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From IL-17 to IFN-g in
inflammatory skin disorders:
Is transdifferentiation a potential
treatment target?

Arno Belpaire , Nanja van Geel
and Reinhart Speeckaert *

Department of Head and Skin, Ghent University Hospital, Gent, Belgium
The targeted inhibition of effector cytokines such as interleukin 17 (IL-17) in

psoriasis and IL-13 in atopic dermatitis offers impressive efficacy with a

favorable side effect profile. In contrast, the downregulation of interferon

gamma (IFN-g) in T helper (Th) 1-dominant skin disorders may lead to more

adverse events, given the crucial role of IFN-g in antiviral and antitumoral

immunity. Modulating Th17 and Th2 cell differentiation is performed by

blocking IL-23 and IL-4, respectively, whereas anti-IL-12 antibodies are only

moderately effective in downregulating Th1 lymphocyte differentiation.

Therefore, a targeted approach of IFN-g-driven disorders remains

challenging. Recent literature suggests that certain pathogenic Th17 cell

subsets with Th1 characteristics, such as CD4+CD161+CCR6+CXCR3+IL-

17+IFN-y+ (Th17.1) and CD4+CD161+CCR6+CXCR3+IL-17-IFN-y+ (exTh17), are

important contributors in Th1-mediated autoimmunity. Differentiation to a

Th17.1 or exTh17 profile results in the upregulation of IFN-y. Remarkably,

these pathogenic Th17 cell subsets are resistant to glucocorticoid therapy

and the dampening effect of regulatory T cells (Treg). The identification of

Th17.1/exTh17 cells in auto-immune disorders may explain the frequent

treatment failure of conventional immunosuppressants. In this review, we

summarize the current evidence regarding the cellular plasticity of Th17 cells

in inflammatory skin disorders. A deeper understanding of this phenomenon

may lead to better insights into the pathogenesis of various skin diseases and

the discovery of a potential new treatment target.
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1 Introduction

Epithelial tissues harbor a substantial number of IL-17-

producing immune cells as IL-17 is crucial for immune barrier

protection. IL-17 protects against not only pathogens that are

not adequately addressed by Th1 or Th2 immunity, such as

fungi, but also gram-negative and gram-positive bacteria (1, 2).

The IL-17 pathway creates a strong inflammatory response by

upregulating a broad range of cytokines, neutrophil-recruiting

chemokines, and antimicrobial peptides. Because of its critical

role in barrier immunity and synergistic effect with other

cytokines (e.g., TNF-, IFN-, and IL-1), IL-17 is an early

contributor to a variety of skin disorders (2). Th17 cells are

known key players in inflammatory skin diseases, such as

psoriasis (3). More than a decade ago, it was assumed that

each of the effector T cell subsets was in a fixed state after

differentiation (4). More recent data indicate that particular cell

subsets can acquire characteristics from other effector T cell

subsets in response to the local microenvironment. Particularly,

Th17 lymphocytes may acquire a Th1-like phenotype, resulting

in the expression and production of IFN-y. This “functional

plasticity” of CD4+CD161+ T cells plays a pivotal role in the

pathogenesis of autoimmune diseases and offers a new

perspective in the ongoing search for new treatment targets (5,

6). This review focuses on the current evidence of Th17 plasticity

in inflammatory skin diseases and systemic diseases with

cutaneous involvement.
2 Key mechanisms of functional
cell plasticity

As depicted in Figure 1, Th17 differentiation is initiated by

the presence of IL-6, transforming growth factor beta (TGF-b),
and IL-23, subsequently activating the master transcription

factor retinoid-related orphan receptor-gt (RORgt) and signal

transducer and activator of transcription 3 (STAT3) (7, 8).

Conventional Th17 cells (CD4+CD161+CCR6+IL17+IFN-y-)

are then able to produce their signature cytokines interleukin

(IL) 17A, IL-17F, and IL-22 (9). Elevated levels of pro-

inflammatory cytokines, in particular, IL-12, induce a subset of

Th17 cells, in which IFN-y production is upregulated by the

activation of STAT4 (10, 11).. This newly defined Th17.1

(CD4+CD161+CCR6+CXCR3+IL-17+IFN-y+) subset shares

phenotypic features from both Th17 and Th1 cell lineages and

expresses both RORgt and T-box expressed in T cells (T-bet)

(12). In addition to IFN-y, Th17.1 cells produce granulocyte–

macrophage colony-stimulating factor and CCL20 (13).

Pathogenic Th17 cells may completely lose the expression of

IL-17 and differentiate into exTh17 (CD4+CD161+CCR6+IL17
+IFN-y+). The regulation of the functional plasticity of Th17 cells

occurs at different stages within the cell and is not yet fully
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understood. A comprehensive description of the molecular

mechanisms, genetic profiling, and epigenetic modifications

involved in cell plasticity has been reviewed elsewhere (14, 15).
2.1 Pathogenic Th17 lymphocytes in
inflammatory skin diseases

2.1.1 Vitiligo
Central to the disease process of vitiligo is the autoimmune

destruction of melanocytes, in which IFN-y plays an important

role (16). Although the pathogenic effect of Th17 cells in vitiligo

is disputed, elevated levels of IL-17 in both blood and skin

samples from vitiligo patients have been demonstrated in several

studies (17, 18). The capacity of IL-17 to decrease melanogenesis

is modest, but combined with IFN-g and tumor necrosis factor

alpha (TNF-a), there is a synergistic effect on pigmentation and

inhibition of the function and survival of melanocytes (19).

Nonetheless, IL-17 blockade fails to halt disease progression.

Further analysis showed that Th17.1 cells are increased in

vitiligo and are likely an important source of the elevated IL-

17 concentrations (20). This was confirmed by another study

revealing an impressive increase in CD4+CCR6+CXCR3+ T cells

compared to those in stable patients and healthy controls.

Interestingly, the Th17.1 levels decreased dramatically after

treatment (21). The frequency of (peri-)lesional Th17.1 cells

has not yet been investigated in progressive vitiligo patients. New

cases of vitiligo have been reported in patients receiving

ustekinumab and secukinumab (22). On the other hand, some

patients with improvement have been documented with

ustekinumab in case of concomitant psoriasis (23). Vitiligo

exhibits a complex immune environment with a likely

contribution of Th17 plasticity.
2.1.2 Alopecia areata
Besides the increased IFN-g levels, a meta-analysis of 10

studies revealed increased IL-17 levels in 9 out of 10 studies. The

IL-23 concentrations were also higher in alopecia areata (AA)

patients compared to healthy controls (24). Half of the

infiltrating CD4+ T lymphocytes present around the hair

follicles in AA were composed of the Th17 phenotype (25).

However, the pathogenic role of IL-17 in AA remains a

controversial topic. Similar to vitiligo, IL-17 inhibition did not

have a significant effect on hair regrowth in AA (26). On the

contrary, case reports have demonstrated new onset of AA

during treatment with secukinumab (27). In addition, IL-12/23

inhibition in AA demonstrated variable results. In some cases,

treatment with ustekinumab induced significant hair regrowth,

whereas no improvement was observed in other patients (28–

30). As both IL-12 and IL-23 drive Th17 cells towards a Th17.1

or exTh17 phenotype, the observed beneficial responses of IL-

12/23 inhibition might be due to interference with the
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mechanisms that drive Th17 plasticity, although the lack of

consistent outcomes in studies suggests that other cytokines are

also involved.

2.1.3 Psoriasis
The pathogenesis of psoriasis is characterized by a complex

interplay between IL-17 and IFN-y producing CD4+ and CD8+

T-cell subsets (31). Before the identification of IL-17, an

upregulation of the IL-12/IFN-g signaling pathway was

considered as the major driving disease mechanism in

psoriasis since elevated IFN-g levels were correlated with

disease severity and were observed in serum and skin samples

(both lesional and non-lesional) (32). Furthermore, IFN-g-
induced chemokines, such as CXCL9, CXCL10, and CXCL11,

were upregulated in psoriatic lesions (33). A paradigm shift

towards the IL-23/IL-17 axis as the central mechanism of the

pro-inflammatory cycle of psoriasis has questioned the relevance

of Th1 cells and IFN-y as the main drivers of the disease. At

present, the exact role of IFN-y in relation to the IL-17/IL-23 axis

is unclear (34, 35). Meanwhile, the recognition of resident

memory T cells (Trm) in disease relapse and emerging

evidence of IL-17+/IFN-y+ double-producing T-cell subsets

(both CD4+ and CD8+) contribute to our understanding of the

full disease mechanism (36, 37). Increased frequencies of Th17.1

cells in the dermis of psoriasis patients were already detected

more than a decade ago (38). In 2009, Zaba et al. demonstrated

that the levels of CD11c+ blood dendritic cell antigens (BDCA)-

1- DCs were increased 30-fold in psoriatic lesional skin
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compared to healthy skin. This DC population induced a T

helper subset that produced both IFN-g and IL-17. In contrast,

CD11c+BDCA-1+ DCs, considered as the main dermal DC

population in normal skin, and CD163+ macrophages were

unable to induce this specific cell subset (39). In a recent

article, the number of Th17 lymphocytes in peripheral blood

samples of psoriasis patients significantly correlated with disease

severity, although no correlation was detected for Th17.1 cells.

Another study documented a non-significant increase of Th17.1

lymphocytes in psoriasis compared to healthy controls. Positive

correlations between disease severity and lesional Th17 and

Th17.1 cells were found. Treatment with etanercept

significantly reduced the percentages of CD4+IL-17+IFN-y-

cells, while the percentages of CD4+IL17+IFN-y+ lymphocytes

and CD4+IL-17-IFN-y+ cells remained unchanged (40).

Although these data seem to indicate a limited contribution of

Th17.1/exTh17 lymphocytes to the pathogenesis of psoriasis, the

extent to which IFN-g-producing Th17 subsets are involved in

the inflammatory loop may depend on the psoriasis phenotype.

Frequencies of circulating Th17.1 cells are significantly increased

in patients with guttate psoriasis compared to plaque psoriasis

and healthy control subjects. An explanation could be the

decreased frequency of CD4+CD25high Tregs in guttate

psoriasis. CD4+CD25high Tregs are capable of dampening the

IFN-g levels, but not the IL-17 levels. CD4+ T cells from patients

with guttate psoriasis induce more apoptosis of keratinocytes

and promote keratinocyte proliferation, which contributes to the

initiation of the disease (41).
FIGURE 1

Mechanisms of Th17 plasticity. After recognition of an antigen, a DC translocates to a neighboring lymph node. Activation of a naive T-cell
occurs by interaction of the MHC–antigen complex with the T-cell receptor. IL-6, IL-23, and TGF-b induce the expression of the transcription
factor RORgt that orchestrates the differentiation of the Th17 lineage and directly induces the transcription of IL-17A/F and IL-22 as well as
chemokine receptors CCR4 and CCR6. In the presence of pro-inflammatory cytokines IL-12 and IL-1b, T-bet is expressed, which enables
transdifferentiation into a Th17.1 cell subset, characterized by the production of both IL-17 and IFN-g as well as the expression of CXCR3. In
specific circumstances, Th17 loses the capacity to produce IL-17 and becomes exTh17 cells. Th17, t-helper 17; DC, dendritic cell; CD, cluster of
differentiation; MHC, major histocompatibility complex; IL, interleukin; TGF-b, transforming growth factor b; RORgt, retinoic acid receptor-
related orphan nuclear receptor ɣt; C(X)CR, C(X)C chemokine receptor; T-bet, T-box protein expressed in T cells.
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2.1.4 Acne
The IL-17 levels are elevated in acne lesions. IL-6, IL-23, and

TGF-b are highly expressed in addition to IL-17A, IL-22, IL-26,

TNF-a as well as the chemokines CSF2 and CCL20. T-bet,

CXCR3, and IFN-g are also upregulated, indicating the

contribution of Th1 effector cells in acne lesions. Additionally,

the IFN-g-induced chemokines—CXCL9, CXCL10, and

CXCL11—are overexpressed (42). The combined expression of

CXCR3 and CD161 was present in 15% of conventional T cells,

reminiscent of pathogenic Th17.1 lymphocytes (43).

Cutibacterium acnes can trigger the concomitant production of

IL-17 and IFN-g (44). Peripheral mononuclear blood cells

(PBMC) exposed to Propionibacterium acnes produce IL-1b,
IL-6, IL-12, and IL-23, which polarizes T cells to acquire a Th1

and Th17 phenotype. P. acnes-reactive Th17.1 cells were

induced in PBMCs of all donors, whereas Th1-like

lymphocytes were only found in 40%. The inhibition of IL-1b
decreased the percentages of Th17 and Th17.1 lymphocytes,

whereas IL-12/IL-23 inhibition was only able to decrease the

Th17.1 cells. Blocking both IL-1b and IL-12/23 resulted in

superior results. In vitro, P. acnes or Staphylococcus aureus are

only able to increase the Th17 and Th17.1 cells, but not CD4+IL-

17-IFN-y+ lymphocytes. Patients with acne were much more

responsive to P. acnes stimulation compared to healthy controls,

whereas no difference was found after stimulation with S. aureus

(44). These results indicate that P. acnes facilitates the

development of Th17.1 lymphocytes without further

transitioning into exTh17 lymphocytes.

2.1.5 Hidradenitis suppurativa
Hidradenitis suppurativa (HS) displays a clustering of Th1/

Th17-related cytokines based on messenger ribonucleic acid

(mRNA) analysis of lesional skin. IFN-g, IL-12, IL-17, and
TNF-a are directly correlated with disease severity (45). A

trend towards an increase in exTh17 lymphocytes was found

in both skin and blood samples in HS patients, although the

sample size was too small to demonstrate a significant

correlation (46). CD4+ T cells in lesional skin produce similar

amounts of IL-17 compared to psoriasis (47). Similar to acne,

these findings point to a strong activated Th17 pathway, but

without a pronounced evolution towards Th17.1 or exTh17 cells

as found in Th1-mediated disorders. Interestingly, in patients

suffering from both Crohn’s disease and HS, CD4+CD161+ T

cells were found in perianal fistulae as well as HS lesions,

indicating a possible association between both diseases with

potential new therapeutic implications (48).
2.1.6 Atopic dermatitis
Th17-related cytokines seem to contribute less to the

inflammatory process of atopic dermatitis (AD) (49). A

remarkable finding is the different phenotypic forms of AD

depending on ethnicity, with a higher dominance of the Th17
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axis seen in an Asian population (50). Interestingly, in related

Th2-mediated conditions, such as chronic allergic asthma, IL-

17-producing Th2 cells (CD4+CCR6+CRTH2+) have been

induced in mouse models (51). Furthermore, allergen-specific

Th2 lymphocytes can switch to IFN-g-producing cells in vitro.

IL-4+IFN-y+ “Th2.1” cells can also occur naturally in virus-

infected mice (52). These observations point to a striking

heterogeneity of different T cell subsets in atopic diseases, but

evidence of CD4+IL17+ cells in AD patients is relatively scarce

(53). In a study with Japanese AD patients, a decrease in both

Th17 and Th17.1 cells was found, but only a reduction in Th17

cells was significant. The serum levels of CCL-17 and

immunoglobulin E (IgE) and the number of eosinophils were

negatively correlated with Th17 lymphocytes (54). In European

AD patients, both Th17 and Th17.1 subsets were equally

decreased (40). Other studies confirmed a decreased number

of Th17 cells in the skin of AD patients (55). Similar to psoriasis,

the contribution of Th17.1 to the inflammatory response may

depend on the disease phenotype. Early-onset pediatric AD has

higher IL-17 levels compared to adults with AD, with increased

IFN-y in lesional versus non-lesional skin (56). In AD, a broad

epidermal expression of endothelin-1 can be found, especially in

chronic lesions. Endothelin-1 induces IL-12 and IL-23

production by dendritic cells which signal the downstream

expression of IL-17, IL-22, and IFN-y (57).
2.2 Pathogenic Th17 lymphocytes in
systemic diseases with cutaneous
involvement

2.2.1 Sarcoidosis
The role of Th17 lymphocytes in the pathogenesis of

sarcoidosis has been extensively documented, with increased

numbers of Th17 cells as well as an upregulation of IL-17

expression in peripheral blood, bronchoalveolar lavage fluid

(BAL) as well as lung tissue and lymph nodes (58, 59).

Multiple studies demonstrated higher numbers of Th17.1 cells

in BAL fluid, peripheral blood, and lymph nodal aspirates from

patients with sarcoidosis compared to a healthy control

population. A greater increase of Th17.1 lymphocytes was seen

in lymph nodal tissue and BAL fluid than in peripheral blood

(60, 61). Remarkably, some authors have shown that elevated

Th17.1 cells were mainly observed in the more favorable disease

phenotypes of sarcoidosis, which has raised the question of

whether other Th17 subsets may also exert a protective role

(62). However, the development of sarcoidosis due to checkpoint

inhibitors [anti-programmed death-ligand 1 (PD-L1)

immunotherapy] is associated with a higher number of

circulating Th17.1 cells at baseline. In addition, Arger et al.

demonstrated that the frequency of Th17.1 lymphocytes

increased with disease progression and when multiple organs

were affected (63). This suggests that Th17.1 lymphocytes are
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activated during immunomodulating therapy and have a

pathogenic role (64). The presence of Th17.1 cells has so far

mainly been demonstrated in the lungs and lymph nodes of

sarcoidosis patients. It seems plausible that similar cell subsets

can also be found in other affected tissues, such as eyes and skin,

as enhanced transcriptions of IL-12, IL-23, and IFN-g have been
observed in sarcoid skin lesions (65).

2.2.2 Systemic lupus erythematosus
An increased number of Th17 lymphocytes and elevated

levels of IL-17 have been demonstrated both in blood and

affected tissue of patients with systemic lupus erythematosus

(SLE) (66). Th17.1 cells are significantly expanded in SLE

patients compared to healthy controls and correlate with

disease activity. The number of Th17.1 lymphocytes is

significantly higher in anti-DNA+ compared to anti-DNA- SLE

patients, although this is due to an overall increase in Th17 cells.

The increase in Th17 cells may be due to the activation of the

nucleotide-binding oligomerization domain, leucine-rich repeat,

and pyrin-domain-containing 3 (NLRP3) by anti-DNA, thus

promoting Th17 differentiation. In anti-DNA+ SLE patients,

Th17.1 cells correlated negatively with complement 3 protein

(67). These findings support a driving role of Th17 plasticity

in lupus.

2.2.3 Scleroderma
Pathogenic Th17 cell subsets are likely to contribute to skin

fibrosis. The frequency of Th17.1 lymphocytes is increased both

in the skin and in the circulation of patients with systemic

scleroderma (68). A correlation with disease duration and

severity was found. In vitro experiments showed that Th17.1

lymphocytes promoted the proliferation of fibroblasts and their

capacity to produce collagen. The profibrotic function of Th17.1

lymphocytes can be attributed to the production of IL-21, as the

inhibition of this cytokine decreased the levels of alpha smooth

muscle actin and alpha-1 type I collagen mRNAs induced by

Th17.1 cells (68).
2.2.4 Graft versus host disease
Striking differences in cytokine signaling were observed

between various subtypes of cutaneous graft versus host

disease (GvHD). Acute GvHD displays a Th2 signature with

an increased expression of IL-4, IL-5, and IL-13, but not IL-17

(69). In cutaneous psoriasiform GvHD, almost half of the Th17

cells were identified as Th17.1 cells (2.1% of total CD4+ cells). In

chronic lichenoid GvHD, no Th17, Th17.1, or exTh17

lymphocytes were present, although Tc17 lymphocytes were

detected (70). Other reports found a mixed Th1/Th17

signature in chronic lichenoid cGVHD. Mice experiments

revealed that the expression of PD-L1 by host tissues

suppresses the proliferation of Th17.1 cells. However, the

synthetic retinoid Am80 restores the suppression of Th17.1
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cell expansion due to low PD-L1 levels (71). Am80 is a

retinoic acid receptor (RAR) a and RARb-specific synthetic

retinoid with more than 10-fold stronger activity compared to

all-trans-retinoic acid. Am80 downregulates Th1 and Th17

differentiation and inhibits IFN-g, IL-17, and TGF-b (72).

These mouse experiments demonstrate that the functional

plasticity of Th17 lymphocytes can be targeted both in vitro

and in vivo, providing a promising proof-of-concept for

future treatments.
3 Concluding remarks

The development and the use of biologicals that act on the

IL-23/IL-17 axis were an important turning point in the

treatment of psoriasis (73). The spectacular therapeutic

outcomes then raised the question of whether a similar effect

could be achieved in other inflammatory skin diseases. However,

in several Th1-dominant skin disorders such as alopecia areata

and vitiligo, where increased IL-17 levels have also been

documented, this targeted approach failed to induce an

acceptable clinical response (20, 26). These observations

suggest that IL-17 does not play a direct key role in driving

Th1-dominant skin disorders. However, recent data has shown

that pathogenic Th17 cell subsets with a more aggressive

phenotype contribute to the production of IFN-y and thus

may sustain or worsen the progression of IFN-y mediated skin

diseases (74). This functional plasticity of Th17 cells is likely an

underrecognized phenomenon, especially in disorders with high

levels of IFN-g (Figure 2). Dual IL-17+IFN-g+ lymphocytes can

further transdifferentiate into non-classical Th1 cells. ExTh17

cells are not constrained by Tregs and are more resistant to

glucocorticoid suppression, which suggest that adapted

therapeutic approaches may be necessary to block their

pathogenic effects (75).

In IL-17-dominant skin disorders such as psoriasis, Th17.1/

exTh17 are present, although less pronounced compared to IFN-

g-dominant skin disorders, and their inhibition seems not

essential as demonstrated by the high efficacy of IL-17

inhibitors. In psoriasis, Th17 plasticity is present, especially in

psoriasis guttata (41). Interestingly, in acne and hidradenitis

suppurativa, mice experiments have shown the specific

contribution of C. acnes in the development of dual IL-

17+IFN-g+ CD4+ cells, although in these disorders the

subsequent transdifferentiation into IL-17-IFN-g + exTh17 cells

seems less pronounced (44, 46). The added value of targeting

Th17 plasticity is currently still unclear for acne and hidradenitis

suppurativa. Although the effects of Th17.1/exTh17

lymphocytes in Th2-mediated disorders such as AD seems

negligible, there is evidence that the Th2 lineage is also more

plastic than originally assumed (53). Regarding systemic

disorders, substantial data on Th17 plasticity has been

gathered in sarcoidosis, SLE, scleroderma, and GvHD (62, 68,
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70, 76). Overall, Th17 plasticity is likely an underrecognized

phenomenon, especially in disorders with high levels of IFN-g
and in case of skin fibrosis.

Cosmi et al. demonstrated that the transdifferentiation of T

cells can be blocked by therapeutic intervention with biologicals

(40). The idea of such a targeted approach is promising, but

more focused research into the inducing cytokines, (epi)genetic

modifications, and regulatory mechanisms that determine the

development and behavior of transdifferentiated Th17 subsets in

skin diseases remains to be done.
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stimulates the formation of Th17.1, but exTh17 lymphocytes are less strongly induced. A combination treatment (IL-1bi anti-IL12/23i) is necessary to
block transdifferentiation from Th17.1 to exTh17. Green boxes, good efficacy; gray boxes, variable efficacy; red boxes, no efficacy.
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