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Metastatic dissemination of cancer cells, their colonization at distal sites, and ultimate
disruption of tissue physiology are the root causes of most deaths from solid cancers, par-
ticularly in tumor types where the primary lesion can be easily dissected and discarded [1].
However, most therapies are traditionally based on the biology, driver mutations and/or
drug sensitivity, of primary tumor cells. This “under the streetlight” approach, historically
justified by a scarcity of metastatic samples, dated technologies, and the assumption that
tumors are the same “here, there and everywhere” is being gradually replaced with high
resolution analysis of metastases and their precursors using advanced technologies adapted
to minute biopsies as well as with new animal models of metastatic cancer that faithfully
recapitulate the human disease. Although precision medicine designed for metastases is
feasible, the overarching goal of metastatic research is to better understand the dissemi-
nation process that leads to macrometastases, identify unique vulnerabilities, and advise
appropriate therapeutic interventions to prevent recurrence.

1. Progression to Metastasis

From landmark papers in the early 1980s, the role of cooperation between oncogenic
mutations in tumor progression has been well defined [2,3]. Indeed, specific programs
induced in response to genetic interaction between certain oncogenic drivers are themselves
responsible for invasive phenotypes [4]. From analysis of colorectal tumors at different
stages, a model was developed to explain oncogenic driver cooperation and the role
of individual mutations in progression towards more invasive and lethal diseases [5].
Functional genomic screens have also helped define specific driver cooperation and its role
in tumor initiation and progression [6,7]. A common finding from comparative analyses of
primary tumors versus metastases is that oncogenic profiles in the two compartments are
similar but not identical (e.g., [8–11]). What is the basis for this incomplete overlap? This
question was asked by Bernards and Weinberg, albeit in a different way, nearly 20 years
ago; Do oncogenic alterations found in primary tumors suffice to drive metastatic spread,
or are additional, metastatic-specific alterations needed? [12]. The former view contends
that oncogenic mutations selected by Darwinian competition within a primary tumor
enables the emergence of aggressive clones that successfully compete locally and are also
equipped with attributes required for metastasis. This idea is supported by the ability
of prognostic signatures derived from primary tumors to successfully, though not fully,
predict clinical outcomes (e.g., [13]) and the detection of disseminating tumor cells at very
early stages of cancer progression [14], indicating that oncogenes and tumor suppressors,
which drive early lesions, are suffice to confer metastatic potential. Indeed, Ras mutant
alleles can promote primary tumor growth and also metastasis [15]. In this regard, RAS
pathway activation is observed in basal but not luminal breast cancer subtypes [16], and
luminal A breast cancer patients with high RAS pathway activity exhibit exceedingly poor
prognosis [17]. RAS pathway activation can occur at presentation, in which case, gene
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expression-based prognostication identifies high-risk patients (as in basal BC), or it can
happen through mutations induced post dissemination/treatment [18]. Indeed, substantial
evidence points to the existence of metastatic-specific genes that facilitate dissemination or
drug resistance (see references above). For example, alterations in targets of therapy, such
as ESR1, are almost exclusively selected for in therapy resistant and metastatic recurrent
disease [19]. Moreover, whole genome sequencing of colorectal cancer revealed that 19% of
mutations are metastatic-specific [20]. Among the metastatic-specific genes is BRCA2, a
tumor suppressor whose germline loss predisposes to certain types of cancer, indicating
that metastatic-specific mutations can play different roles in different contexts (i.e., acting
early in breast cancer initiation, but late in CRC progression to metastasis).

Functional analysis in mice supports the existence of metastatic-specific or metastatic-
promoting genes. For example, while high Akt1 expression accelerates mammary tumor
development, Akt2 promotes metastasis but not primary tumor formation in transgenic
mice [21]. Loss of RhoC GTPases does not affect tumor initiation but decreases motility,
tumor cell survival and dissemination in MMTV-PyMT mice [22]. Also, Stat3 deletion does
not affect primary tumor formation but reduces metastasis by promoting an immunosup-
pressive microenvironment [23,24].

Metastatic-specific driver mutations could confer a minor selective advantage at the
primary site (and therefore would be found in small subclones only detectable by deep
sequencing), could be rare (and hence would not accumulate at the primary site) but
effective in promoting dissemination, or may actually be acquired at distal sites after tumor
cells disseminate. Here, it is important to note that certain alterations that destabilize the
genome such as p53 loss, acquisition of BRCAness, chromothripsis or high-level expression
of mutator genes such as cytidine deaminase APOBEC3A/B, can increase mutation burden
and promote not only primary tumor growth but also tumor cell diversification with the
generation of metastatic variants [25–29]. Thus, a simple model to explain these observa-
tions involves the development of heterogeneous primary tumors, comprising multiple
subclones; the major dominant subclones are driven by oncogenic alterations that select for
local growth but not necessarily for metastasis. Then, smaller subclones branch off from
dominant subclones while acquiring mutations that empower them to leave the primary
niche and disseminate, successfully seeding macrometastases at distal sites. Additional
mutations may represent minute subclones in the primary site or occur post-dissemination.
In this model, metastasis specific mutations (denoted “m” in Figure 1) may reflect parallel
evolution post dispersion, passenger mutations, drug resistance, or alterations that directly
promote metastasis [30,31]. Regardless of the mechanism, if metastases are driven by
and depend on metastasis-specific alterations, then targeting such alterations could well
be therapeutic.
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Figure 1. Unique hallmarks of the metastatic cascade. Primary tumors are highly heterogeneous due to clonal evolution
and local competition. Dominant subclones with mutations (A-B-C or A-B-D) may not necessarily sprout metastases. In
the depicted scenario, a smaller clone, A-E, has acquired an additional mutation, designated m (A-E-m) at the primary site
or post-dissemination that promotes metastatic disease or drug-resistance. Steps in the metastatic cascade and unique
hallmarks that may be therapeutically targeted are indicated. A major theme is the plasticity of disseminating tumor cells
that enables progression through the “long and winding road” of the metastatic cascade (see text for details).

2. The Metastatic Cascade, Plasticity, and Vulnerabilities

Cancer cells spread through invasion and metastasis. The former involves spread from
within a lesion to surrounding local tissues. In principle, a surgeon can remove a locally
invasive lesion, however, highly invasive tumors can cause severe morbidity and even
mortality. For example, some brain tumors can kill patients even without metastasizing
since they cannot be removed without compromising essential brain function. Other solid
tumors, including lobular breast cancer can be highly invasive with evidence for local
recurrence and bilateral disease. Such tumors can require extensive surgical management
through time. Metastasis, by contrast, involves discontiguous dissemination, whereby
tumor cells travel through the circulation to implant and grow at secondary tissue sites.
This process involves the following distinct steps [32,33], all while avoiding immune
surveillance: (i) local invasion and cell migration, (ii) intravasation into the lymphatic
or hematogenous system, (iii) survival in the vascular system, (iv) extravasation from
vasculature to distal tissue, and (v) colonization (Figure 1). Each of these steps in the
metastatic cascade involves unique hallmarks, including complex cellular and metabolic
plasticity that can be exploited therapeutically [34–36]. For instance, cell migration is
facilitated by epithelial-to-mesenchymal transition (EMT), which requires a high degree
of plasticity as colonization at distal sites involves the opposite process, mesenchymal-to-
epithelial conversion (MET) [37,38]. Induction of N-cadherin but not vimentin has been
shown to be required for EMT and metastasis in the lung of MMTV-PyMT mice; a recent
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N-cadherin reporter mouse was used to trace EMT and provided the means to dissect this
process in vivo [39].

While glycolysis promotes anabolic metabolism and rapid cell proliferation, and is
selected for during clonal evolution in primary cancers, oxidative phosphorylation (OX-
PHOS) is observed in circulating tumor cells (CTCs), which revert back to glycolysis during
rapid outgrowth of metastases [40]. Whether CTCs arise from glycolytic tumor cells that
revert to OXPHOS or from tumor subclones that maintain OXPHOS, remains to be deter-
mined. OXPHOS is critical for cell motility and migration [40–42]. Indeed, ”slow cycling
cells” identified by dye-retention analysis exhibit OXPHOS, increased dissemination, and
are associated with tumor relapse, whereas ”fast cycling cells” are glycolytic and less
metastatic [43]. The OXPHOS—migration connection may relate to the observation that
migratory potential of tumorigenic cells correlates with mitochondrial fission (fragmenta-
tion), while less migratory tumor cells harbor fused (concatemeric) forms of this organelle.
Mitochondrial fission, which is coordinated by MFN1 and DRP1, promotes mitochondrial
distribution to lamellipodia [42,44]. Thus, mitochondrial fission plus a switch to OXPHOS
may provide the high local ATP production required for lamellipodia function and migra-
tion. High OXPHOS is also a characteristic feature of cancer stem cells (CSCs) with their
unique drug responsiveness [35,45].

It is commonly thought that CTC maintenance of high OXPHOS, low proliferative
state, and dormancy shield them from cytotoxic drugs which act on highly dividing cells.
Of interest, a recent cell tagging analysis suggests that both slow and fast proliferating
cells can enter a state of dormancy, and then re-enter the cell cycle, re-establishing a
CSC hierarchy [46]. Implicit in the aforementioned cell plasticity phenotype is the ability
of disseminating tumor cells (DTCs) to exit and then re-enter the cell cycle. While the
proclivity of DTCs to enter dormancy protects them from certain therapies, it may expose
them to other therapies that block cell cycle re-entry or the OXPHOS-to-glycolysis switch,
possibly as part of a larger intervention scheme, which also targets proliferating tumor
cells. In addition to targeted therapy, a new therapy, based on low-intensity, intermediate-
frequency electric fields, has proven to be highly effective in suppressing cell division in
mouse models and recurrent glioblastoma patients, and may be adapted to metastatic
disease [47,48].

3. Plasticity and Hybrid Programs

The section above describes several programs through which tumor cells transition
back and forth during metastasis, i.e., EMT versus MET, glycolysis versus OXPHOS,
mitochondrial fusion versus fission, CSC/self-renewal versus proliferation/aberrant dif-
ferentiation, and cell cycling versus dormancy. Tumor cells that are locked into such
biological states (e.g., glycolysis) may dominate the primary tumor as they promote rapid
proliferation but may fail to sprout lethal metastases. Indeed, in many solid tumors, some
tumor cells undergo complete EMT, whereas others only undergo partial EMT, expressing
both epithelial and mesenchymal markers; complete EMT leads to single cell migration
but no colonization, whereas partial EMT leads to group/collective dissemination and
colonization [49,50]. The partial or hybrid EMT state has recently been shown to involve
FAT1 loss, which activates the EMT inducer ZEB1 and the epithelial inducer SOX2, thereby
promoting stemness and metastasis [51]. Thus, tumor cells that express mixed phenotypes
of partial EMT, elevated glycolysis and OXPHOS, CSC and partial proliferation/aberrant
differentiation, and slow cycling may be uniquely capable of disseminating and forming
large metastases.

The aforementioned biological states are interconnected and regulated by oncogenes
and tumor suppressors selected for in the course of tumor evolution. For example, multiple
oncogenic alterations such as p53 loss and PI3K pathway activation drive glycolysis [52,53].
However, other oncogenic alterations such as RB1 loss, oncogenic FER, and high SIRT6
expression promote mitochondrial activity and OXPHOS [35,54–58]. Thus, mixed hybrid
programs may be achieved by the right balance of specific oncogenic mutations that
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promote opposing programs. While transitions from one complete program to another may
require new genetic alterations, the plasticity associated with partial program acquisition
is more subtle and may be readily amenable to post-translational/epigenetic changes in
response to stochastic processes or extracellular signaling. In this regard, a major driver of
OXPHOS is PGC-1alpha, which is not oncogenically altered in cancer, but its expression
level controls mitochondrial biogenesis [40]. Likewise, the MET receptor tyrosine kinase,
a major driver of cell motility and invasion, is regulated post-translationally at multiple
levels, including degradation by selective autophagy, which is itself affected by oxygen
availability and the tumor suppressor VHL [59].

4. The Tumor Microenvironment

The metastatic cascade involves cell autonomous and non-cell autonomous processes.
In fact, the tumor microenvironment (TME), and in particular, the tumor immune microen-
vironment (TIME), play both positive and negative roles in this process, and are clearly
distinct in the primary versus metastatic niches. For example, RNA-seq analysis identified
high expression of the CCL2 chemokine in metastatic medulloblastoma; overexpression of
CCL2 or its receptor, CCR2, sufficed to drive hematogenous dissemination in vivo [60]. As
noted, although DTCs can migrate as single cells, collective migration is a more efficient
route for metastasis [61]. Tumor-associated neutrophils and macrophages (TAMs), as well
as myeloid-derived suppressor cells (MDSCs), promote collective migration and intravasa-
tion of tumor cells [33,62,63]. Under the influence of colony-stimulating factor 1 (CSF1),
TAMs also promote angiogenesis. Extravasation is facilitated by metastasis-associated
macrophages (MAM), which secrete VEGFA and further protect DTC. Regulatory T cells
(Treg) are instrumental in suppressing tumor surveillance by natural killer cells and cyto-
toxic CD8+ T cells. Thus, early and late events in the metastatic cascade are dependent on
different interactions with the TME.

Escape from immune surveillance is not only critical for successful dissemination but
also for metastatic growth and colonization. Metastatic tumor cells hijack various processes
involved in normal homeostasis to escape immune detection and destruction. For example,
TGF-β signaling from tumor-associated fibroblasts trap cytotoxic T cells in the stroma,
excluding them from tumor parenchyma; inhibition of TGFβ facilitates cytotoxic T-cell
response that prevents metastasis [64]. Another mechanism by which tumors evade the im-
mune system involves suppression of cytotoxic T cells through expression of programmed
death ligand 1 (PD-L1). PD-L1 binds programmed cell death protein 1 (PD-1) on the surface
of cytotoxic CD8+ T cells and attenuate their function [65,66]. Whereas tumor cells are
genetically unstable, allowing rare variants to escape therapy, the TME including tumor
vasculature and myriad immune cell types comprise genetically stable cells that are more
amenable to therapeutic targeting. Indeed, recent success with combination therapies of
advanced/metastatic cancer using checkpoint control inhibitors such as anti-PD-1 and
anti-PD-L1 antibodies together with therapies targeting the cancer cell compartment is
inspiring [67]. Similar therapies combining checkpoint control inhibitors with other vul-
nerabilities in the TME or the metastatic cascade may offer even better outcomes. The
generation of immune-competent mouse models that develop macroscopic metastases
(e.g., [68,69]), provide powerful platforms to study metastasis and assess potential new
drug combinations that target both the tumor and TME [70].

5. Metastasis-Based Therapy

With sequence analysis of biopsies taken from metastatic patients, identification
of metastasis-specific alterations and design of metastasis-tailored precision medicine,
metastasis-based therapy has become technically feasible. A major challenge, however, in-
volves the diverse set of mutations in different metastases from each individual patient [10],
as well as the difficulty of obtaining biopsies from certain metastatic sites. Advances
in single-cell sequencing technologies, high-resolution immune-landscape analysis, and
metabolic profiling of primary tumors, DTCs, and metastatic biopsies, in combination



Cancers 2021, 13, 717 6 of 8

with functional genomic editing of immune-competent mouse models, may help to un-
cover druggable vulnerabilities that suppress or at least contain the disease before frank
metastases develop, without compromising overall survival and well-being.

Funding: E.Z. acknowledges funding from CIHR, CBCF, and U.S. DoD. S.E.E. acknowledges funding
from CIHR, CCSRI and U.S. DoD.
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