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An efficient Planet Optimization 
Algorithm for solving engineering 
problems
Thanh Sang‑To1,2, Minh Hoang‑Le1,2, Magd Abdel Wahab3* & Thanh Cuong‑Le2*

In this study, a meta‑heuristic algorithm, named The Planet Optimization Algorithm (POA), inspired 
by Newton’s gravitational law is proposed. POA simulates the motion of planets in the solar system. 
The Sun plays the key role in the algorithm as at the heart of search space. Two main phases, local and 
global search, are adopted for increasing accuracy and expanding searching space simultaneously. A 
Gauss distribution function is employed as a technique to enhance the accuracy of this algorithm. POA 
is evaluated using 23 well‑known test functions, 38 IEEE CEC benchmark test functions (CEC 2017, 
CEC 2019) and three real engineering problems. The statistical results of the benchmark functions 
show that POA can provide very competitive and promising results. Not only does POA require a 
relatively short computational time for solving problems, but also it shows superior accuracy in terms 
of exploiting the optimum.

In recent years, many nature-inspired optimization algorithms have been proposed. Some of swarm-inspired 
algorithms are appreciated such as Particle Swarm Optimization algorithm (PSO)1, Firefly Algorithm (FA)2, 
Dragonfly Algorithm (DA)3, Whale Optimization Algorithm (WOA)4, Grey Wolf Optimizer (GWO)5, Monarch 
Butterfly Optimization (MBO)6, Earthworm Optimization Algorithm (EWA)7, elephant herding optimization 
(EHO)8, moth search (MS)  algorithm9, Slime Mould Algorithm (SMA)10, Colony Predation Algorithm (CPA)10 
and Harris Hawks Optimization (HHO)11. Besides, quite a number of physics-inspired algorithm simulated 
physical laws in the universe or nature, such as Curved Space Optimization (CSO)12, Water Wave Optimization 
(WWO)13, etc. Moreover, some algorithms based on the mathematical foundations are also creative approaches, 
e.g. Runge Kutta optimizer (RUN)14.

On the other hand, some algorithms simulate human behavior such as Teaching–Learning-Based Optimiza-
tion (TLBO)15, and Human Behavior-Based Optimization (HBBO)16. Meanwhile, Genetic Algorithm (GA)17 is 
inspired by evolution, and achieves a lot of success in solving optimization problems in many fields. With the 
growing popularity of GA, many evolutions-based algorithms are proposed in the literature, including Evolu-
tionary Programming (EP)18, and Evolutionary Strategies (ES)19.

Nowadays, metaheuristic algorithms become an essential tool for solving complex optimization problems in 
various fields. Many researchers applied such algorithms to make an effort to deal with difficult issues in  biology20, 
 economics21,  engineering22,23, etc. Therefore, constructing new algorithms to meet such complex requirements 
has a significant merit.

In this study, a strong algorithm is constructed for solving local and global optimization problems. The idea 
comes from the natural motion of planets in our solar system and the interplanetary interactions throughout 
their lifecycle. Newton’s law of gravity reflects the gravitational interaction of the Sun with planets orbiting to 
find the optimized position through individual planets characteristics. These planets characteristics are their 
masses and distances.

In this paper, we propose an optimization algorithm using Newton’s law of universal gravitation as the basis 
for its development. In this algorithm, a number of pre-eminent features are considered, such as local search, 
global search, to increase the ability for finding the exact solutions built into simulating the planets’ movement 
in the universe.

This research paper is structured into several sections as follows. In the next section, the construction of 
a meta-heuristic algorithm is presented. The structural POA is simulated based on Newton’s law of universal 
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gravitation and astronomical phenomena. Then, a wide range of applications of various benchmark problems 
is used to demonstrate how effective POA is. At the same time, we present the applications of the POA to real 
engineering problems. Finally, based on the results presented, the last section reports the conclusions.

The Planet Optimization Algorithm (POA)
Physics is a fundamental science whose laws governs everything from the tiniest object electrons, neutrons, or 
protons to extremely massive stars or galaxies (about a hundred thousand light-years across). The laws of physics 
are widely applied in everyday life from transportation to medicine, from agriculture to industry, etc. In science, 
it is also the foundation for many other sciences such as chemistry, biology, even math. In the field of artificial 
intelligence (AI), the laws of physics are the inspiration for many optimization algorithms. In the study, we also 
present an algorithm based on such a physical law.

Inspiration. Inspired by the laws of the motion in the universe, an algorithm is proposed from the interac-
tion of mutual gravitational between the planets. Specifically, this optimization algorithm simulates the universal 
gravitation laws of Isaac Newton. The core of this algorithm is given as follows:

 where −→F  : The gravitational force acting between two planets; G : The gravitational constant; R : The distance 
between two planets; m1,m2 : The mass of the two planets.

The gravitation of a two-planet (as shown in Fig. 1) is dependent on as Eq. (1). However, in this study, we 
find that the value of force −→F  will give less effective results than when using the moment (M) as a parameter in 
the search process of the algorithm.

The planet optimization algorithm. The universe is infinitely big and has no boundary, and it is a giant 
space that is filled with galaxies, stars, planets, and many and many interesting astrophysical objects. For sim-
plicity and ease of visualization, we use the solar system to make representation for this algorithm simulation.

First of all, a system that consists of the Sun, the Earth and the Moon (as shown in Fig. 2) is considered in this 
case. Of course, everybody understands that the Sun maintains its gravitation to keep the Earth moving around 
it. Interestingly, the mass of the Sun is 330,000 times higher than that of the Earth. However, the Earth also cre-
ates a gravitational force large enough to keep the Moon in orbit around the Earth. This demonstrates that two 
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Figure 1.  The force F acting between two planets.

Figure 2.  The gravitational force acting between planets.
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factors influence the motion of a planet, not only the mass but also the distance between the two planets. An 
algorithm simulating the law of universal gravitation is, therefore, presented as follows:

• The Sun will act as the best solution. In the search space, it will have the greatest mass, which means it will 
have a greater gravitational moment for the planets around and near it.

• Between the Sun other planets, there is a gravitational attraction moment between each other. However, this 
moment depends on the mass as well as the distance between these two objectives. This means that, although 
the Sun has the largest mass compared to other planets, its moment on the too distant planets is negligible. 
This helps the algorithm to avoid local optimization as illustrated in Fig. 3.

In the tth iteration, the mass of red planet (see Fig. 3) is the biggest, so it represents the Sun. As the pink plan-
ets are close to the Sun, they will move to the location of the Sun because of a gravitational attraction moment 
(Mt

p) between the Sun and the planets.
Nevertheless, the red planet (or the Sun) in the tth iteration does not have the desired position that we are 

looking for, i.e. a minimum optimum. In other words, if all planets move to the red planet, the algorithm is stuck 
in the local space. In contrast, the blue planet is a potential location and far from the Sun. The interaction of the 
Sun with the blue planet (Mt

b) is small, because it is far from the Sun in the tth iteration. Thus, it is quite free for 
the blue planet to search a better location in the next iterations.

The main core of the algorithm is based on the above 2 principles. Besides, the Sun is the true target of 
searching, and of course we don’t have its exact location. In this case, the planet with the highest mass in the tth 
iteration would act as the Sun at the same time.

The implementation of the algorithm is as follows:

Stage 1: the best start. Ideally, a good algorithm is the one in which the final best solution should be independ-
ent of the initial positions. Nevertheless, the reality is exactly the opposite for almost all stochastic algorithms. 
If the objective region is hilly and the global optimum is located in an isolated minor area, an initial population 
has an important role. If an initial random population does not create any solution in the vicinity of the global 
search level of the original population, the probability that the population concentrates on true optimum can 
be very low.

In contrast, with building initial solutions near the global optimal position, the probability of the convergence 
of the population to the optimal location is very high. Globalization is indeed very high, and consequently, 
population initialization plays a vital role. Ideally, the initiation should use the critical sampling method, such 
as techniques applied to the Monte Carlo method in order to sample the solutions for an objective context. This, 
however, requests enough intellect of the problem and cannot be satisfied for most algorithms.

Similar to choosing initial population, choosing the best solution in the original population to the role of the 
Sun with respect to all the other planets moving to the position is important. This selection will determine the 
convergence speed as well as the accuracy of the algorithm in the future.

Therefore, the algorithm’s first step is to find an effective solution to play a role of the best solution to increase 
the convergence and accuracy of the search problem in the first iterations.

Stages 2: M factor. 

In Eq. (3), the following parameters are defined:
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Figure 3.  Local and global optimization: (a) 3D view; (b) plane.
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• The mass of the planets:

where a = 2 is a constant parameter, and α =
∣

∣max(obj)− objsun
∣

∣ . This means that if the objective function 
value of a planet is smaller, the mass of this planet is larger. obji,j , max(obj), objsun are the values of objective 
function of the ith or jth planet, the worst planet and the Sun, respectively.

• The distance between any 2 objects i and j with “Dim” as dimensions, Cartesian distance, is calculated by Eq. 
(5):

• G is a parameter, and it is equal to unity in this algorithm.

Stage 3: Global search. From the above, a formula built to simulate global search is indicated by Eq. (6)

The lefthand side of the formula illustrates the current position of a planet ith in the (t + 1) iteration, while 
the righthand side consists of the main elements as follows:

• 
−→
Xt
i  is the current position of a planet ith in the iteration tth.

• β = Mt
i /M

t
max

,r1 = rand(0, 1), b is a constant parameter.
• 

−−→
Xt
Sun is the current position of the Sun in the iteration tth.

where β is a coefficient that depends on M, as shown in Eq. (3), in which Mt
i  is the Sun’s gravity on a planet 

ith at t iteration, and Mt
max is the value of max(Mt

i ) at t iteration. Therefore, the β coefficient contains values in 
the interval (0, 1).

Stage 4: Local search. In the search process, the true location is always the desired target to be found. However, 
this goal will be difficult or easy to achieve in this process depending on the complexity of the problem. In most 
cases, it is only possible to find an approximate value that fits the original requirement. That is to say, the true 
Sun location yet is in the space between the found solutions.

Interestingly, although Jupiter is the most massive planet in the solar system, Mercury is the planet, for which 
its location is the closest the Sun. It means that the best solution position to true Sun location at the t iteration 
may not be closer than the location of some other solutions to the true location of the Sun.

When the distance between the Sun and planets is small, the local search process is run. As mentioned above, 
the planet with the biggest mass will operate as the Sun, and in that case, it is Jupiter. Planets near the Sun will go 
to the location of the Sun. In other words, the planets move a small distance between it and the Sun at t iteration 
instead of going straight towards the Sun. The aim of this step is to increase accuracy in a narrow area of search 
space. Eq. (7) indicates the process for local search as follows:

 where c = c0 − t/T , t is the tth iteration, T is the maximum number of iterations, and c0 = 2. r2 is Gauss distribu-
tion function illustrated by Eq. (8).

Many evolutionary algorithms are also randomized by applying common stochastic processes such as power-
law distribution and Lévy distribution. However, Gaussian distribution or normal distribution is the most popular 
since the large number of physical variables (see Fig. 4), including light intensity, errors/uncertainty in measure-
ments, and many other processes, obey this distribution.

The coefficient r2 is the Gaussian distribution with mean value µ = 0.5 and standard deviation σ = 0.2 . It 
means that 68.2% of r2 is in zone 1 about (µ− σ) = 0.3 to (µ+ σ) = 0.7 , and 27.2% of its values is in zone 2 
from (µ± 2σ) to (µ± σ) . In other words, POA will move to around the Sun without ignoring potential solu-
tions in local search.

Exploitation employs any data obtained from the issue of interest to create new solutions, which are better 
than existing solutions. This process and information (for instance gradient), however, are normally local. There-
fore, this search procedure is local. The result of search process typically leads to high convergence rates, and it 
is the strong point of exploitation (or local search). Nevertheless, the weakness of local search is that normally 
it gets stuck in a local mode.
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In contrast, exploration is able to effectively explore the search space, and it typically creates many diverse 
solutions far from the current solutions. Thus, exploration (or global search) is normally on a global scale. The 
great strength of global search is that it rarely gets stuck in a local space. The weakness of the global search, 
however, is slow convergence rates. Besides, in many cases, it wastes effort and time since a lot of new solutions 
can be far from the global solution.

Figure 5 shows the operation of this algorithm, in which two local and global search processes are governed 
by the distance parameter Rmin. This means that a planet far away from the Sun will be moved depending on 
Newton law. In contrast, for planets very close to the Sun, the effect of the newton force is so great. They are only 
moving, therefore, around the Sun. A planet, which is close to the Sun, will support the Sun in exploring a local 

Figure 4.  Gauss distribution.

Figure 5.  Flow chart of the proposed POA.
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search space, as shown in Eq. (7), while the motion of distant planets from the Sun is less affected by this star 
at the same time. It means they have a chance to find new potential stars. Search local and global spaces runs 
simultaneously. This guarantees the enhancement of the accuracy of the search process, but this algorithm does 
not miss the potential locations.

The parameter Rmin must satisfy the following two conditions:

• If the Rmin is too large, the algorithm will focus on local search in the first iterations. Therefore, the probability 
of finding a potential location far away from the present one is difficult.

• In contrast, if Rmin is too small, the algorithm focuses on global search. In other words, the exploration of 
POA in the zone around the Sun is not thorough. Consequently, the best value of the search process may not 
satisfy the condition.

In this study, Rmin is chosen by dividing the search space into 1000 (R0 = 1000) zones. Where ‘low’ and ‘up’ 
are lower and upper bounds of each problem, respectively. With an explicit structure consisting of 2 local and 
global search processes, POA has satisfied the above two issues and promises to be effective and saving of time 
in solving complex problems.

Results and discussion
In this section, POA is compared with a series of algorithms using well-known problems. The investigations 
run on the operating system of Windows 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00 GHz 1.80 GHz with 
RAM 16.0 GB.

Experimental results using classical benchmark functions. In this subsection, POA is employed 
to handle a wide range of applications of various benchmark problems. A set of mathematical functions with 
known global optima is commonly employed to validate the effectiveness of the algorithms. The same process 
is also followed, and a set including 23 benchmark functions in the literature as test beds are employed for this 
 comparison24–26. These test functions consist of 3-group, namely unimodal (F1–F7), multi-modal (F8–F13), and 
fixed-dimension (F14–F23) multimodal benchmark functions. POA is compared with seven algorithms, namely 
 PSO1,  GWO5,  GSA27,  FA2 and  ASO28,  HHO11,  HSG29 on a set of 23 benchmark functions as shown in Table 1.

Numerical examples with Dim ≤ 30. Each benchmark function runs 30 times by the POA algorithm. A sample 
size of POA with 30 planets is selected to perform 500 iterations. The statistical results (average–Ave, and stand-
ard deviation–Std) are summarized in Tables 2, 3 and 4.

The results from the comparison to F5 and F6 are quite good for POA compared with the others. The F1 to F4 
and F7 functions witness that POA algorithm’s accuracy is the most superior compared with all other algorithms.

In comparison with 7-unimodal functions, the most of multimodal functions consist of a lots of local opti-
mization areas with the number increasing exponentially with dimensions. This makes them good conditions 
to evaluate the exploratory ability of a meta-heuristic optimization algorithm.

Table 3 indicates that POA outperforms in F10 and F11 functions, and is quite competitive with the rest.
Similar to the unimodal functions, once again the multimodal and fixed-dimension multimodal functions 

prove the competitiveness of POA with other algorithms, and show that the obtained results from F14 to F23 
are promising.

Figure 6 illustrates the convergence of POA after 100 iterations of 100 planets. The first two metrics are qualita-
tive metrics that illustrate the history of planets through the course of generations. During the whole optimization 
process, the planets are represented using red points as shown in Fig. 6. The trend of planets explores potential 
zones of the search space, and exploit quite accurately the global optimum. These investigations demonstrate 
that POA is able to get the high effectiveness in approximating the global optimum of optimization problems.

The third metric presents the movement of the 1st planet in the first dimension during optimization. This 
metric helps us to monitor if the first planet, which represents all planets, faces sudden movement in the initial 
generations and has more stability in the final generations. This movement is able to guarantee the exploration of 
the search region. Finally, the movement of planets is very short, which causes exploitation of the search region. 
Obviously, POA demonstrates that this is an algorithm that meets a requirement of accuracy, as well as a high 
degree of convergence.

The final quantitative metric is the convergence level of the POA algorithm. The best value of all planets in 
each generation is stored and the convergence curves are shown in Fig. 6. The decreasing of fitness over the 
generations demonstrates the convergence of the POA algorithm.

Numerical examples with high‑dimensional optimization problems. To validate the performance of POA with 
respect to high-dimensional optimization problems, the first 13 classical benchmark functions of the above-
mentioned ones with Dim = 1000 are employed to investigate POA. For a fair comparison, seven of the above 
mentioned meta-heuristic optimization algorithms and POA with population size N = 30 independently run in 
30 times. Additionally, the maximum number of iterations is fixed at 500 for all test functions.

(9)Rmin =

(

Dim
∑

1

(upi − lowi)
2

)

/R0
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The test discussed in this subsection demonstrate that POA is promising for dealing with 13 classical bench-
mark problems. Among the tested 23 benchmark functions, 13 functions had Dim = 1000, as presented in Table 5 
and Fig. 7. This subsection confirmed the ability of POA to deal with high-dimensional problems as the dimen-
sion of those 13 classical benchmarks has been increased from 30 to 1000.

Wall‑clock time analysis. In this experiment, a comparison is made between POA and the other seven algo-
rithms in the time-consuming computation experiments of the 13 functions. The time-consuming calculation 

Table 1.  Classical benchmark functions.

Function  (Fi) Range Dim MinF

F1 =
n
∑

i=1

(xi)
2 [−100,100] 30 0

F2 =
n
∑
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∣

∣xi
∣

∣+
n
∏

i=1

∣

∣xi
∣
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F3 =
n
∑

i=1

(

i
∑

j−1

xj

)2

[−100,100] 30 0

F4 = maxi {|xi |, 1 ≤ i ≤ n} [−100,100] 30 0

F5 =
n−1
∑

i=1

(

100(xi+1 − x2i )
2 + (xi − 1)2

)

[−30,30] 30 0

F6 =
n
∑

i=1

(xi + 0.5)2 [−100,100] 30 0

F7 =
n
∑

i=1

ix4i + rand[0, 1) [−1.28,1.28] 30 0

F8 =
n
∑

i=1

−xi sin
√

∣

∣xi
∣

∣ [−500,500] 30 −418.9829  × Dim

F9 =
n
∑

i=1

(x2i − 10 cos(2πxi)+ 10)2 [−5.12,5.12] 30 0

F10 = −20 exp

(
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1
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+ 1 [−600,600] 30 0
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+
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where : yi = 1+
(xi + 1)

4
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F13 = 0.1{sin2(3πx1)+
n
∑

i=1
(xi − 1)2

[

1+ 10 sin2(3πxi + 1)
]

+ (xn − 1)2[1+ sin2(2πxn)]} +
n
∑

i=1

u(xi , 5, 100, 4) [−50,50] 30 0
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(
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1
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[−65,65] 2 1

F15 =
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2
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b2i +bix3+x4

]2

[−5,5] 4 0.00030

F16 = 4x21 − 2.1x41 +
1
3 x

6
1 + x1x2 − 4x22 + 4x42 [−5,5] 2 −1.0316

F17 =
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8π

)

cos x1 + 10 [−5,5] 2 0.398

F18 =
[
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(
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×

×
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F20 = −
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∑

i=1
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∑
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aij(xj − pij)
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[0,1] 6 −3.32

F21 = −
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∑
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[

(X − ai)(X − ai)
T + ci

]−1
[0,10] 4 −10.1532

F22 = −
7
∑
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[

(X − ai)(X − ai)
T + ci

]−1
[0,10] 4 10.4028

F23 = −
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∑
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T + ci

]−1
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method is that each benchmark function independently implements 30-times all algorithms, then the values 
of 30-time running is saved in Table 6. For Dim = 30, not only does the computation of POA outperform some 
algorithms, while taking less time, such as GSA, ASO, and FA, but also it is sometimes far superior to GWO, even 
the time-consuming calculation of PSO. For Dim = 1000, POA always ranks first in computational time. These 
results show that the POA has merit for optimization problems in high dimensional problems.

Experimental results using CEC functions. In order to further clarify the efficiency of the proposed 
algorithm, POA is tested on the complex challenges, namely Evaluation Criteria for the CEC  201730 and CEC 
 201931. Its results are compared with those of well-known and modern meta-heuristic algorithms: DA, WOA, 
and the arithmetic optimization algorithm (AOA)32. These algorithms are selected because of the reasons:

• All of them are based on the principle of PSO as with POA.
• All algorithms are well cited in the literature, and AOA is a recently published study.
• These algorithms were proven that they were superior performance both on benchmark test functions and 

real-world problems.
• They are publicly provided by their authors.

Like the 23 classical benchmark functions, each function of the CEC Benchmark Suite is run 30 times, and 
each algorithm was allowed to search the landscape for 500 iterations using 30 agents.

CEC 2017 problems. In this subsection, the IEEE CEC 2017 problems is employed to test the performance of 
POA. The CEC’17 standard set consists of 28 real challenging benchmark problems. The first is unimodal func-
tion, 2–7 are multimodal one. While ten functions next are Hybrid, the rest of CEC 2017 are 10 composition 
functions. Table 7 presents a brief description of CEC 2017.

As shown in Table 8, POA is highly efficient, because compared to WOA, DA and AOA, it outperforms all 
algorithms in 21/28 of CEC 2017 standard set. In addition, the Wilcoxon signed rank test with α = 0.05 signifi-
cance level is shown in Table 9 in order to analyze the significant differences between the results of POA and 
other algorithms. These results have proven that POA provides a great performance in terms of solution quality 
when handling the functions of CEC 2017.

CEC 2019 problems. Table 10 presents a brief description of CEC 2019. It can be seen from Table 11 that POA 
outperforms other optimization algorithms in all CEC 2019 functions. Indeed, results in many test functions 
(e.g. F52, F53, F56) show that POA is more powerful than others not only at the average value of 30 runs, but also 
at the other statistical values, such as the best, worst and Std value. Once again, The Wilcoxon signed rank test (as 
shown in Table 12) demonstrated the superior performance of POA to solve CEC 2019 problems.

In the next section, some classical engineering design problems are employed to further evaluate the per-
formance of the POA. Besides, POA is also compared with other well-known techniques to confirm its results.

Table 2.  Results of unimodal benchmark functions. Significant values are in bold.

Fi

POA PSO GSA GWO ASO FA HHO HGS

Aver Std Aver Std Aver Std Aver Std Aver Std Aver Std Aver Std Aver Std

F1 5.27E−263 0.00E + 00 1.36E−04 2.02E−04 2.53E−16 9.67E−17 6.59E−28 6.34E−05 2.68E−21 3.65E−21 1.11E−02 3.49E−03 3.95E−97 1.72E−96 2.43E−146 1.3E−145

F2 1.08E−137 4.46E−137 4.21E−02 4.54E−02 5.57E−02 1.94E−01 7.18E−17 2.90E−02 3.33E−10 1.89E−10 2.74E + 01 3.35E + 01 1.56E−51 6.98E−51 8.16E−83 3.80E−82

F3 2.73E−212 0.00E + 00 7.01E + 01 2.21E + 01 8.97E + 02 3.19E + 02 3.29E−06 7.91E + 01 1.98E + 02 7.97E + 01 2.61E + 03 9.84E + 02 1.92E−63 1.05E−62 5.29E−62 2.90E−61

F4 2.45E−124 1.18E−123 1.09E + 00 3.17E−01 7.35E + 00 1.74E + 00 5.61E−07 1.32E + 00 3.24E−09 6.14E−09 8.44E−02 1.58E−02 1.02E−47 5.01E−47 1.01E−66 4.32E−66

F5 2.88E + 01 1.48E−01 9.67E + 01 6.01E + 01 6.75E + 01 6.22E + 01 2.68E + 01 6.99E + 01 2.48E + 01 5.16E−01 7.29E + 04 1.78E + 05 1.32E−02 1.87E−02 1.44E + 01 1.28E + 01

F6 1.71E−01 1.88E−01 1.02E−04 8.28E−05 2.50E−16 1.74E−16 8.17E−01 1.26E−04 0.00E + 00 0.00E + 00 1.19E−02 3.66E−03 1.15E−04 1.56E−04 5.64E−06 9.99E−06

F7 1.23E−04 1.34E−04 1.23E−01 4.50E−02 8.94E−02 4.34E−02 2.21E−03 1.00E−01 3.56E−02 1.95E−02 4.87E−02 3.52E−02 1.40E−04 1.07E−04 1.17E−03 2.24E−03

Table 3.  Results of multimodal benchmark functions. Significant values are in bold.

Fi

POA PSO GSA GWO ASO FA HHO HGS

Aver Std Aver Std Aver Std Aver Std Aver Std Aver Std Aver Std Aver Std

F8 −8.64E + 03 6.10E + 02 −4.84E + 03 1.15E + 03 −2.82E + 03 4.93E + 02 −6.12E + 03 −4.09E + 03 −7.43E + 03 4.22E + 02 −6.32E + 03 6.83E + 02 −1.25E + 04 1.47E + 02 −1.26E + 04 1.09E + 00

F9 1.44E + 00 7.88E + 00 4.67E + 01 1.16E + 01 2.60E + 01 7.47E + 00 3.11E−01 4.74E + 01 0.00E + 00 0.00E + 00 3.24E + 01 9.14E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

F10 8.88E−16 0.00E + 00 2.76E−01 5.09E−01 6.21E−02 2.36E−01 1.06E−13 7.78E−02 3.00E−11 2.15E−11 5.02E−02 1.83E−02 8.88E−16 4.01E−31 8.88E−16 0.00E + 00

F11 0.00E + 00 0.00E + 00 9.22E−03 7.72E−03 2.77E + 01 5.04E + 00 4.49E−03 6.66E−03 0.00E + 00 0.00E + 00 6.05E−03 1.77E−03 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

F12 2.01E−03 3.50E−03 6.92E−03 2.63E−02 1.80E + 00 9.51E−01 5.34E−02 2.07E−02 4.51E−23 1.88E−23 2.39E−04 1.18E−04 2.08E−06 1.19E−05 2.10E−07 2.70E−07

F13 1.63E + 00 7.89E−01 6.68E−03 8.91E−03 8.90E + 00 7.13E + 00 6.54E−01 4.47E−03 1.91E−23 3.12E−22 2.86E−03 1.47E−03 1.57E−04 2.15E−04 6.95E−03 3.80E−02
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Figure 6.  Level of convergence of POA after 100 iterations.
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Engineering design problems. In this study, three constrained engineering design problems, namely ten-
sion/compression spring, welded beam, pressure vessel designs, are used to investigate the applicability of POA. 
The problems have some equality and inequality constraints. The POA should be, therefore, equipped with a 
constraint solving technique. Meanwhile, POA can optimize constrained problems as well at the same time. It 
should be noted that the population size and the number of iterations are, respectively, set to 30 and 500 for 50 
runs to find the results for all problems in this section.

Tension/compression spring. The main aim of this problem is to minimize the weight of a tension/compression 
spring. The design problem is subject to three constraints, namely surge frequency, shear stress, and minimum 
deflection. This problem consists of three variables: Wire diameter (d), mean coil diameter (D), and the number 
of active coils (N).

Tension/compression spring design problem has been solved by both mathematicians and heuristic tech-
niques. Some researchers have made efforts to employ several methods for minimizing the weight of a tension/
compression spring (Ha and Wang:  PSO33; Coello and Montes: The Evolution Strategy (ES)34 and  GA35; Mahdavi 
et al.: Harmony Search (HS)36; Belegundu: Mathematical  optimization37 and Arora: Constraint  correction38; 

Table 5.  Results of the first 13 benchmark functions with Dim = 1000. Significant values are in bold.

Fi

POA PSO GSA GWO ASO FA HHO HGS

Aver Std Aver Std Aver Std Aver Std Aver Std Aver Std Aver Std Aver Std

F1 1.84E−235 0 2,907,289 144,955 126,322.75 3842.509 0.234087 0.066678 82,745.994 12,030.5 329,872.3 27,485.71 6.46E−94 3.38E−93 6E−129 3.5E−128

F2 9.66E−130 5.3E−129 2.4E + 109 1.3E + 110 806.94152 64.64325 4.94E−07 1.91E−07 1434.0685 170.13 790.4466 177.5697 6.36E−49 3.27E−48 65,535 −

F3 7.191E−36 3.94E−35 25,598,720 3,619,734 26,256,697 15,611,478 1,587,902 256,574.3 5,792,444.1 1,480,296 6,497,218 981,568.6 4.12E−16 2.26E−15 1,302,171 3,079,055

F4 1.07E−106 4.5E−106 99.60416 0.126364 35.202087 1.60048 79.1974 3.345111 66.011183 7.04421 95.07072 0.824173 3.34E−47 1.32E−46 6.2E−58 3.41E−57

F5 998.90393 0.060544 2.89E + 13 5.65E + 11 3.102E + 12 5.17E + 10 5989.334 1851.481 2.013E + 10 6.9E + 09 5.48E + 11 6.58E + 10 3.76E−01 6.99E−01 462.198 501.1158

F6 207.83991 6.874046 2,867,223 179,732.3 125,969.19 5541.92 203.1294 2.189645 78,694.683 10,546.7 324,249.3 21,365.01 5.95E−03 6.43E−03 0.00427 0.008167

F7 0.000175 0.000123 240,456.4 5595.043 5621.5092 684.4318 0.146884 0.02925 6438.0108 740.576 5186.77 623.5121 1.67E−04 1.65E−04 0.00073 0.001021

F8 −106,369.8 7637.524 −96,426.4 4616.017 −130.8805 882.5566 −85,658.3 18,724.48 −38,868.24 4456.87 −126,173 9306.83 −4.19E + 05 4.15E + 01 −406,482 36,013.5

F9 0 0 15,435.68 765.3185 6588.5853 198.471 221.053 60.17693 7518.9635 207.096 7384.177 220.0783 0 0 0 0

F10 8.882E−16 0 20.70236 0.423177 10.911026 0.180167 0.018329 0.002733 12.466618 0.24204 15.5555 0.19581 8.88E−16 0.00E + 00 8.88E−16 0

F11 0 0 26,569.83 1540.641 21,603.807 136.2224 0.020375 0.028575 214.13913 15.3359 2928.102 214.1877 0 0 0 0

F12 0.7970368 0.036669 3.63E + 10 1.02E + 09 133,193.57 108,367.3 1.232015 0.285816 2,928,355.2 2,134,590 88,534,017 18,592,961 1.47E−06 2.11E−06 0.03011 0.16487

F13 99.567897 0.180338 6.62E + 10 1.59E + 09 12,570,826 2,297,967 119.6103 6.061993 55,894,267 2.2E + 07 5.36E + 08 95,379,577 1.30E−03 1.43E−03 9.83355 29.99756

Figure 7.  Performance comparison of algorithms.
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Huang et al.: Differential Evolution (DE)39). Additionally,  GWO5 algorithms and  HHO11 have also been employed 
as heuristic optimizers for this problem. The comparison of the results of these methods and POA is shown in 
Table 13.

Table 6.  Wall-clock time costs (second) on benchmarks of POA and other participants.

Fi

Dim = 30 Dim = 1000

FA GSA ASO PSO GWO HHO HGS POA FA GSA ASO PSO GWO HHO HGS POA

F1 6.52 7.51 11.45 1.47 2.71 1.69 1.78 1.74 72.65 150.28 91.24 11.16 51.21 10.77 35.28 8.21

F2 6.31 7.56 11.46 1.52 2.84 1.56 1.88 1.79 52.92 1703.72 3853.03 11.56 51.76 11.36 32.64 8.62

F3 8.44 9.59 13.65 3.79 5.09 8.40 4.04 4.03 785.54 933.45 756.52 326.68 364.90 755.73 344.42 326.83

F4 6.07 7.31 11.10 1.41 2.69 1.95 1.69 1.68 126.96 311.10 196.63 15.25 105.74 12.76 30.90 8.23

F5 6.38 7.59 11.45 1.71 2.97 3.09 2.01 1.94 104.48 328.69 201.28 22.47 108.81 18.67 32.05 12.88

F6 6.08 7.31 11.16 1.41 2.68 2.30 1.70 1.67 154.86 336.07 209.36 21.30 95.95 15.99 31.44 8.38

F7 7.64 8.73 12.76 2.89 4.17 5.36 3.19 3.14 189.12 333.90 223.45 55.09 76.02 52.57 49.73 39.10

F8 6.45 7.60 11.45 1.76 3.09 4.04 2.03 2.07 170.21 333.92 208.38 36.22 114.84 32.51 37.06 26.53

F9 6.35 7.47 11.95 1.67 2.82 2.69 3.60 1.69 78.21 154.78 95.58 17.93 53.37 24.50 362.97 12.00

F10 6.37 7.47 11.45 1.73 2.81 2.81 3.21 1.76 78.86 158.87 95.81 17.60 52.84 25.08 361.28 13.66

F11 7.21 8.25 14.26 1.96 3.04 3.25 3.74 1.99 102.20 157.92 109.01 20.61 55.02 30.96 417.91 14.60

F12 10.21 11.25 15.33 5.55 6.70 12.24 5.75 5.82 114.12 188.42 131.18 53.23 90.17 113.10 152.32 48.53

F13 10.35 11.33 15.38 5.60 6.70 12.28 5.75 5.79 114.48 189.23 131.45 53.13 89.94 115.27 171.67 43.90

Sum 94.39 108.95 162.88 32.47 48.30 61.65 40.37 35.11 2144.60 5280.36 6302.91 662.26 1310.59 1219.29 2059.67 571.47

Ranking 6 7 8 1 4 5 3 2 6 7 8 2 4 3 5 1

Table 7.  CEC 2017 problems.

Type function Fi Function name Range Dim MinF

Unimodal functions F24 Shifted and Rotated Bent Cigar Function

[−100,100] 10

100

Simple multimodal functions

F25 Shifted and Rotated Rosenbrock’s Function 300

F26 Shifted and Rotated Rastrigin’s Function 400

F27 Shifted and Rotated Expanded Scaffer’s F7 Function 500

F28 Shifted and Rotated Lunacek Bi_Rastrigin Function 600

F29 Shifted and Rotated Non-Continuous Rastrigin’s Function 700

F30 Shifted and Rotated Levy Function 800

F31 Shifted and Rotated Schwefel’s Function 900

Hybrid functions

F32 Hybrid Function 1 (N = 3) 1000

F33 Hybrid Function 2 (N = 3) 1100

F34 Hybrid Function 3 (N = 3) 1200

F35 Hybrid Function 4 (N = 4) 1300

F36 Hybrid Function 5 (N = 4) 1400

F37 Hybrid Function 6 (N = 4) 1500

F38 Hybrid Function 7 (N = 5) 1600

F39 Hybrid Function 8 (N = 5) 1700

F40 Hybrid Function 9 (N = 5) 1800

F41 Hybrid Function 10 (N = 6) 1900

Composition functions

F42 Composition Function 1 (N = 3) 2000

F43 Composition Function 2 (N = 3) 2100

F44 Composition Function 3 (N = 4) 2200

F45 Composition Function 4 (N = 4) 2300

F46 Composition Function 5 (N = 5) 2400

F47 Composition Function 6 (N = 5) 2500

F48 Composition Function 7 (N = 6) 2600

F49 Composition Function 8 (N = 6) 2700

F50 Composition Function 9 (N = 3) 2800

F51 Composition Function 10 (N = 3) 2900
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Table 8.  Results of CEC 2017 problems. Significant values are in bold.

Fi Measured POA WOA DA AOA Fi Measure POA WOA DA AOA

F24

Worst 21,616.689 446,086,810.967 1,614,920,665.975 17,989,949,690.271

F38

Worst 2207.641 2293.244 2342.246 2420.476

Best 2369.991 2,437,147.665 95,752.700 3,713,067,906.824 Best 1601.839 1671.161 1725.183 1635.551

Aver 9077.871 78,794,903.555 121,819,809.036 9,746,903,748.119 Aver 1914.943 1927.995 1966.959 2031.060

Std 4926.262 105,264,259.045 295,134,280.931 3,636,949,495.724 Std 162.953 149.276 154.805 165.504

F25

Worst 329.886 14,038.326 42,054.108 18,439.573

F39

Worst 2034.458 1981.868 1984.712 2134.607

Best 300.020 1212.600 820.018 9737.963 Best 1724.880 1756.245 1757.774 1761.719

Aver 303.572 6419.583 8055.177 14,013.305 Aver 1789.454 1820.757 1836.497 1878.853

Std 8.346 4312.887 9311.269 2659.791 Std 63.748 62.726 61.045 104.133

F26

Worst 484.521 605.709 570.901 2474.368

F40

Worst 55,482.667 36,953.291 55,541.892 209,928,837.936

Best 400.004 405.435 403.243 479.108 Best 2917.407 2181.715 2364.981 2361.926

Aver 411.796 442.972 448.726 1171.863 Aver 20,533.715 17,197.131 20,863.963 7,307,877.076

Std 20.353 47.700 44.320 562.736 Std 15,384.264 11,293.771 16,797.329 38,300,874.924

F27

Worst 594.526 599.904 633.492 606.939

F41

Worst 22,421.717 2,451,752.098 89,900.455 237,845.333

Best 522.888 509.439 529.121 529.864 Best 2058.212 2099.614 1968.492 4665.629

Aver 547.603 554.825 563.587 563.214 Aver 9793.255 126,429.570 20,811.902 104,654.601

Std 16.035 21.518 23.620 20.047 Std 6755.212 448,601.416 25,868.597 78,412.954

F28

Worst 661.566 672.090 680.871 658.735

F42

Worst 2399.638 2358.672 2344.633 2290.265

Best 604.546 606.142 609.318 621.384 Best 2052.699 2063.242 2065.773 2062.513

Aver 626.008 640.832 635.708 639.634 Aver 2194.909 2175.757 2194.011 2160.552

Std 14.833 17.992 14.974 8.022 Std 91.767 83.828 78.431 69.544

F29

Worst 821.235 835.056 771.432 826.021

F43

Worst 2391.776 2422.329 2392.790 2389.428

Best 730.816 739.591 714.955 766.210 Best 2200.022 2207.964 2205.519 2232.131

Aver 768.674 785.295 745.035 801.622 Aver 2330.843 2323.952 2321.882 2328.732

Std 20.930 27.487 14.838 14.756 Std 54.209 63.445 64.072 43.707

F30

Worst 863.684 877.893 872.106 859.711

F44

Worst 3780.977 4001.830 2377.450 3667.396

Best 814.926 812.180 813.115 820.715 Best 2242.956 2250.448 2252.663 2390.081

Aver 836.686 845.449 838.638 841.861 Aver 2428.039 2527.315 2331.853 2988.301

Std 12.725 19.555 14.283 9.177 Std 383.046 496.162 25.432 298.582

F31

Worst 1775.443 2755.601 2974.621 1761.634

F45

Worst 2701.334 2711.230 2740.647 2850.536

Best 941.832 977.617 920.630 1016.576 Best 2626.399 2623.470 2623.180 2688.632

Aver 1233.102 1582.821 1329.104 1445.874 Aver 2647.105 2662.015 2686.121 2752.342

Std 229.408 356.906 458.930 222.809 Std 18.782 22.188 29.912 39.502

F32

Worst 2805.144 2874.741 3177.011 2845.738

F46

Worst 2853.043 2842.332 2882.747 3026.458

Best 1460.956 1595.143 1462.482 1843.645 Best 2500.121 2614.982 2756.338 2658.237

Aver 2124.758 2178.843 2300.517 2267.726 Aver 2760.174 2782.705 2814.403 2854.468

Std 329.156 346.841 396.083 248.939 Std 75.666 39.952 33.775 78.993

F33

Worst 1394.636 1456.809 1553.285 11,284.167

F47

Worst 3024.368 3057.139 3281.954 4031.440

Best 1109.370 1127.720 1137.880 1170.419 Best 2897.766 2926.524 2901.047 3091.840

Aver 1177.684 1264.158 1305.746 4259.407 Aver 2938.987 2970.737 2974.748 3433.472

Std 64.587 97.652 105.699 2742.167 Std 32.948 30.706 73.376 240.484

F34

Worst 2,640,627.083 23,239,770.178 23,841,149.599 1,410,137,474.156

F48

Worst 4405.324 4581.077 4530.516 4693.227

Best 9420.672 75,356.443 12,974.629 37,495.771 Best 2802.188 3108.297 2805.272 3395.848

Aver 426,091.817 7,244,799.337 5,290,868.507 210,043,229.615 Aver 3542.206 3657.193 3371.774 4098.304

Std 541,693.197 6,903,050.501 5,851,002.051 299,766,603.285 Std 556.018 513.032 528.992 291.224

F35

Worst 32,516.647 88,773.203 83,425.506 34,873.960

F49

Worst 3205.502 3238.281 3282.543 3407.872

Best 2033.414 1701.946 1639.672 3600.132 Best 3089.526 3097.429 3097.862 3165.500

Aver 6943.151 22,033.157 21,794.756 11,494.178 Aver 3135.637 3147.792 3144.096 3261.204

Std 8029.349 21,046.434 19,381.270 8648.765 Std 38.055 44.878 50.332 65.214

F36

Worst 27,866.569 7441.839 10,005.432 27,668.496

F50

Worst 3749.371 3736.181 3731.813 3954.137

Best 1434.406 1493.885 1512.187 1468.538 Best 3100.397 3150.013 3171.896 3481.000

Aver 10,725.802 2937.645 2890.960 11,460.443 Aver 3362.144 3444.478 3364.905 3783.707

Std 9776.325 1746.346 2099.952 9589.028 Std 148.755 179.170 118.383 120.887

F37

Worst 6053.120 33,587.791 98,852.122 34,674.857

F51

Worst 3588.233 3706.539 3520.137 3764.012

Best 1572.781 2339.039 3132.247 4775.219 Best 3146.758 3193.109 3149.620 3184.949

Aver 3710.869 12,292.528 26,066.915 18,618.951 Aver 3318.534 3377.156 3300.440 3435.494

Std 1458.299 8834.587 24,462.365 6297.956 Std 112.592 120.658 80.176 167.909
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Welded beam. The aim of welded beam design problem is to minimize its fabrication cost. The constraints of 
the problem are shear stress (τ ) , bending stress in the beam (θ) , buckling load of the bar (Pc) , end deflection of 
the beam (δ) and side constraints. Welded beam design problem has four variables, namely thickness of weld (h) , 
length of attached part of bar (l) , the height of the bar (t) , and thickness of the bar (b) . This problem is illustrated 
in the  literature5,40,41.

Lee and  Geem40 employed HS to deal with this problem, while  Deb42,43 and  Coello44 used GA. Seyedali Mir-
jalili applied  GWO5 to solve this problem. Richardson’s random approach, Davidon-Fletcher-Powell, Simplex 

Table 9.  Results of Wilcoxon sign-rank test for CEC 2017 problems with α = 0.05.

Fi

POA vs WOA POA vs DA POA vs AOA

p-value Winner p-value Winner p-value Winner

F24 3.02E−11  + 3.02E−11  + 3.02E−11  + 

F25 3.02E−11  + 3.02E−11  + 3.02E−11  + 

F26 2.20E−07  + 1.73E−07  + 3.34E−11  + 

F27 2.34E−01  ~ 3.50E−03  + 3.50E−03  + 

F28 1.37E−03  + 1.99E−02  + 2.13E−04  + 

F29 2.71E−02  + 2.00E−05 − 8.35E−08  + 

F30 1.12E−01  ~ 7.73E−01  ~ 4.84E−02  + 

F31 3.83E−05  + 9.94E−01  ~ 6.55E−04  + 

F32 5.30E−01  ~ 7.98E−02  ~ 7.98E−02  ~ 

F33 1.32E−04  + 2.49E−06  + 2.15E−10  + 

F34 1.61E−06  + 1.25E−05  + 6.12E−10  + 

F35 4.22E−04  + 1.32E−04  + 1.41E−04  + 

F36 1.70E−02 − 1.56E−02 − 5.79E−01  ~ 

F37 7.04E−07  + 5.00E−09  + 2.15E−10  + 

F38 8.42E−01  ~ 2.58E−01  ~ 1.17E−02  + 

F39 1.08E−02  + 4.22E−04  + 3.16E−05  + 

F40 3.79E−01  ~ 7.96E−01  ~ 7.06E−01  ~ 

F41 5.83E−03  + 3.48E−01  ~ 8.35E−08  + 

F42 4.38E−01  ~ 8.77E−01  ~ 1.91E−01  ~ 

F43 7.73E−01  ~ 8.77E−01  ~ 5.01E−01  ~ 

F44 1.78E−04  + 4.64E−05 – 6.53E−08  + 

F45 5.83E−03  + 8.20E−07  + 4.50E−11  + 

F46 9.33E−02  ~ 4.08E−05  + 9.51E−06  + 

F47 1.53E−05  + 1.30E−03  + 3.02E−11  + 

F48 5.37E−02  ~ 2.52E−01  ~ 3.37E−04  + 

F49 2.12E−01  ~ 4.12E−01  ~ 1.41E−09  + 

F50 1.17E−02  + 2.84E−01  ~ 1.78E−10  + 

F51 5.55E−02  ~ 8.53E−01  ~ 6.10E−03  + 

Sum (+ / ~ /−) 16/11/1 13/12/3 23/5/0

Table 10.  CEC 2019 problems.

Fi Function name Range Dim MinF

F52 Storn’s Chebyshev Polynomial Fitting Problem [−8192, 8192] 9 1

F53 Inverse Hilbert Matrix Problem [−16384, 16384] 16 1

F54 Lennard–Jones Minimum Energy Cluster [−4,4] 18 1

F55 Rastrigin’s Function [−100,100] 10 1

F56 Griewangk’s Function [−100,100] 10 1

F57 Weierstrass Function [−100,100] 10 1

F58 Modified Schwefel’s Function [−100,100] 10 1

F59 Expanded Schaffer’s F6 Function [−100,100] 10 1

F60 Happy Cat Function [−100,100] 10 1

F61 Ackley Function [−100,100] 10 1
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technique, Griffith and Stewart’s successive linear approximation are the mathematical methods that have been 
adopted by Ragsdell and  Philips41 for this problem. More recently, Heidari, et al.11 and Yang, et al.29 have used 
HHO and HGS, respectively, to solve the problem. Table 14 shows a comparison between the different methods. 
The results indicate that POA reaches a design with the minimum cost compared to other optimizations. The 
best result of the cost function obtained by the POA is 1.72564. 

Pressure vessel. Pressure vessel design problem is well-known, where the fabrication cost of the total cost con-
sisting of material, forming, and welding of a cylindrical vessel should be minimized. There are four variables, 
namely thickness of the shell (Ts) , thickness of the head (Th) , Inner radius (R) and length of the cylindrical sec-
tion without considering the head (L) , and four constraints.

Pressure vessel design problem has also been popular among optimization studies in different researches. 
Several heuristic techniques, namely  DE39,  PSO33,  GA35,45,46,  ACO47, ES [59],  GWO5,  MFO48,  HHO11 and  SMA10, 
that have been adopted for the optimization of this problem. Mathematical approaches employed are augmented 
Lagrangian  Multiplier49 and branch-and-bound50. We can see that POA is again able to search a design with the 
minimum cost as shown in Table 15.

Conclusions
In the paper, a meta-heuristic algorithm, inspired by the gravitational law of Newton, is proposed. POA’s struc-
ture in search processes consists of 2 phases that aim for proper balance exploration and exploitation. Several 
outperform features are shown through the accuracy of 23 classical benchmark functions and 38 IEEE CEC test 

Table 11.  Results of CEC 2019 problems. Significant values are in bold.

Fi Measure POA WOA DA AOA Fi Measure POA WOA DA AOA

F52

Worst 1383.962 1.22E + 08 87,793,661 47,045,606

F57

Worst 10.35371 11.98996 11.97721 13.24428

Best 1 3833.742 43,190.53 1 Best 2.578827 6.74338 3.858144 7.601071

Aver 49.64264 16,848,021 22,172,756 1,783,859 Aver 6.845989 9.124547 7.868689 10.27923

Std 252.1988 23,542,448 19,745,213 8,567,816 Std 1.882445 1.349568 1.754316 1.448363

F53

Worst 1005.32 10,766.06 10,927.26 18,365.92

F58

Worst 1728.034 1827.559 2059.978 1786.957

Best 4.567066 1311.151 1092.686 3216.332 Best 614.7954 391.1025 932.6491 957.0947

Aver 143.2106 6503.912 6160.632 10,895.68 Aver 1256.916 1265.31 1475.388 1403.671

Std 231.2333 2678.268 2673.48 3519.805 Std 326.6572 337.8082 329.3905 199.6095

F54

Worst 10.71197 9.708243 11.7112 11.6667

F59

Worst 5.083027 5.240865 5.079878 5.300394

Best 1.410337 2.832679 5.731269 8.944851 Best 3.739129 3.956049 3.703836 4.082092

Aver 5.985024 6.151234 10.2168 10.44986 Aver 4.577152 4.67067 4.679051 4.765198

Std 2.954948 1.936269 1.307939 0.795213 Std 0.360475 0.365394 0.298852 0.329205

F55

Worst 79.6702 96.71619 101.0834 101.8834

F60

Worst 1.743374 1.822469 1.85515 3.90721

Best 18.91121 22.50731 16.74522 26.98737 Best 1.144939 1.16266 1.119194 1.562143

Aver 41.42796 54.74208 55.51705 58.95477 Aver 1.36822 1.414833 1.427379 3.081278

Std 15.33676 22.97717 21.37947 19.73287 Std 0.145476 0.174602 0.212619 0.654018

F56

Worst 2.081627 5.37188 29.52093 152.7949

F61

Worst 21.40822 21.63267 21.57491 21.21511

Best 1.093455 1.943486 1.150722 30.21018 Best 21.00662 21.07732 20.99995 21.07513

Aver 1.355729 2.709666 3.326794 85.96353 Aver 21.08235 21.27699 21.26729 21.12679

Std 0.246973 0.775102 5.265839 28.65205 Std 0.085093 0.151047 0.145117 0.033882

Table 12.  Results of Wilcoxon sign-rank test for CEC 2019 problems with α = 0.05.

Fi F52 F53 F54 F55 F56 F57 F58 F59 F60 F61 Sum (+ / ~ /−)

POA vs WOA

p-value 1.62E−11 3.02E−11 5.89E−01 2.61E−02 4.98E−11 7.22E−06 8.77E−01 2.28E−01 3.55E−01 6.01E−08
6/4/0

Winner  +  +  ~  +  +  +  ~  ~  ~  + 

POA vs DA

p-value 1.62E−11 3.02E−11 3.65E−08 6.38E−03 6.28E−06 4.51E−02 2.92E−02 3.33E−01 4.20E−01 2.68E−06
8/2/0

Winner  +  +  +  +  +  +  +  ~  ~  + 

POA vs AOA

p-value 1.47E−09 3.02E−11 1.41E−09 3.37E−04 3.02E−11 1.56E−08 9.33E−02 3.92E−02 4.50E−11 5.87E–04
9/1/0

Winner  +  +  +  +  +  +  ~  +  +  + 
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Table 13.  Comparison of results for tension/compression spring. Significant values are in bold.

Candidates

Optimum variables

Optimum weightd D N

HHO 0.05179639 0.35930536 11.138859 0.01266544

POA 0.051767 0.358602 11.179891 0.01266588

GWO 0.051690 0.356737 11.288850 0.01266600

MFO 0.051994 0.364109 10.868422 0.01266690

DE (Huang et al.) 0.051609 0.354714 11.410831 0.01267020

HS (Mahdavi et al.) 0.051154 0.349871 12.076432 0.01267060

PSO (Ha and Wang) 0.051728 0.357644 11.244543 0.01267470

ES (Coello and Montes) 0.051989 0.363965 10.890522 0.01268100

GSA 0.050276 0.323680 13.525410 0.01270220

GA (Coello) 0.051480 0.351661 11.632201 0.01270480

Mathematical optimization (Belegundu) 0.053396 0.399180 9.185400 0.01273030

Constraint correction (Arora) 0.050000 0.315900 14.250000 0.01283340

Table 14.  Comparison of results for welded beam design problem. Significant values are in bold.

Candidates

Optimum variables

Optimum cost(h) (l) (t) (b)

POA 0.20563 3.47242 9.03821 0.20578 1.72564

GWO 0.20568 3.47838 9.03681 0.205778 1.726240

HHO 0.204039 3.531061 9.027463 0.206147 1.731991

GA Coello) N.A N.A N.A N.A 1.824500

GSA 0.182129 3.856979 10 0.202376 1.879952

HGS 0.26 5.1025 8.03961 0.26 2.302076

GA (Deb) N.A N.A N.A N.A 2.380000

HS (Lee and Geem) 0.2442 6.2231 8.2915 0.2443 2.380700

APPROX 0.2444 6.2189 8.2915 0.2444 2.381500

David 0.2434 6.2552 8.2915 0.2444 2.384100

GA (Deb) 0.2489 6.173 8.1789 0.2533 2.433100

Simplex 0.2792 5.6256 7.7512 0.2796 2.530700

Random 0.4575 4.7313 5.0853 0.6600 4.118500

Table 15.  Comparison of results for pressure vessel design problem.

Candidates

Optimum variables

Optimum cost(Ts) (Th) (R) (L)

POA 0.7832 0.3873 40.5769 196.4752 5895.4160

SMA 0.7931 0.3932 40.6711 196.2178 5994.1857

HHO 0.81758383 0.4072927 42.09174576 176.7196352 6000.4626

GWO 0.8125 0.4345 42.089181 176.758731 6051.5639

ACO (Kaveh and Talataheri) 0.8125 0.4375 42.103624 176.572656 6059.0888

MFO 0.8125 0.4375 42.098445 176.636596 6059.7143

DE (Huang et al.) 0.8125 0.4375 42.098411 176.637690 6059.7340

ES (Montes and Coello) 0.8125 0.4375 42.098087 176.640518 6059.7456

GA (Coello and Montes) 0.8125 0.4375 42.097398 176.654050 6059.9463

PSO (He and Wang) 0.8125 0.4375 42.091266 176.746500 6061.0777

GA (Coello) 0.8125 0.4345 40.323900 200.000000 6288.7445

GA (Deb and Gene) 0.9375 0.5000 48.329000 112.679000 6410.3811

Lagrangian Multiplier (Kannan) 1.1250 0.6250 58.291000 43.690000 7198.0428

Branch-bound (Sandgren) 1.1250 0.6250 47.700000 117.701000 8129.1036

GSA 1.1250 0.6250 55.988660 84.454203 8538.8359
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functions (CEC2017, CEC 2019). In many functions, POA showed that the obtained results are more accurate 
than the others many times.

In the final evaluation section, a set of well-known test cases, including three engineering test problems, are 
thoroughly investigated to examine the operation of POA in practice. Each problem is a type of distinct engineer-
ing, including very diverse search spaces. Therefore, these engineering problems are employed to test the POA 
thoroughly. The obtained results demonstrate that POA is able to solve effectively real challenging problems with 
unknown search spaces and a large number of constraints. The results compared to GSA, GWO, PSO, DE, ACO, 
MFO, SOS, CS, HHO, SMA, HGS, etc., suggest that POA is superior.

The structure of POA is simple and explicit, very effective, even fast. Experiments revealed short computa-
tional time for handling complex optimization problems. Therefore, we firmly authenticate that POA is a powerful 
algorithm to solve optimization problems.

Data availability
All data generated or analyzed during this study are included in this published article.
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