serially until reaching the bottom where 256 multi-
channel features of 8 × 8 sized images are built. Now upsampling or
transposed convolution is introduced to reconstruct the original image
which is known as the expansive or decoder path. Upsampling with
stride 2 converts 8 × 8 × 256 images to 16 × 16 × 128. But the
reconstructed image should have a resemblance to the original one.
So, a feature map of size 16 × 16 × 128 from the contracting path is
concatenated with the expansive path which preserves the borderline
features. Further convolution again weakens the borderline features.
In order to solve this, several skip connections are introduced instead
of one from contracting path to extensive path to gain maximum
reconstruction of information, as shown in Fig. 3. This becomes more
vibrant when high-resolution layers are reconstructed. Upsampling and
skip connections between two paths (encoder and decoder) continues
till it reaches 128 × 128 sized images with 16 feature maps. Later 1 × 1
convolution generates 2 channel images where one channel consists
of two lung masks (right lung and left lung) and another one consists
of background. Due to serial skip connections noises are prevented to
reach maximum performance.

The architecture of the SKICU-Net is shown in Fig. 3. The SKICU-
Net is basically a U-shaped staircase network that consists of two parts:
contracting (encoder) and expansive (decoder), as mentioned before.
For better understanding, a brief discussion on the network is presented
here. Each tread in the encoder path is denoted as 𝐶𝑟𝑜𝑤,𝑐𝑜𝑙𝑢𝑚𝑛 format.
𝐶11 means the first block in the first tread, 𝐶12 is the second block in
the first tread, and so on. Each tread consists of two 3 × 3 convolutions
followed by a Rectified linear unit (ReLU) activation unit. Max-pooling
operation reduces the dimension of 𝐶13 and reaches the next tread
(𝐶21). The same operations are performed until 𝐶53 is reached. This
is the input to the expansive path where 𝐷𝑟𝑜𝑤,𝑐𝑜𝑙𝑢𝑚𝑛 format is used to
describe each tread. Each tread of the expansive or decoder path is
constructed by 2 × 2 transposed convolution from the previous tread
and followed by a 3 × 3 convolution. It goes from bottom to top
performing similar operations on each tread and extracts the desired
regions. Additional skip connections between the encoder path and
decoder path are used to prevent the loss of border pixels. The relation
between the contracting part and the expansive path can be shown by
the following equations:

𝐷𝑖2 = 𝐷𝑖3 ⊕𝐶𝑖3 (1)

𝐷𝑖1 = 𝐷𝑖2 ⊕𝐶𝑖3 (2)

where, 𝑖 = 1, 2, 3, 4. For the bottom expansive path, 𝑖 = 4. So we get:

𝐷42 = 𝐷43 ⊕𝐶43 (3)

𝐷41 = 𝐷42 ⊕𝐶43 (4)

And it goes as 𝑖 = 3, 2, 1, where we get 16 channels of size
128 × 128. Then 1 × 1 convolution is performed to get the mask of size

https://wiki.cancerimagingarchive.net/display/Public/COVID-19
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Fig. 3. U-Net architecture with additional skip connections (SKICU-Net) that connects decoded feature maps to encoded ones twice. Blue and light blue boxes correspond to
encoded and decoded feature maps, respectively and their width denotes the number of feature maps. The size of each feature map is given on the left (for encoder part) or right
(for decoder part) side of the boxes. Multi-colored arrowheads denote different operations, such as convolution, deconvolution, max-pooling, as indicated in the figure.
128 × 128 × 2, where the first channel contains the background and
the other one contains the desired lung regions.

Another important aspect of the proposed model is to define a
proper loss function. Considering the right lung and left lung as a
single class and background as another class, it becomes a binary
class problem. Hence binary cross-entropy loss function, also called
sigmoid cross-entropy loss is used as loss function in this type of
segmentation problem. It is a sigmoid activation plus a cross-entropy
loss. Unlike softmax loss, it is independent for each vector component
(class), meaning that the loss computed for every CNN output vector
component is not affected by other component values. Equations of
cross-entropy and binary cross-entropy are given by:

CE = −
𝑁
∑

𝑖
𝑡𝑖(log(f(s)i)) (5)

where 𝑁 is the total number of classes, 𝑡 is the respective label, and
f (s) is the softmax function, defined as:

f (s)i =
exp(si)

∑𝑁
𝑗 exp(sj)

(6)

For binary cross-entropy, 𝑁 = 2, and Eq. (5) becomes:

CE = −𝑡1log(f(s)1) − (1 − 𝑡1)log(1 − f(s)1) (7)

The segmented output provides two-channel information: mask and
the background. The background channel contains redundant informa-
tion and therefore eliminated. With the one-channel segmented mask,
4

lung regions from the original CT images are extracted with three-
channels. Finally, the trained SKICU-Net model is applied on all the
CT images and for each CT image, SKICU-Net generates lung segments
for the next step.

2.4. Unsupervised cluster-based elimination

CT screening is 3-dimensional by nature, which provides thorough
imaging of lungs in different positions. Among them, lungs are obscure
in some images and therefore cannot be considered as useful informa-
tion, as depicted in Fig. 4. The idea of clustering is to eliminate lung
images with negligible information to improve the prediction results
of the classification network. One volume of COVID-19 or common
pneumonia contains multiple slices, some of them are labeled in the
dataset as lesion slices. If the whole volume is trained as COVID-19 or
common pneumonia, the non-lesion slices with no clear information of
the disease will be wrongly trained as a disease class, producing wrong
predictions. Therefore, only the lesion slices are considered and trained
for the COVID-19 and common pneumonia cases at the training stage.
However, at the test phase, it is needed to predict on the basis of the
whole volume, where lesion or non-lesion slices are not marked. That
is why the unsupervised clustering-based elimination on the segmented
lung slices are performed at the test phase when unseen full CT volumes
are provided to the proposed end-to-end architecture.

After the segmentation by the SKICU-Net, segmented lung images
are passed to the clustering step. These images are grouped into clusters
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Fig. 4. Normal CT images (left) and segmented lungs by SKICU-Net (right): clearly
visible on top; but in the bottom, it is quite obscure and holds negligible information.
Unsupervised agglomerative hierarchical clustering method has been used to eliminate
them.

based on the visibility of lung portions in the images. Hierarchical
clustering is a type of clustering that creates clusters arranging them
in a hierarchical tree [30]. Among different kinds of hierarchical clus-
tering methods, agglomerative hierarchical clustering is used in this
study, the central operation of which is based on the proximity be-
tween the clusters of features. To form the clusters, different types
of masks are used to extract the features based on the visibility of
lung portions in the segmented images. Depending on the positions
of these masks, two types of features are considered: centric features
and frontier features. Centric features are extracted from the center
region of images, whereas frontier features are extracted from both
center and boundary regions. These features are extracted by using
gradually extending rectangular masks. Increasing centric and frontier
feature values is achieved with the increasing visibility of the lungs. The
features are fed into an agglomerative hierarchical clustering algorithm
which provides six clusters, found to be the optimum number for this
task. Increasing the total number of clusters and eliminating accord-
ingly keeps some of the segmented images with negligible information;
while decreasing the total number of clusters erases some segmented
images with significant information. In both cases, there is a reduction
in the overall accuracy. Therefore in this study, the clustering method is
applied to all the segmented test images with lung regions to produce
six clusters and eliminate the least significant one. A visualization of
the clusters with all the test images is shown in Fig. 5. Some sample
CT images corresponding to different clusters are also shown in this
figure. The 𝑋-axis corresponds to the ‘‘Centric features’’ and the 𝑌 -
axis corresponds to the ‘‘Frontier features’’. The 𝑍-axis corresponds
to a cluster label indicated by a color. It is clearly observed from the
figure that the images in ‘‘Cluster-1’’ (the bottom region with red color
samples) possess very low values of both features and they have very
tiny lung regions. Gradually, the upper regions contain clearer portions
of the lungs. Since the red-colored region contains features from the
images having negligibly sized lungs, they are eliminated. The objective
was to discard the images that carry tiny/dummy lung areas at the time
of a single patient testing so that these pieces of information do not take
part in the decision-making process and make the scheme reliable. After
this cluster-based elimination process, the remaining segmented images
are passed to the next prediction step.

There are different kinds of proximity clusters [30], including max,
min, group average, and prototype-based clusters or Ward’s method,
based on which agglomerative hierarchical clustering works. If a and
b are two points of two clusters P and Q, min or single link proximity
is defined as the shortest distance between them, and max or complete
link proximity is defined as the longest distance between them. Group
average, as the name suggests, measures the average distance between
the points. Ward’s method considers proximity between the clusters
5

by merging them in terms of the increase in the SSE (sum of squared
error) [30], assuming a cluster’s representation with its centroid. Min,
max, group average and Ward’s method proximity functions are defined
as

dmin(𝑃 ,𝑄) = min𝑎∈𝑃 , 𝑏∈𝑄 d(a, b) (8)

dmax(𝑃 ,𝑄) = max𝑎∈𝑃 , 𝑏∈𝑄 d(a, b) (9)

davg(𝑃 ,𝑄) =
∑ d(a, b)

𝑛𝑃 𝑛𝑄
(10)

dward(𝑃 ,𝑄) =
∑ (d(a, b))2

𝑛𝑃 𝑛𝑄
(11)

where 𝑛𝑃 and 𝑛𝑄 are the points in the two clusters considered to achieve
the average result.

2.5. Proposed architecture for the prediction task

In this paper, a new convolutional neural network architecture,
named as P-DenseCOVNet, is introduced to classify COVID-19, pneu-
monia, and normal cases based on lesions and their positions in the
images. The DenseNet-121 [27] is used as a backbone network in this
proposed classification architecture. Conventional serial convolutional
neural network architectures are most likely to lose the positional
arguments as serial convolution and max-pooling operations reduce
the dimension of feature matrices. So the first layer is split into three
parallel convolutional layers with different sizes of kernels: 128, 64,
and 32, respectively. Later skip connections are added between them
at several points so that positional argument preserves. Several dropout
layers are used after convolutional layers to prevent overfitting [31].
The final output is a 32 × 32 × 3 matrix, which is then flattened
connecting to a dense layer of size 256. Similarly, the input image is
passed into DenseNet-121 with pre-trained weights of ImageNet [32]
which gives another flattened layer and connects with another dense
layer of the same size of the previous one as shown in Fig. 6. Finally,
both the layers are concatenated and passed through three fully con-
nected layers of size 64, 64, and 3, respectively. Dropout layers are
introduced among them. Feeding input images (128 × 128 × 3) directly
into DenseNet-121 fails to preserve the positional arguments, whereas
the proposed model is capable of keeping those pieces of information
and performs well on validation as well as on the new unseen test data.
The proposed architecture of the P-DenseCOVNet is shown in Fig. 6. For
the three-class prediction, softmax function is used for normalizing the
probability vector, the output of which is defined as:

𝑃 = [pCOVID, ppneumonia, pnormal] (12)

Here pCOVID, ppneumonia and pnormal are probabilities of COVID, com-
mon pneumonia, and normal cases, respectively.

2.6. Proposed methodology for patient level prediction

The proposed architecture classifies chest CT slices into one of
the three classes: COVID-19, common pneumonia, and normal cases.
Based on this slice level prediction, next the scheme is developed for
patient-level CT volume detection. For this purpose, the full volume of
each patient in the test dataset is tested individually and the results
are recorded. For each patient, a decision tree approach is taken to
determine what class they belong to. The problem is encountered in
two steps, considering each step as a binary classification problem.
For the first decision, a thresholding approach is adopted to determine
whether a particular patient is healthy or not. If the percentage of slices
predicted to be normal is more than a certain threshold, the patient is
declared to be healthy. If the percentage is less than that value, i.e. the
patient is determined to be not healthy, next a decision is taken to
determine whether the patient has COVID-19 or common pneumonia.
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Fig. 5. Clusters based on the centric and frontier features. The bottom portion (in red) portrays the negligible lung segments which were eliminated. Gradually topper portions
portray more and more important features. Colorization is performed for visualization only.
Fig. 6. Proposed architecture for the classification task.
For this second decision, the class that is predicted by more slices is
chosen. This procedure is repeated for different threshold values, and
the results are examined for all the patients accordingly.

For each patient,

Total = PredictedNormal + PredictedCOVID+ (13)
6

PredictedPneumonia
A patient is predicted to be healthy if:

PredictedNormal
Total

> Threshold (14)

If the patient is not healthy, the patient is predicted to have COVID if:

Predicted > Predicted (15)
COVID Pneumonia
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The patient is predicted to have common pneumonia if:

PredictedPneumonia > PredictedCOVID (16)

Here,
Total = Total number of slices in a volume
PredictedNormal = The number of slices predicted to be normal
PredictedCOVID = The number of slices predicted to be COVID
PredictedPneumonia = The number of slices predicted to be Pneumonia

. Experimental results

In this section, the performance of the proposed method is demon-
trated considering chest CT scan datasets. Performance of the proposed
egmentation architecture, SKICU-Net, in segmenting the lungs portions
rom the chest CT scans is first presented considering various perfor-
ance measures. Next, the COVID-19 detection performance of the
roposed scheme is discussed considering two major scenarios: COVID-
9 slice detection and COVID-19 patient (CT volume) detection. Finally,
he performance of the proposed scheme is compared with that of some
xisting methods.

.1. Lung segmentation results

Lung segmentation performance is evaluated by comparing the
KICU-Net with some existing architectures, such as conventional U-
et and a fully convolutional network (FCN). 𝐹1 score or dice score,
accard index or Intersection over Union (IoU), sensitivity, specificity
nd balanced average Hausdorff distance are used as evaluation param-
ters.

𝐹1 score or dice score is the harmonic mean of precision and recall
nd it is defined as:

1 = 2 ⋅
Precision ⋅ recall
precision+recall (17)

Jaccard index or Intersection over Union (IoU) is another evaluation
metric used to measure similarities between sample sets and is defined
as:

IoU =
Area of Overlap
Area of Union (18)

Sensitivity or true positive rate and specificity or true negative rate
are two measurements used to evaluate the effectiveness of a scheme.
They are defined as:

Sensitivity = TP
TP+FN (19)

pecificity = TN
TN+FP (20)

here TP, TN, FP and FN are true positive, true negative, false positive,
nd false negative results, respectively.

The Hausdorff distance measures the similarity to which each point
f two sets lies close to each other. These sets can be of images and it
an calculate the distance between two points of images in an image
et. Thus, this distance is used to determine the degree of resemblance
etween two images if they are superimposed on one another. Although
he average Hausdorff distance has been applied to assess the perfor-
ance of various medical imaging areas [33–35], it is less suitable for

he evaluation of segmentation performance due to its high ranking
rror. The balanced average Hausdorff distance has a higher median
orrelation than those by average Hausdorff distance [36] and has been
pplied in this study. It generates a better ranking of segmentation
erformance and brings out better comparability between two the
redicted image and the ground truth.

The average hausdorff distance between two sets 𝑋 = (𝑥1, 𝑥2, 𝑥3,… ,
𝑛) and 𝑌 = (𝑦1, 𝑦2, 𝑦3,… ...𝑦𝑛) is defined as [37]:

𝐴𝐻𝐷(𝑋, 𝑌 ) = [ 1
𝑛
∑

min d(xi, yi) +
1

𝑛
∑

min d(xi, yi)] (21)
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2𝑋 𝑖=1
𝑦∈𝑌 2𝑌 𝑖=1

𝑥∈𝑋
Table 2
Performance comparison of lung segmentation on the COVID-19 dataset [28] on a
patient basis.

Methods F1 score IoU Sensitivity Specificity Balanced average
Hausdorff distance

FCN 0.739 0.586 0.608 0.996 3.8135
U-Net 0.940 0.886 0.902 0.998 2.8312

SKICU-Net 0.970 0.941 0.970 0.997 2.6455

Table 3
Performance comparison of lung segmentation on the COVID-19 dataset [28] on a slice
basis.

Methods F1 score IoU Sensitivity Specificity

FCN 0.778 0.675 0.728 0.728
U-Net 0.916 0.844 0.914 0.989
SKICU-Net 0.966 0.935 0.942 0.991

In the medical image segmentation, the sets X and Y refer to the
voxels or volumes (from a single patient) of the ground truth and the
segmentation, respectively, and their elements refer to the pixels of
the images. If GtoS is the directed average Hausdorff distance between
the ground truth image to predicted image and StoG is the inverse
of GtoS, then the balanced average Hausdorff distance for evaluating
segmentation performance can be shown as [37]:

Balanced average Hausdorff distance = (GtoS
𝐺

+ StoG
𝐺

)∕2 (22)

where G is the number of slices/images in a volume. The output gives
a rank that determines the segmentation performance. Lower rank
value signifies fewer deviations from the ground truth, indicating better
performance.

Quantitative results obtained by using three different architectures
are presented in Tables 2 and 3. In Table 2, the results obtained on a
patient basis are reported. In Table 3, the results obtained on a slice
basis are reported. The results shown in these tables are obtained by
using the test CT scan images available in dataset [28].

As expected the SKICU-Net offers relatively better performance in
terms of various performance measures. On a patient basis, The SKICU-
Net surpasses the traditional U-Net by 3.19% in 𝐹1 score and 6.21%
n IoU, the two major evaluating parameters. In terms of specificity,
he performance of both models is nearly the same. The proposed
odel offers 7.54% higher sensitivity and 6.56% lower balanced av-

rage Hausdorff distance when compared with the traditional U-Net.
ompared with the FCN model, 𝐹1 score, IoU, sensitivity, and speci-

ficity increase by 31.26%, 60.58%, 59.54%, and 0.1%, respectively.
The balanced average Hausdorff distance decrease by 30.63%, in this
dataset. It is to noted that the proposed SKICU-Net has the lowest rank
among the models, indicating finer segmentation of the lung region.
On a slice basis, the SKICU-Net outperforms the traditional U-Net by
5.46% in 𝐹1 score, 10.78% in IoU, 3.06% in sensitivity, and 0.2% in
specificity. Compared with the FCN model, 𝐹1 score, IoU, sensitivity,
and specificity of the SKICU-Net increase by 24.16%, 38.52%, 29.4%,
and 36.13%, respectively.

Apart from the quantitative results, next for qualitative performance
evaluation, extracted segments are inspected and for better understand-
ing, few sample cases are shown in Fig. 7. From this figure, it is
observed that the performance of the SKICU-Net is better than that
of the traditional U-Net and far better than that of the FCN model.
Even in cases where there exist sharp changes in the edge or intensity,
the SKICU-Net can accurately identify those changes. Hence, it can
be concluded that the overall segmentation performance obtained by
the SKICU-Net is found satisfactory and the segmented chest CT scans
can be effectively utilized without losing necessary information for the
purpose of classification.

For the purpose of COVID-19 CT image detection, along with the

COVID-19 lung CT dataset available in [28], the CT images of common
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Fig. 7. Visual comparison of Lung segmentation results on COVID-19 dataset. Colorization is performed for visualization only.
Fig. 8. Visual comparison of Lung segmentation results on COVID-19, common pneumonia, and normal lungs dataset. Colorization is performed for visualization only.
pneumonia patients and healthy cases are collected from the dataset
available in [12]. Prior to describing the classification performance,
lung segmentation performance obtained in this case is presented in
Fig. 8. From visual inspection, one can understand the superiority of
the SKICU-Net over the traditional U-Net and FCN models. In Fig. 8,
three different chest CT slices are taken from 3 different classes. Here
it is observed that the traditional U-Net causes some unnecessary por-
tions included in the segmented images. The FCN model misses major
portions in many cases and thus performs poorly compared to both the
traditional U-Net and the SKICU-Net. One major concern here is the
8

difference in training and testing datasets for segmentation. It is evident
that the SKICU-Net can efficiently handle this factor and perfectly
extracts the lung portion only, omitting all unnecessary regions.

3.2. Classification results

3.2.1. Training–testing and optimization
The proposed network is trained with 150 epochs using Adam

optimizer [38] and a learning rate of 0.002 with a reduction in learning
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Fig. 9. Classification results evaluating ROC curve. Here, class 1, class 2, and class 3
are COVID-19, healthy and common pneumonia classes, respectively.

rate enabled when the metric stops learning. Early stopping is used
i.e., training is stopped when no improvement in the validation ac-
curacy is seen for a large number of epochs. The batch size used for
this case is 64. Data augmentation is performed including rotation (0◦

±360◦), horizontal and vertical shift (0% ± 20%), scaling (0% ± 20%),
horizontal and vertical flips at the training stage. Extensively popular
categorical cross-entropy loss function is applied to calculate loss be-
tween ground truth labels and predicted results as shown in Eq. (5).
Python and Tensorflow2 frameworks with CUDA and CUDNN support
are utilized and the training procedure is done on a NVIDIA Tesla P100
GPU with 16 GB GPU memory.

In [39], the authors discussed the negative effects of augmentation
on COVID-19 detection from chest X-ray images. By horizontal and
vertical shift or scaling operations, the DL models were found to be
struggling while getting the dominant features such as consolidations,
GGO from the images. However, in our study, the proposed method
consists of three steps, and one of them is segmenting the lung area
from the CT scan images. The classification stage is performed fol-
lowing this segmentation stage, therefore images that are used in the
classification stage, i.e. included in the augmentation, have no pixel
values outside the lung region. In this case, performing augmentation
such as scaling, shifting operations make the model more robust; be-
cause after the segmentation operation, there are fewer pixels in a
CT scan image than the original one, and DL networks are prone to
overfitting when it comes to images with fewer pixel values. In the
proposed end-to-end architecture, augmentation is therefore adding
relevant data.

3.2.2. Slice level results
The performance of P-DenseCOVNet is evaluated on a test set

consisting of 12978 CT scan images of 120 patients available in [12].
The trained model is used to predict the probability of three classes:
COVID-19, healthy cases and common pneumonia. Predicted results are
compared with ground truth labels provided by the dataset, and Re-
ceiver operating characteristic (ROC) curve is plotted. The area under
ROC curves (ROC AUC) is also calculated. These curves are shown in
Fig. 9. From this figure, it is observed that for the three classes, ROC
AUC values of 0.85, 0.98, and 0.88, are achieved, respectively.

The confusion matrix of the proposed model is presented in Fig. 10.
The confusion matrix is used to determine some performance eval-
uation metrics for each of the three classes. In summary, accuracy,
sensitivity, specificity, and 𝐹1 score is calculated for COVID-19, com-
mon pneumonia, and healthy cases, for different classification methods.

2 https://www.tensorflow.org/.
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Fig. 10. Confusion matrix for three way classification: COVID-19, common pneumonia
and normal cases.

At first, the CT slices are directly fed into a DenseNet-121 network
without going through the preliminary segmentation process. It is
observed from Table 4 that this method produces an acceptable output,
but still holds scope for improvement. The overall accuracy of this
method is 56.4%.

When SKICU-Net is used to segment the lung regions from CT slices
before the classification step, accuracy improves by 12.97%, 7.61%,
and 6.21%, respectively, in classifying COVID-19, common pneumonia,
and healthy patients. Most other parameters also improve by a decent
margin, as can be observed from Table 4. The overall accuracy in this
case is 65.5%. Segmentation effectively results in the exclusion of all
non-lung regions from the images, which holds redundant information,
the improvement in performance can be attributed to this fact.

After that, positional characteristics achieved from parallel con-
volution and concatenation among multi-feature layers are incorpo-
rated alongside the basic DenseNet-121 architecture. In this new P-
DenseCOVNet, the classification accuracy in detecting COVID-19, com-
mon pneumonia and healthy patients increases by 8.03%, 6.93% and
0.88%, respectively. The overall accuracy of this scheme is 71.1%.

When unsupervised clustering is performed before the classification
step, 1030 CT slices with the negligible presence of lung regions are
removed in total from all the input segmented images, and the remain-
ing 11948 slices are classified, as shown in Fig. 10. This results in a
7.94% reduction in the total number of chest CT slices that need to be
classified. It is to be noted that the slices that get eliminated in this
procedure are all non-lesion slices, so the overall performance of the P-
DenseCOVNet revamps with a reduction in the testing time also. In this
scheme, accuracy in detecting COVID-19 patients remains similar while
the accuracy in detecting common pneumonia and healthy patients in-
creases by 0.26% and 1.53%, respectively. Most other parameters also
improve in this case, corroborating the proposed method. With the help
of unsupervised clustering, it is ensured to eliminate images that hold
little or no information, before passing it on to the P-DenseCOVNet.
This method results in a better performance of the proposed network
with an overall accuracy of 72%.

Gradient-weighted Class Activation Mapping which is also known
as ‘‘Grad-CAM’’ utilizes the gradients of some pixels flowing into the
final convolutional layer to produce a localized heatmap emphasizing
the important regions in the image for predicting the class [40]. It is
basically a heatmap with portions of an image demonstrating a high
probability of a certain class. Comparing with the visual cortex system,
human attention maps have high intensity where humans look at the
image in order to answer a visual classification problem and both
have a correlation of 0.136. Grad-CAM helps to differentiate the visual
performance of neural networks. In this paper, the class activation map

https://www.tensorflow.org/
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Table 4
Classification results for each of the three classes. The proposed method shows better result in the individual classes in a gradual manner.

Method COVID-19 Common pneumonia Healthy cases

Acc. Sen. Spec. F1 Acc. Sen. Spec. F1 Acc. Sen. Spec. F1

DenseNet-121 0.617 0.705 0.585 0.492 0.657 0.324 0.992 0.486 0.853 0.915 0.834 0.747

SKICU-Net + DenseNet-121 0.697 0.821 0.653 0.588 0.707 0.462 0.953 0.612 0.906 0.880 0.914 0.816

SKICU-Net +
P-DenseCOVNet

0.753 0.747 0.755 0.619 0.756 0.606 0.905 0.712 0.914 0.896 0.919 0.829

SKICU-Net + Unsupervised
clustering + P-DenseCOVNet

0.753 0.752 0.753 0.619 0.758 0.608 0.906 0.714 0.928 0.916 0.932 0.858
Table 5
Patient level classification result for different thresholds.

Threshold COVID-19 Common pneumonia Healthy cases

Acc. Sen. Spec. F1 Acc. Sen. Spec. F1 Acc. Sen. Spec. F1

0.90 0.775 0.975 0.675 0.743 0.867 0.700 0.950 0.778 0.858 0.575 1 0.730
0.85 0.817 0.975 0.738 0.780 0.867 0.675 0.963 0.771 0.900 0.725 0.988 0.829
0.80 0.858 0.975 0.800 0.821 0.875 0.650 0.988 0.776 0.950 0.900 0.975 0.923
0.75 0.875 0.975 0.825 0.839 0.875 0.650 0.988 0.776 0.967 0.950 0.975 0.950
0.70 0.892 0.975 0.850 0.857 0.875 0.650 0.988 0.776 0.983 1 0.975 0.976
Fig. 11. Attention map generated by the proposed P-DenseCOVNet.
for the three-class images to determine the performance of P-Dense-
COVNet is presented in Fig. 11. COVID-19 and pneumonia heatmaps
highlight consolidated areas of the lung with warm red colors whereas
healthy lungs show a vast amount of blue-colored areas which indicates
fewer or zero infectious zones. Infections due to COVID-19 are prone
to have more consolidations in the lower lobes of any side of the
lung (right or left) or both [41]. Isolated ground-glass opacity (GGO)
can also be seen where infections cluster in a region in any portion
of the lungs mostly starting from the lower lobes. On the contrary,
chest CT images of CAP usually exhibit a more even distribution of
consolidations. Similar patterns can also be observed for both COVID
19 and pneumonia for some cases. However, healthy lungs show no
sign of consolidations or infections.

From the figure, it is apparent that the COVID-19 images are ac-
tivated mostly where the consolidation lies. The bottom region of
10
the lung shows consolidation and the attention map also shows these
regions along with slight portions from the neighboring area. The same
goes for the pneumonia class where consolidated areas are activated
(red in the heatmap). In a healthy CT slice, no sign of consolidations is
found visually, which is also well-visible from the attention map (no
red infectious region). It can be interpreted that the yellow regions
indicate the portions that might be infectious and red regions indicate
the degree of infections/consolidations. However, the output does not
get any feature from the regions outside of the lung due to the segmen-
tation step. So, no dummy features clash with the network’s activation,
ensuring maximum classification performance. Some COVID cases in
the datasets are misclassified as Normal cases while others are misclas-
sified as Pneumonia. The fact is illustrated in Fig. 12, where a COVID
slice is predicted as Normal and another COVID slice is predicted as
Pneumonia. It is apparent from the figure that the corresponding slice
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Fig. 12. Misclassified slices from COVID-19 data and standard ‘‘Normal’’ and
‘‘Pneumonia’’ slices for comparison.

Fig. 13. Convergence analysis of the proposed P-DenseCOVNet.

which is predicted as Normal shows no indication of COVID and the
consolidation patterns in some COVID slices resemble Pneumonia. The
consolidations in COVID take place in the bottom of the lungs for mild
COVID and for severe case, the whole lung is affected and it becomes a
complex task for the network to distinguish between the two. However,
we propose a thresholding technique to overcome this issue and to
correctly classify a patient as COVID, Normal, or Pneumonia.

Convergence analysis is another important aspect to justify the
robustness of the model’s performance. Steady training performance
can be seen in Fig. 13 and P-DenseCOVNet converges quickly with less
variability. Stabilization of the validation curve along wth continual
decrement of the training curve indicates the stance against overfitting.

3.2.3. Patient level results
Once the performance of the proposed network for COVID-19 slice

detection is evaluated, next the scheme is developed to classify patients
into one of the three classes based on their full CT volumes. To this end,
all the slices of 120 patients are used as the test set. Two consecutive
11
Table 6
Patient level classification result for different thresholds (summary).

Threshold Overall accuracy Average sensitivity Average specificity

0.90 0.750 0.750 0.875
0.85 0.792 0.792 0.896
0.80 0.842 0.842 0.921
0.75 0.858 0.858 0.929
0.70 0.875 0.875 0.938

steps are followed to reach a single decision for each patient. The first
step involves determining whether a particular patient is healthy or not
based on a certain threshold. If the patient is not healthy, a decision
is taken on whether it is a COVID-19 case or a common pneumonia
case, depending on which class is predicted by more slices. This process
is repeated for different thresholds, and the variation in the result is
analyzed for all 120 patients. A comprehensive result of the findings is
provided in Table 5.

It is observed from Table 5, that when the threshold is set to 0.70
(i.e., if more than 70% of the slices are predicted to be normal than
the volume is of a normal patient), the algorithm reaches a decent per-
formance. At this threshold, there are no false-negative normal cases.
As these 12 evaluation metrics change differently when the threshold is
varied, the overall accuracy, average sensitivity, and average specificity
are calculated in Table 6 to understand the general trend better. From
here, the overall result at the threshold value of 0.70 is found to
be satisfactory. Total accuracy at this point reaches 87.5%, with an
average sensitivity of 87.5% and a high average specificity of 93.8%.

The proposed architecture is evaluated on a two-class COVID-19
detection problem as well. The architecture is trained to classify COVID
and Non-COVID slices, where the Non-COVID slices include both com-
mon pneumonia and healthy cases. The same test set is used to assess
the two-class classification scheme in COVID-19 patient detection. In
this case, the volume of each patient is tested separately, and a decision
is taken about the overall volume based on the percentage of CT slices
that are declared as COVID-19. If the percentage is set to 40% (i.e., if
more than 40% of the slices are predicted to have COVID-19 than
the patient has COVID-19), the proposed scheme displays satisfactory
results. At this value, accuracy, sensitivity, specificity, and 𝐹1 score
of the two-class COVID-19 patient detection method is 93.8%, 97.5%,
90%, and 94%, respectively.

The proposed P-DenseCOVNet can cause a comparatively larger
amount of network parameters and time consumption at the training
stage; however, the additional time is bearable as it is needed only at
the training stage and most importantly, it leads to highly efficacious
predictions on the test materials within a very short span of time. The
proposed end-to-end scheme detects diseases on real time, and the
ultimate goal is to integrate the model with a device to implement
that. It is to be noted that for a volume with 300 slices, it takes on an
average of less than 2 s to predict the result with a reasonable machine
configuration.

3.3. Comparison with other methods

In order to evaluate the performance of the COVID-19 detection
model, the proposed model is compared with other similar works in the
field using unseen test data. The network is compared with seven other
state-of-the-art COVID-19 detection models, and promising results are
found. It is to be noted that the datasets used in those studies as well
as the number of CT scan images used for training and testing purposes
are different than the ones used in this study.

The comparison result is presented in Table 7. The overall final
accuracy on the patient level is found to be 87.5%. Considering this
as a three-way classification, the accuracy is quite promising. For
comparison purposes, overall accuracy, average sensitivity, and average
specificity of the three classes are chosen as the defining metrics. With
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Table 7
Comparison of COVID-19 classification with other related studies. Note that the datasets and the images used in various methods reported in this Table are different.

Literature Backbone network Result Classification type Quantity

Xu et al. [42] 2D ResNet-18 1. Accuracy: 86.7%
2. F1 Score:
I. COVID-19: 83.9%
II. Influenza-A: 84.7%
III. Healthy: 91.5%

1. COVID-19
2. Influenza-A
3. Healthy

Number of Volumes
1. Train + Validation: 528
2. Test: 90

Shi et al. [43] Random Forest 1. Accuracy: 87.9%
2. Sensitivity: 90.7%
3. Specificity: 83.3%

1. COVID-19
2. CAP

Number of Volumes
1. Total: 2685
(5-Fold Cross-Validation)

Wang et al. [15] ModifiedInception Network 1. Accuracy: 82.5%
2. Sensitivity: 75.0%
3. Specificity: 86.0%
4. F1 Score: 72%

1. COVID-19
2. Viral Pneumonia

Number of Images
1. Train: 320
2. Internal Validation: 455
3. External Validation: 290

Jin et al. [44] ResNet-50 1. Sensitivity: 97.4%
2. Specificity: 92.2%

1. COVID-19 positive
2. COVID-19 negative

Number of Volumes
1. Train: 1136
2. Test: 282

Wu et al. [45] Res2Net 1. Sensitivity: 95%
2. Specificity: 93%

1. COVID-19
2. Healthy

Number of Volumes
(COVID-CS Dataset)
1. Train: 300
2. Test: 400

Wang et al. [16] DeCovNet 1. Accuracy: 90.1% 1. COVID-19 positive
2. COVID-19 negative

Number of Volumes
1. Train: 499
2. Test: 131

Ouyang et al. [17] 3D AttentionResNet-34 1. Accuracy: 87.5%
2. Sensitivity: 86.9%
3. Specificity: 90.1%
4. F1 Score: 82%

1. COVID-19
2. CAP

Number of Volumes
1. Train + Validation: 2186
2. Test: 2796

Proposed P-DenseCOVNet (3-class)
1. Accuracy: 87.5%
2. Sensitivity: 87.5%
3. Specificity: 93.8%
4. F1 Score:
I. COVID-19: 85.7%
II. Pneumonia: 77.6%
III. Healthy: 97.6%

1. COVID-19
2. Common pneumonia
(Viral, bacterial &
mycoplasma pneumonia)
3. Healthy

Number of Volumes
1. Train: 288
2. Test: 120

(2-class)
1. Accuracy: 93.8%
2. Sensitivity: 97.5%
3. Specificity: 90.0%
4. F1 Score: 94%

1. COVID-19
2. Non-COVID
(Common pneumonia &
healthy cases)

Number of Volumes
1. Train: 288
2. Test: 120
an average sensitivity score of 87.5% and an average specificity score
of 93.8%, the proposed model successfully competes with other similar
works in this field. In the two-class COVID-19 patient detection scheme,
accuracy, sensitivity, specificity, and 𝐹1 score are also found to be quite
satisfactory, with values of 93.8%, 97.5%, 90%, and 94%, respectively.
Moreover, the proposed model is also tested with new 30-volume
COVID-19 images from the ‘‘TCIA’’ dataset to ensure robustness. For the
dataset from TCIA Collections, the accuracy was 73.4% and 85.4% for
a slice- and patient-level three-class prediction, respectively. The result
is consistent with the aforesaid findings of 75.3% and 87.5% ( Tables 4
and 6) for a slice- and patient-level three-class prediction, respectively.

There are some overall concerns presented by the authors in [46],
which make a good number of the papers unfit for COVID-19 diagnosis.
However, the method presented in this paper is carefully designed
by taking into account those concerns. For example, in this paper,
completely different datasets are used for segmentation and classifi-
cation tasks to ensure unbiased results at the segmentation task. For
classification, a total of 12,978 images (120 volumes) from a different
dataset, other than the previous one, are used to verify our proposed
end-to-end scheme. Patient-wise testing has been carried out to avoid
biases in the result. A total of 120 patients were tested separately. The
final method is selected empirically through the gradual improvement
of the architecture. The method of pre-processing (lung segmentation),
training parameters, optimizer, learning rate are elaborately mentioned
in the paper.
12
4. Limitations and future work

The study is somewhat limited by the variations of data, as large
public datasets from different hospitals are not available. The infections
can vary depending on the geographical location and mutation of
the virus. Public datasets do not provide additional information like
whether the patients are truly COVID-19 positive, or if they have
some underlying conditions. Collaboration with hospitals for private
data along with public datasets from different domain can further
improve the capacity of the proposed model. The SKICU-Net can be
integrated with the skip sub-networks proposed in the U-Net++ [22]
or the residual attention skip pathways [47] to further enhance the
segmentation performance. Moreover, the parallel branches of the P-
DenseCOV-Net can be further polished with attention blocks to increase
the efficiency of the classification scheme.

5. Conclusion

In this paper, a deep CNN architecture is proposed to detect COVID-
19 by classifying the chest CT scan images into COVID-19, common
pneumonia, and normal or healthy cases. Instead of using the tradi-
tional U-Net, an improved version namely SKICU-Net with skip con-
nections between the encoder and decoder parts is utilized to segment
the lung regions from CT images with noteworthy segmentation perfor-
mance. Unsupervised agglomerative clustering is performed to remove
segmented lung regions with insignificant information at the test phase.

The segmentation and clustering steps allow the most desired lung
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regions to be fed in the succeeding classification architecture, namely
P-DenseCOVNet, which employs several parallel branches along with
the DenseNet-121 to classify in a proficient manner by preserving
the positional arguments. The proposed end-to-end architecture can
differentiate COVID-19 from its most competent disease pneumonia,
and from healthy cases with promising results in the three-class clas-
sification stage. The results get even more efficacious at the two-class
classification stage while predicting the COVID-19 cases, segregating
them from the Non-COVID class. Performance evaluation and compari-
son with other works manifest propitious ability to diagnose COVID-19
rapidly, which can play a crucial role in this time. Early detection with
this kind of technology allows the clinicians and radiologists to consider
the next step for patients quickly, which might be immensely vital to
save lives.
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