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Abstract

Alzheimer’s disease and related dementias are a leading cause of morbidity in our aging 

populations. Although influenced by genetic factors, fewer than 5% of Alzheimer’s disease and 

related dementia cases are due solely to genetic causes. There is growing scientific consensus 

that these dementias arise from complex gene by environment interactions. The 2020 Lancet 

Commission on dementia prevention, intervention, and care identified 12 modifiable risk factors 

of dementia, including lifestyle, educational background, comorbidities, and environmental 

exposures to environmental contaminants. In this review, we summarize the current understanding 

and data gaps regarding the role(s) of environmental pollutants in the etiology of Alzheimer’s 

disease and related dementias with a focus on air pollution. In addition to summarizing 

findings from epidemiological and experimental animal studies that link airborne exposures 

to environmental contaminants to increased risk and/or severity of Alzheimer’s disease and 

related dementias, we discuss currently hypothesized mechanism(s) underlying these associations, 

including peripheral inflammation, neuroinflammation and epigenetic changes. Key data gaps 

in this rapidly expanding investigative field and approaches for addressing these gaps are also 

addressed.

Introduction

Alzheimer’s disease (AD) and AD-related dementia (ADRD) are global public health 

concerns. The worldwide prevalence of ADRD is projected to rise from 57.4 million 

affected individuals in 2019 to 152.8 million by 20501. Alzheimer’s disease and related 

dementias are the most prevalent type of progressive neurodegenerative disease that is 

pathologically characterized by amyloid beta plaques (Aβ), phosphorylated neurofibrillary 

tau tangles (NFT), and persistent neuroinflammation2–5. Clinical studies have identified that 

AD pathology develops years and often decades prior to the onset of AD symptoms6,7. 
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Mild cognitive impairment is a transitional phase of cognitive decline that progresses to 

dementia in approximately 30% of cases8,9. Currently, there are no definitive preventative 

or therapeutic interventions that effectively mitigate AD and ADRD risks or that prevent 

or reverse cognitive impairment. Given the increasing awareness that much of AD/

ADRD, particularly late-onset forms, arises from complex gene × environmental (G × E) 

interactions, significant research effort is being devoted to identifying environmental risk 

factors for AD/ADRD and understanding how they modify disease risk and/or severity10–12. 

This is because currently it is much easier to modify our environment than our genes.

HETEROGENEITY OF ALZHEIMER’S DISEASE AND RELATED DEMENTIAS

Alzheimer’s disease was initially described as a presenile dementia occurring in individuals 

between 45 and 65 years old, but in 1977 it was determined that the neuropathological 

findings of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs), which are the 

hallmark pathologies of AD were very similar in AD of early- and late-onset. However, it 

became increasingly recognized that with aging, late-onset AD brains frequently exhibited 

additional neuropathological findings, and these became categorized as ADRD. Before 

discussing environmental and genetic risk factors that contribute to AD and ADRD, it is 

important to explain terminologies used in this field.

Dementia describes a range of neurological conditions causing progressive deterioration 

of cognition and can be accompanied by additional neurological dysfunction. Alzheimer’s 

disease and related dementias are distinguished from other dementing illness by clinical 

assessment, neuroradiology, neuropathology, and biomarkers. Clinical assessment based 

on neurological and cognitive functional testing is least sensitive and least accurate at 

early stages of AD, and clinical confirmation utilizes other diagnostic tools including brain 

imaging modalities and blood and/or cerebrospinal fluid biomarker testing for amyloid and 

phosphorylated tau isoforms13. The current evolution of increasingly selective and sensitive 

biomarkers for AD is necessary to accurately distinguish AD from other dementias and 

to evaluate treatments for AD/ADRD whose pathology develops decades before clinical 

symptomatology14. Biomarker selectivity that distinguish between the different types of 

dementias will greatly assist with the identification of genetic and other specific risk factors, 

but currently consensus has not been reached on future AD/ADRD classifications. For this 

review, we are summarizing prior literature based on current AD/ADRD classifications and 

guidelines.

In the current U.S. National plan to address AD, ADRD includes frontotemporal dementia, 

Lewy body dementia, vascular contributions to cognitive impairment and dementia, and 

mixed dementias (including cerebrovascular disease or Lewy bodies)15. Each of these 

dementias share progressive neuronal loss, cognitive and behavioral decline, impaired 

daily function, and aberrant protein accumulation (e.g., Aβ, tau, or α-synuclein)16,17. 

The heterogeneity of AD/ADRD complicates the task of identifying the interplay between 

specific genetic and environmental risk factors. While it has been easier to include ADRDs 

with AD when identifying environmental risk factors, it is acknowledged that this inclusive 

categorization increases the likelihood of “masking” specific G × E interactions that drive 

individual risk for specific forms of AD/ADRD.
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GENETICS OF EARLY AND LATE ONSET ALZHEIMER’S DISEASE

Broadly speaking, there are two age-based classifications of AD: early-onset Alzheimer’s 

disease (EOAD) and late-onset Alzheimer’s disease (LOAD). Early-onset Alzheimer’s 

disease is a less common form of AD diagnosed in individuals under the age of 65, 

often in their 40s and 50s. Late-onset Alzheimer’s disease, which is the more common 

form of AD is diagnosed after age 65 and frequently includes additional neuropathology. 

While both forms of AD are highly heritable (~92–100%, and ~70–80%, respectively), 

they differ in their inheritance pattern18,19 Roughly 90% of EOAD is inherited in an 

autosomal recessive fashion, and 10% follows an autosomal dominant inheritance pattern. 

Additional subclassifications for EOAD have emerged, including Mendelian, non-Mendelian 

or sporadic EOAD; however, in many studies of EOAD, the inheritance patterns are not 

delineated19. Common autosomal dominant forms of EOAD are due to mutations in APP, 

PSEN1, and PSEN2, and autosomal recessive AD is linked to mutations in approximately 

27 genes, including APOE4, BIN1, TREM2, MAPT, APP, UNC5C, and CLU (Table 1). 

While genome-wide association studies (GWAS) have identified multiple genes associated 

with increased risk of AD, the relationship of many of these risk loci to pathogenic 

mechanisms that drive disease progression have yet to be elucidated. Importantly, the 

differing clinical profiles of individuals carrying these high-risk alleles is consistent with 

a role for environmental factors interacting with genetic risks to determine individual 

outcomes.

The genetic contributions to LOAD are significantly more complex and include roughly 

117 associated genes (Table 1). Overall, the heritability of LOAD is less than that of 

EOAD and findings from twin studies indicate a greater contribution of environmental 

factors in the development and progression of disease. A significant number of individuals 

with LOAD have co-morbid medical conditions, such as cardiovascular disease, type 2 

diabetes20, autoimmune disorder21, or head trauma22, each of which is separately associated 

with cognitive decline and each of which is heavily influenced by environmental factors. 

In addition to age-dependent increases in Aβ plaques and NFT, as many as 50% of 

LOAD brains contain pathologies of cerebral amyloid angiopathy, TDP-43 inclusions 

(LATE-NC) and/or Lewy body pathology (α-synuclein), which increase with age and 

AD progression23. The presence of cerebrovascular cerebral amyloid angiopathy correlates 

with both Aβ plaques and NFT and is associated with expression of the APOE ε4 allele 

independent of dementia status. Cerebral amyloid angiopathy, like AD, is a consequence of 

Aβ accumulation, but the intracerebral vascular accumulation produces a separate disorder 

with increased risk of stroke, cerebral hemorrhages, and inflammatory encephalopathies24,25 

with its own distinct genetic risk factors26 and diagnostic and potential clinical therapeutics. 

Given the modest risks conferred by each of these genetic mutations, it has been argued that 

LOAD, as well as most of ADRD, are driven by multifactorial influences, including multiple 

genes interacting with diverse environmental factors. Interestingly, many of the pathogenic 

mechanisms associated with these genetic risk alleles have been shown to be independently 

modified by environmental factors.
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GENE BY ENVIRONMENT INTERACTION IN ALZHEIMER’s DISEASE AND RELATED 
DEMENTIAS ETIOLOGY

Twin studies have provided further evidence in support of the contribution of environmental 

factors to AD/ADRD etiology27,28. Specifically, genetically identical monozygotic twins 

have been compared to explore the effects of non-shared environmental risk factors. In one 

twin study, positron emission tomography (PET) imaging to quantify tau deposition in the 

entorhinal cortex and neocortical brain regions, revealed similar intensity and deposition 

of tau pathology27, suggesting that genetics was the predominant driver. However, when 

non-shared environmental risk factors were compared in twin pairs, differences in tau 

deposition strongly correlated with differences in depressive behaviors, social isolation, and 

physical inactivity27. Similarly, another study of monozygotic twins found that individuals 

exposed to higher levels of air pollution had lower structural integrity of the locus coeruleus, 

which is a brain region involved in the early stages of AD28. These results suggest that 

while similarities in the development of AD-relevant pathologies between monozygotic twin 

pairs may be explained by identical genetic composition, different trajectories of ADRD 

pathologies may arise from exposure to non-shared environmental factors. In a different 

study, analysis of the AD polygenic risk score in monozygotic and dizygotic twins suggested 

that total genetic contribution to AD risk accounted for 71%, while the remaining 29% 

was attributed to environmental factors29. This finding can help explain cases of discordant 

development of ADRD pathologies in monozygotic twins despite their genetic uniformity30 

and highlights the importance of identifying and studying the impact of environmental risk 

factors that can modify ADRD outcomes (Figure 1).

Environmental risk factors for Alzheimer’s disease and related dementias

The 2020 Lancet Commission on dementia prevention, intervention, and care identified 12 

modifiable environmental AD/ADRD risk factors based on meta-analyses and systemic 

reviews of the available literature12. The report highlighted that these 12 modifiable 

risk factors contributed to 40% of global prevalence of dementia, suggesting that 40% 

of dementia cases worldwide might potentially be prevented or slowed by modifying 

individual exposures12. The risk factors identified by the Lancet Commission included 

various comorbid medical conditions (hypertension, diabetes, hearing impairment, obesity, 

depression, and traumatic brain injury), lifestyles (physical inactivity, excessive alcohol 

consumption, social isolation, smoking), less educational background, and exposure to air 

pollution. Medical and public health strategies targeting comorbidity or lifestyles heavily 

depend on individual motivation, and these applications have been limited in success at 

the population level31. Many of these factors are strongly influenced by environmental 

contaminants, and environmental exposures represent a class of risk factors that can be 

changed by public policy, and thus have population-level impacts31.

The contribution of environmental contaminants to the development of neurodegenerative 

diseases has been primarily studied in the context of occupational exposure to 

pesticides among agricultural workers.32 Individuals occupationally exposed to pesticides, 

such as organophosphate insecticides33–35 and fungicides that contain manganese36–

38, were reported to have lower cognitive function and increased risk of developing 
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neurodegenerative diseases, including AD33,39. Other synthetic persistent organic pollutants 

like per-and polyfluoroalkyl substances (PFAS) have also been associated with increased 

AD-relevant pathology and cognitive impairment in ADRD patients40. More recently, 

air pollution (Box 1) has garnered significant interest due to increasing evidence from 

epidemiological and experimental animal studies of a strong association between air 

pollution and AD/ADRD. Additionally, while air pollution is directly linked to increased 

risk for AD/ADRD, it is also linked to a number of other ADRD risk factors, such as 

cardiovascular disease41–46, metabolic dysfunction47, and physical inactivity48. The links 

between air pollution, AD/ADRD, and other risk factors suggest that air pollution may 

be an upstream environmental modifier that influences AD/ADRD onset and progression. 

It has been argued that targeting causative upstream environmental modifiers will have a 

broader and more significant impact on reducing the AD burden than modifying proximal 

individual-level risk factors49. This review focuses on current understanding and findings 

regarding the association between air pollution and increased risk and/or severity of AD/

ADRD and discusses prevailing hypotheses regarding the mechanisms underlying these 

links.

Epidemiological evidence linking air pollution with progressive cognitive 

impairment and Alzheimer’s disease and related dementias

Over 80 epidemiological studies investigating an association between air pollution and AD/

ADRD were published in the peer-reviewed literature during the last six years (Table 2). 

Recent studies have focused on correlations between independent and combined effects of 

specific air pollutants and AD/ADRD risk. Zip code-based residential exposure levels of 

fine and course particulate matter (PM2.5, PM10), nitrogen oxides (NOx), and ground-level 

ozone (O3), have been leveraged to calculate odds ratios or hazard ratios to assess the 

risk for AD/ADRD conferred by exposure to air pollutants, with increasing risk associated 

with increasing levels of each air pollutant. Longitudinal monitoring studies of average air 

pollution exposure levels have also been leveraged to measure the time-lagged effects of 

long-term exposure to air pollution on cognitive decline and AD/ADRD50–54. The cohort 

sizes ranged from small population-based studies (n=150–8,000) to nationwide studies 

(n=4–12 million) of midlife to aged participants (age > 45). The main ADRD outcomes 

that were measured against air pollution exposure levels were risks of incident ADRD 

determined by clinical records of diagnosis, hospitalization, pathology of AD-relevant 

biomarkers, cognitive assessment, and mortality.

SUMMARY OF FINDINGS

In line with earlier epidemiology studies55–57, the main consensus of current 

epidemiological findings is that there is a strong association between exposure to air 

pollution and AD/ADRD; however, there were mixed results regarding associations between 

air pollutant type and increased risk of AD/ADRD. The majority of studies found a 

positive correlation between risk of all-cause dementia and exposure to PM2.5
50–52,58–90 

and NOx
50,58,59,61–63,66,67,69–73,76–80,82–87,90–93 but not to O3

58,61,76,87,94,95 (table 2). A few 

studies reported no significant association between risk of dementia and levels of PM2.5
95–99 
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and NOx
52,75,94–99; and a small number of studies found a positive association between O3 

level and risk of dementia58,82,93.

When records of dementia diagnoses are more specifically stratified, differential correlations 

between various types of air pollutants and subtypes of dementia emerge. In an analysis of 

data from the UK Biobank, authors reported that exposure to combined levels of NOx, 

PM2.5, and PM10 were significantly associated with all-cause dementia, AD, vascular 

dementia (VaD), and mild cognitive impairment. Yet, when each air pollutant was compared 

separately, VaD was no longer associated with PM2.5,10 but only influenced by NOx, while 

all-cause dementia, AD, and mild cognitive impairment remained significantly associated 

with both PM2.5,10, and NOx
83. Another study leveraging the UK Biobank data found 

similar associations of PM2.5,10, and NOx with all-cause dementia and AD but not with 

VaD66. In line with these findings, other studies reported the association of PM2.5 to be 

more pronounced with AD than with non-AD or VaD61,64,65,74, but contrary results showed 

more significant association with non-AD or VaD than with AD82,84,100. These mixed 

findings may reflect differences across studies in modeling methods, cohort characteristics, 

exposure duration, confounding co-exposures, source of air pollution data, and dementia 

ascertainments. Due to the heterogeneity of dementia etiology and disease progression, 

inconsistent clinical diagnoses and records may have been used across different studies 

with participants from a wide range of cohorts. Additionally, the outcome measurements 

mainly derived from medical records may not be an accurate representation of the entire 

population because of underlying socioeconomic disparities in quality and accessibility of 

medical care101,102. This could be a critical confounding factor because studies have shown 

that social disadvantage can increase vulnerability to air pollution and air pollution-mediated 

risk of AD/ADRD101,103.

Despite these mixed results, long-term exposure to higher levels of PM2.5 and NOx was 

still consistently found to be associated with increased risk of AD and ADRD in most 

studies (Table 3). Long-term exposure to higher levels of PM2.5 and NOx was associated 

with greater extent of AD-relevant structural changes in the brain, which were assessed 

using PET and magnetic resonance imaging (MRI) to quantify amyloid deposition and 

cortical atrophy28,53,104–107. Individuals who were exposed to higher levels of PM2.5 and 

NO2 exhibited higher amyloid PET positivity and cortical atrophy53,104–107. In smaller 

cohorts, AD-relevant biomarkers, such as Aβ 42/40 and neurofilament light levels in the 

plasma and cerebrospinal fluid, were positively associated with PM2.5 and NOx exposure 

levels54,104,108. There were a few post-mortem autopsy studies that reported increased 

expression of histological biomarkers of AD/ADRD, including hyperphosphorylated tau, 

Aβ deposition, nanoparticle inclusions, and glial activation in the hippocampus, cortex, 

and olfactory bulbs of young and old individuals who lived in areas with high levels 

of air pollution109–113. Another outcome measurement was cognitive performance, which 

was assessed by a battery of cognitive tests to quantify memory, verbal fluency, and 

executive functions114–118. While some studies reported an inverse correlation between 

cognitive test scores and exposure to PM2.5 and NOx in cognitively unimpaired and impaired 

populations106,115–124, other studies found the relationship to be not significant98,105,114,125.
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LIMITATIONS

All epidemiological studies are limited by several factors. In the studies described, 

synergistic effects between air pollution and other genetic59,126, lifestyle87,101,122,126–129, 

and environmental65,78,101,103,105,128,130–133 risk factors may not have been completely 

adjusted for in the analyses. Although carrying the APOE ε4 gene is a significant AD 

risk factor134–136, results from studies assessing whether it has a modifying effects on 

the association between air pollution and AD are inconclusive: some showed the AD/

ADRD risk associated with air pollution exposure to be more pronounced in APOE 

ε4 carriers59,72,104,116,119,121 while others did not62,66,73,77,104,105. Genetic susceptibilities 

other than APOE ε4 status that can change the trajectory of AD pathogenesis were 

not taken into consideration for most studies. Moreover, other lifestyle factors, such as 

physical activity, exposure to traffic noise, sleeping patterns, and socioeconomic status, 

all of which are known to influence AD etiology87,129,137–140 may not have been well 

reflected or adjusted for in most studies. Since the G × E interactions that lead to AD/ADRD 

progression are complicated and not well understood, it is challenging for epidemiological 

studies to fully capture the true impact of air pollution on AD/ADRD. Nevertheless, 

consistent epidemiological findings across different cohorts and countries that show a 

robust association between air pollution and ADRD provide strong justification for further 

experimental investigation of the underlying mechanisms by which air pollution increases 

AD/ADRD risk.

Experimental animal studies: The challenge of replicating human 

exposures to air pollution

To investigate the impact of air pollution on AD/ADRD pathogenesis, experimental animal 

studies have primarily used wildtype or transgenic rodent models that express human AD 

risk genes to determine whether exposure to air pollution decreases the time to onset or the 

severity of AD-relevant phenotypes.

A major challenge of studying air pollution toxicology in an experimental animal model is 

replicating human-relevant exposures to air pollution141,142. Most earlier studies employed 

acute exposures to high concentrations of diesel exhaust particles (DEP) or PM2.5 

administered to rodents via intratracheal143 or intranasal144 instillation, or, alternatively, 

oropharyngeal aspiration145 of ambient PM2.5 samples extracted from filtered media and 

resuspended in a delivery vehicle. The advantages of these instillation or aspiration exposure 

routes are that the composition of particles, dosage, and site of delivery are easier to 

control in testing the toxicity of a known amount and composition of air pollutants 

in a cost-effective way146. However, there are several critical shortcomings of these 

exposure paradigms in terms of replicating human exposure, including: (1) inaccurate 

reproduction of human-relevant exposure route, composition, pattern, and dosage of air 

pollutants142; and (2) omission of gaseous co-pollutants141. These factors can influence the 

toxicity of air pollutants and induce inconsistent biological responses even to the same air 

pollutants142,147,148. Hence, many recent studies have utilized in vivo whole-body inhalation 

exposures to aerosols of air pollutants to test toxicity in a manner that more closely 

replicates human exposure149–161. Some studies exposed animals to laboratory-generated 
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aerosols of concentrated PM2.5, UFPM, or O3
149–154, while other studies implemented 

variations of concentrated ambient particle (CAP) systems to collect real-world ambient air 

and concentrate PM2.5 or UFPM for direct delivery to animals155–158. The CAP systems 

allow more accurate representation of real-world compositions of PM, yet because CAPs 

methodology only concentrates particles and not gases, understanding combined effects 

of PM and gases on biological outcomes is not possible141,159. Lastly, both laboratory-

generated and CAP-generated aerosols do not effectively emulate chronic real-life exposure 

dynamics, which vary hourly, weekly, monthly and seasonally141.

A few in vivo studies have developed methods for collecting ambient polluted air and 

delivering it to animals unchanged and in real-time at ambient concentrations via whole-

body inhalation141,160–162. For example, in one study, ambient traffic-related air pollution 

(TRAP) was collected from a heavily trafficked freeway tunnel in northern California, 

USA, for subsequent delivery in real-time to animals housed in an adjacent vivarium141. 

This study demonstrated that chronic life-time exposure to ambient TRAP exacerbated AD-

relevant phenotypes in wildtype Fischer rats and transgenic TgF344-AD rats that expressed 

human AD risk genes160. Another study in Taipei, Taiwan used the Taipei Air Pollutant 

Exposure System (TAPES) to sample and deliver outdoor ambient air mixture directly to 

3xTg-AD mice housed in an exposure chamber. Transgenic mice exposed to ambient air 

pollution exhibited increased AD neuropathologies relative to filtered air controls161. These 

novel exposure methods in rodent models increase the translational value of experimental 

animal studies and provide corroborative evidence to support the epidemiological findings.

Experimental animal studies: Chronic exposure to air pollution exacerbates 

Alzheimer’s disease pathology

A number of experimental animal studies have quantified Aβ plaques, NFT, tau 

phosphorylation, neuronal cell loss, and cognitive behavior deficits in both wildtype and 

transgenic rodent models after exposure to air pollution (Table 4). In most of these studies, 

the exposure paradigms were short-term or subchronic exposures to PM2.5 and UFPM that 

ranged from 2–13 weeks149–152,155–158,161. Only a few studies examined the neurological 

impacts of chronic exposures, ranging from 5–14 months109,153,154,160,162. Results from 

these studies are mixed depending on the exposure paradigm and animal model. Studies with 

more chronic exposure durations (Table 4) more consistently reported air pollution-induced 

increases in Aβ/NFT loads, tau hyperphosphorylation, microgliosis, astrogliosis, and 

neuronal atrophy. Exposures longer than 3 months at either concentrated or ambient levels of 

UFPM, PM2.5, or O3 were shown to increase Aβ plaque load, tau phosphorylation, gliosis, 

and worsen learning and memory in transgenic AD rodent models109,150,153,157,158,160. 

Some short-term exposure studies (2–3 weeks) in rodents reported increased Aβ plaques, 

tau phosphorylation, neuronal atrophy, and memory deficits153,155,163, while others did not 

observe those changes149,161,164 or observed contrary results of reduced Aβ plaques with 

increased microgliosis156. The mixed results may be partially attributed to varying degrees 

of neuroinflammation caused by air pollution, as discussed below.
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Prevailing hypothesis: Air pollution promotes Alzheimer’s disease-related 

dementias phenotypes via inflammatory mechanisms

CHRONIC NEUROINFLAMMATION IN ALZHEIMER’S DISEASE PATHOGENESIS

Persistent neuroinflammation has been posited as a key mechanism responsible for 

progressive neurodegenerative diseases, including ADRD165, based on accumulating 

evidence from human post-mortem166–168 and experimental animal studies169,170. 

Aggregates of misfolded proteins like Aβ and NFT, which are neurotoxic, have been 

shown to trigger neuroinflammation171,172. Neuroinflammatory responses are mainly 

orchestrated by resident brain immune cells – microglia and astrocytes – that protect 

the brain microenvironment not only by phagocytosing cellular damage, but also 

regulating neurogenesis and synapse number173,174. While microglia-mediated amyloid 

clearance169,175 and pruning of axosomatic inhibitory synapses following injuries176,177 

likely provide neuroprotection, dysregulation of these microglial functions is observed in 

AD/ADRD, and an increasing number of studies report that pro-inflammatory or disease-

associated microglial phenotypes are associated with worse neurotoxic outcomes and 

increased severity of AD/ADRD neuropathology169,178–182.

EXPOSURE TO AIR POLLUTION PROMOTES NEUROINFLAMMATION

Glial activation in response to PM exposure has been quantified by immunohistochemical 

analyses in many experimental animal studies. Most studies used IBA-1 as a biomarker of 

microglia183,184 and GFAP as a biomarker of astrocytes185,186, and some studies colocalized 

IBA-1 with CD68, a marker of phagocytic cells. Numerous studies have reported that PM 

induced recruitment of microglia and astrocytes to the olfactory bulb and hippocampus 

of rodents158,160,187. However, PM-induced microglial activation varied across different 

studies depending on the exposure paradigm, sex, age, genotype, and brain region. In one 

study, wildtype mice exhibited increased IBA-1+ expression with more amoeboid microglial 

morphology in the olfactory bulb after 4–8 weeks of exposure to concentrated PM2.5
187, 

whereas in another study, APP/PS1 mice, but not wildtype mice, exhibited increased 

microglial activation in the hippocampus following a 3-month exposure158. A more chronic 

exposure to ambient TRAP induced microglial phagocytosis (increased ratio of CD68+/

IBA-1+) in the hippocampus of both wildtype and TgF344-AD female rats after 2 months 

of exposure, while male wildtype and TgF344-AD rats did not exhibit TRAP-induced 

microglial activation until after 14 months of exposure160. Interestingly, in contrast to 

male rats, female rats exhibited a dampened microglial phagocytic response to TRAP after 

14 months of exposure160. A different study reported that 2 weeks of UFPM exposure 

reduced microglial activation with more ramified microglial morphology in 3xTgAD 

mice compared to filtered air-exposed controls156. Like microglia, observations regarding 

the impacts of PM on astrocytic activation (GFAP+ immunoreactivity) varied across 

studies. While some studies reported PM-induced astrocytic recruitment and activation in 

the hippocampus152,158,188, hypothalamus189, and striatum190, other studies reported no 

significant effects of PM on astrocytic activation in any of the brain regions examined156,160.

These variable observations suggest that the glial responses to air pollution are complex. 

The functional impact of these changes also is not clear since it is now appreciated that 
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glial activation may either exacerbate169,178–182 or protect169,191–193 against synapse loss 

and neurodegeneration. To better understand how air pollution disrupts neuroinflammatory 

homeostasis, more recent studies have distinguished glial phenotypes using molecular 

biomarkers of pro- vs. anti-inflammatory phenotypes or biomarkers of disease-associated 

microglia (DAM). Following 12 weeks of exposure to UFPM, TMEM119+ microglia, 

which are considered homeostatic, that were not associated with amyloid plaques were 

reduced, while ferritin+ DAM microglia, which are associated with senescence and reactive 

oxygen species (ROS), were increased in both wildtype and AppNL-G-F/+-KI mice157. 

The same study also showed that UFPM increased the number of highly inflammatory, 

neurotoxic C3+ DAM astrocytes in the cortex of both genotypes157. In vitro studies also 

have characterized glial phenotypes after PM treatment. Primary coculture of microglia and 

astrocytes exhibited upregulated expression of DAM astrocytic markers (C3 protein and 

DAM-specific transcripts) in response to PM2.5 treatment194. In addition, PM2.5 altered 

interactions between neurons and glial cells in a triculture of neuron, astrocyte, and 

microglia human cell lines by promoting polarization of DAM microglia characterized by 

CD11b, CD86, and iNOS expression195. Based on these results, the type of glial activation 

or polarization following PM exposure may be important in either resolving inflammation 

or driving it towards persistent neuroinflammation and glial dysfunction, which can further 

exacerbate AD pathologies and neuronal atrophy.

These observations raise important questions regarding the mechanism(s) by which air 

pollutants alter glial phenotypes. Microglia and astrocytes are activated by autocrine and 

paracrine signals in the forms of: (1) cytokines and chemokines, which are small immune 

signaling molecules196, and (2) reactive oxygen or nitrogen species (ROS/RNS), which are 

byproducts of cellular oxidative metabolism that carry unstable oxygen radicals197. Reactive 

oxygen/nitrogen species, such as H2O2, NOx, and superoxides, serve as short-lived paracrine 

signals that play important physiological roles in immune defense and maintenance of 

cellular homeostasis197. Due to the highly reactive property of ROS, the cellular and 

extracellular levels of ROS are tightly regulated by cellular and enzymatic antioxidants 

that reduce and stabilize ROS to maintain homeostatic levels of ROS197. However, an 

imbalanced and persistent increase of ROS beyond the physiological range depletes the 

normal antioxidant capacity, resulting in oxidative stress when ROS react with cellular 

components to cause lipid peroxidation, mitochondrial damage, protein oxidative damage, 

DNA damage, and cellular death197. Additionally, subtler changes in cellular ROS levels 

can alter physiological redox signaling and consequently, result in cellular dysfunctions in 

microglia198.

In vitro, short-term (2–3 weeks) exposure to concentrated PM or subchronic (3 months) 

exposure to ambient level of PM2.5 was sufficient to cause oxidative stress in the olfactory 

bulb and hippocampus of rodents as evidenced by increased lipid peroxidation152,161,199–201, 

dysregulated antioxidant metabolism149,152,202, DNA damage and epigenetic modifications 

consistent with oxidative stress109. These findings demonstrate that air pollution can cause 

oxidative stress that may trigger neuroinflammation via microglia activation. In tissue 

culture models, PM2.5 or DEP has been shown to increase ROS followed by microglial 

activation and release of proinflammatory cytokines in microglial monoculture201,203,204, 

neuron-glia coculture195,205 and microglia-endothelial cell coculture206. Interestingly, it has 
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been reported that complement 3 (C3)-mediated microglial activation resulted in aggravated 

Aβ deposition, synaptic loss, and neuronal degeneration182,207–210 via NADPH oxidase 

activation208,209, which increases ROS production. In an independent study, NADPH 

oxidase activation was found to induce DAM microglial polarization211.

Exposure to air pollution has also been shown to cause proinflammatory cytokine release 

in the rodent hippocampus149,150,152,158,162,164,200,212–214. Across different studies, the main 

proinflammatory cytokines that were consistently upregulated by PM exposure were TNF-α, 

IL-1β, IL-6, and IFN-γ. However, whether and how PM-induced proinflammatory cytokines 

mediate DAM glial polarization and neuronal cell death are still poorly understood. 

Several recent in vitro studies suggest several potential mechanisms. For example, in a 

neuron-astrocyte coculture of human cell lines, PM2.5 treatment caused the release of 

chemokines (CCL1, CCL2) that can recruit microglia, as well as cytokines (IL-1β, IFN-γ, 

IL-5, IL-8) that can polarize microglia into DAM phenotypes195. Monocultured microglia 

were polarized to the DAM phenotype (CD86+, iNOS+ with increased NO release) when 

exposed to conditioned media from astrocyteneuron coculture exposed to PM2.5; and 

antibody neutralization of IL-1β, IFN-γ, CCL1, and CCL2 in the conditioned media 

significantly reduced DAM polarization. Interestingly, when monocultured microglia were 

directly exposed to PM2.5 they did not polarize to a DAM phenotype, but instead became 

phagocytic and anti-inflammatory (TREM2+, LC3b+, CD86−), which resulted in effective 

clearance of PM2.5. These authors further demonstrated that microglia and astrocytes both 

contributed to PM-induced synaptic impairment while DAM microglia primarily drove 

PM-induced neuronal cell death and tau-phosphorylation195. These findings suggest that 

PM-induced glial polarization occurs through bidirectional crosstalk between microglia and 

astrocytes in which cytokines act as mediators to not only shift glial responses, but also to 

cause neuronal atrophy. An independent study further confirmed these results by showing 

that PM0.2-induced neuronal synaptic atrophy was mainly driven via C3 signals released 

by DAM astrocytes that were polarized by activated microglia. Disease-associated astrocyte 

polarization was reversed when microglia were inhibited by minocycline even with the 

PM0.2 treatment, and this further reduced synaptic damages194.

The role of IL-1β has also been investigated in the context of inflammasome activation. 

The inflammasome is a multiprotein intracellular immune signaling complex that 

detects pathogen- and damage-associated molecular patterns (PAMPs and DAMPs) to 

initiate proinflammatory responses and has been increasingly reported and discussed 

as a pathogenic mechanism of AD215. In a neuron-microglia coculture, co-exposure to 

oligomeric Aβ and PM2.5 augmented the microglial response to lipopolysaccharide (LPS), 

evidenced as increased ROS and IL-1β production, resulting in activation of the NLRP3 

inflammasome and subsequent neuronal apoptosis. Pretreating the coculture with the 

antioxidant N-acetyl-cysteine and/or caspase-1 inhibitor before oligomeric Aβ and PM2.5 

exposure significantly ameliorated neuronal apoptosis, suggesting that oxidative stress and 

NLRP3 inflammasome activation mediate the neurotoxic effects of oligomeric Aβ and 

PM2.5
205.

Results from animal studies and in vitro studies corroborate epidemiological findings and 

provide a better understanding of the molecular and cellular responses to air pollution 
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that include oxidative stress, neuroinflammation, neurodegeneration, and aggravation of 

AD/ADRD pathologies. While there is ongoing progression towards identifying how air 

pollutants perturb brain health, mechanistic links that integrate the neuropathological 

processes triggered by air pollution need further investigation. It is experimentally 

challenging to recreate realistic air pollution exposure paradigms, but recent development 

of exposure systems that allow better recapitulation of human-relevant exposures will 

enable significant advancements in the field of air pollution and ADRD research possible. 

Nevertheless, discrepancies in exposure paradigms and animal models between studies has 

led to large variabilities in neurologic outcomes. Therefore, follow-up studies with more 

standardized exposures using genetically modified animal models with inclusion of both 

sexes are necessary to validate observations reported across different studies.

Outstanding data gap: Direct vs. indirect effects of air pollution on the brain

While in vitro studies demonstrate that PM from polluted air can directly trigger responses 

in neurons and glial cells, whether and how gases associated with air pollution directly affect 

these cell types is largely unknown. Similarly, there remains considerable uncertainty as 

to whether in vivo brain responses to air pollution arise from direct interactions with air 

pollutants or rather are the indirect consequence of air pollution effects on peripheral organs. 

There is experimental evidence, albeit limited, to support both possibilities, which likely are 

not mutually exclusive.

DIRECT PATHWAY

The direct pathway infers translocation of PM to the brain, where it can directly activate 

microglia. Translocation of PM to brain parenchyma may occur through retrograde 

transport of PM from olfactory epithelium to the olfactory cortex via olfactory nerves 

or via the trigeminal nerve to the brain216–218 (Figure 3A). Particulate matter inclusions 

in the olfactory bulbs and prefrontal cortex have been observed and associated with 

impaired olfactory function in both mice and humans109,110,112,113,155,160,161,187,219,220. 

Alternatively, PM may enter the brain by crossing the blood-brain barrier (BBB) from the 

systemic circulation. Inhaled fine particles that are deposited in the distal airways and alveoli 

can readily cross the air-blood barrier to enter the systemic circulation and cross other 

biological barriers like the BBB221–225. Studies using a 3-D human BBB organotypic chip 

have shown that PM can cross the BBB225. Moreover, an in vivo study in which transgenic 

AD animals were exposed to ambient levels of PM, extensive PM deposition was observed 

in the hippocampus, which is vulnerable to BBB leakage in AD, with minimal PM detected 

in the frontal cortex160, supporting this as the primary mechanism by which inhaled PM may 

be reaching the brain under conditions of exposure to ambient TRAP levels. Blood-brain 

barrier impairment is a known AD pathology226–228 that may be both a causal factor and 

a result of air pollution-induced AD exacerbation because PM and circulating mediators 

can cross an impaired BBB229 and air pollution can break down components of the 

neurovascular unit that forms the BBB199,230,231. Phagocytosis of PM by activated microglia 

has been well characterized in many in vitro studies195,205,206,232–234, and neurotoxic 

materials, such as metals, endotoxins, and polycyclic aromatic hydrocarbons, adhered to PM 

have been shown to cause neuroinflammation in the brain parenchyma115,235–237. Although 
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there are less studies on PM-induced astrocytic activation189,194,195, results indicate that 

the microglia-astrocyte crosstalk can lead to bidirectional responses in both glial cells to 

promote neuroinflammation194,195,210,238,239.

INDIRECT PATHWAY

The indirect pathway infers that air pollution-associated neuroinflammation is a 

consequence of inflammation induced by air pollution in peripheral targets. The respiratory 

toxicology of air pollution has been extensively studied, and it is well-established that 

inhaled air pollutants reduce lung function and increase respiratory disease susceptibility 

and mortality by inducing and disrupting pulmonary inflammatory responses240–243. Air 

pollution also causes consequent systemic inflammation, and increased serum levels 

of proinflammatory cytokines, dysfunctional fibrinolysis, oxidative stress, and activation 

of circulating immune cells41,244–248. With growing evidence suggesting that systemic 

inflammation can promote neuroinflammation249–254 and that higher risks of dementia 

and cognitive deficits are associated with impaired lung function255–258, the lung-brain 

axis has been proposed as a potential indirect pathway by which chronic exposure to 

air pollution induces persistent neuroinflammation that promotes AD/ADRD pathogenesis 

(Figure 3B). While the direct pathway proposes a valid explanation for PM-induced 

neuroinflammation, it does not adequately explain neuroinflammatory effects of gaseous 

components like NOx and O3
150. A research group from Indiana University has conducted 

a series of studies demonstrating how O3-induced systemic circulating factors regulate 

microglial and astrocytic activation150,151,259. An acute exposure to O3 caused persistent 

microglial activation in rats 24 hours post-exposure, and the same study showed that the 

addition of serum from O3-exposed animals can prime microglia in vitro to augment their 

response to LPS treatment.259 The group’s more recent studies show that O3 reduced 

the number of peri-plaque TREM2+ microglia but increased peri-plaque colocalization of 

microglia and astrocytes151 with altered transcriptomic profiles shifting glial cells to more 

disease-associated states (lower Trem2 and higher Serpinea3n gene expressions) in 5xFAD 

mice150. They also reported that O3 increased the level of circulating high mobility group 

box 1 (HMGB1), which is a DAMP signal that enhances both innate and adaptive immune 

responses150. Deleting HMGB1 only in peripheral myeloid cells, but not in microglia by 

using Hmgb1fl/flLysM-Cre+ mouse strain, reversed O3-induced changes in glial expressions 

and returned Trem2 and Serpinea3n transcript levels back to the filtered air control 

baseline150,151. An in vitro study from a different group showed that in comparison to 

directly adding DEP alone to microglia, adding conditioned medium from DEP-stimulated 

alveolar macrophages caused a higher activation of microglial CD14, which is a pattern 

recognition receptor that induces DAMP signaling234. These findings and those from other 

studies260–262 with similar results suggest that the lung-brain axis may indirectly mediate 

neuroinflammatory effects of air pollution independent of the direct pathway. However, 

more experimental studies are needed to further investigate the lung-brain axis in different 

exposure paradigms that not only test acute effects of exclusive air pollutants, but also test 

long-term effects of exposure to combined air pollutants.
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Epigenetics, Environment, and Alzheimer’s disease and related dementias

Epigenetic factors, which mediate gene and environment interactions, may serve as a 

mechanism underlying G × E interactions and explain a portion of the missing heritability 

of AD/ADRD.83 Epigenetic control is highly complex, with at least 28 known histone, 

53 DNA, and 160 RNA modifications, as well as non-coding RNAs, that work in 

concert to regulate chromatin accessibility, gene expression, mRNA stability, and mRNA 

translation263–265. The location and context-dependent function of these modifications 

further adds to their complexity but also enables their targeted use as biomarkers and 

targeted therapeutics266–268. Here, while we do not cover the full breadth of epigenetic 

modifications and their functions, we do summarize recent findings related to their 

association with and potential functional link between air pollution and AD/ADRD 

pathogenicity.

Prior experimental and population-based epigenetic studies characterizing G × E interactions 

identified dynamic and disease-associated epigenetic modifications and transcriptional 

profiles that varied in response to environmental factors268. The modifiable nature of 

epigenetic modifications and their control over gene expression positions them as prime 

tools and targets for therapeutic intervention. Additionally, their dynamism makes them well 

suited to function as biomarkers indicative of disease predisposition, pathological outcomes 

and disease susceptibility, or of environmental exposures.

Generally, epigenetic modifications, whether located on histones, DNA, or RNA, are 

regulated by writer and erasers and interpreted by reader proteins or protein/RNA 

complexes. The expression of these regulatory factors enables fine control over tissue 

and cell-type specific spatiotemporal expressional programming269–272. Dysregulation of 

epigenetic control, either through the alteration of specific markers or the abundance 

of the readers/writers/erasers serves as an additional mechanism of control and potential 

contributor towards disease state.

DNA MODIFICATIONS

Recent work characterizing the relative contributions of genetic and environmental factors 

in the development and progression of AD highlighted epigenetic modifications as critical 

mediators of G × E interactions. In a cohort of older women from the Women’s Health 

Initiative Memory Study (WHIMS), it was found that nanoparticles exposure increased 

the risk of cognitive decline by 81% and all-cause dementia by 92% in a dose-dependent 

manner for APOE ε4 carriers273. Following up on these findings, the authors utilized 

the 5xFAD mouse model and found that exposure to nanoparticles was associated with 

greater AD pathology and the APOE status of the exposed individual functioned as a 

response modifier. In the 5xFAD mouse model, over the course of 15 weeks of nanoparticles 

exposure, the presence of ApoE ε4+/+ over ApoE ε3+/+ alleles significantly increased 

amyloid plaque pathology, reduced hippocampal CA1 neurites, and decreased the glutamate 

GluR1 subunit. In a similar study investigating the G × E interaction between cadmium 

exposure and ApoE ε4 dosage, 14 weeks of cadmium exposure in the ApoE knock-in mouse 

model identified accelerated cognitive impairment and reduced hippocampal neurogenesis 

in ApoE ε4 carriers relative to their ApoE ε3 counterparts, indicating G × E interactions 
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modulate AD pathogenicity274. In effort to explore the missing heritability observed in 

AD, Panitch, et al. recently investigated the relationship between APOE DNA methylation 

(5-methylcytosine; 5mC) and ε4 carrier status and found differential methylation at 25 CpG 

sites in the dorsolateral prefrontal cortex and 36 CpG sites in blood, with the majority of 

sites being hypomethylated275. Furthermore, this group identified seven CpG sites in the 

APOE region (including TOMM40, APOE, and APOC1 genes) that significantly differed 

between APOE ε4 carriers and non-carriers in brain and blood (P<5×10−8), with three 

sites in the APOE gene showing hypermethylation in ε4 carriers and a nominal association 

with APOE expression in the brain (P<10−5)275. One of the three genes that contained 

differentially methylated CpG sites in APOE ε4 carriers relative to control was TET1, a 

5mC eraser and DNA hydroxymethylation (5-hydroxymethylcytosine, 5hmC) writer. In the 

same family of Ten-Eleven Translocation proteins, TET2, a 5mC eraser and 5hmC writer, 

was also found to be moderately differentially methylated in APOE ε4 carriers relative 

to control (p = 7.6×10−6)275. Interestingly, both TET1 and TET2 function in similar but 

distinct capacities, and prior sequencing studies have identified an enrichment of TET1 and 

TET2 variants associated with EOAD/frontotemporal dementia276,277. Lastly, utilizing an 

APP mouse model, tethering the de novo 5mC writer, Dnmt3a, to dCas9 targeted to APP 
was sufficient to methylate the APP gene, reduce APP expression and amyloid pathology, 

and ameliorate cognitive and behavioral impairment278.

HISTONE MODIFICATIONS

In addition to DNA modifications, histone modifications have emerged as crucial players 

in the pathogenesis of AD and often function with DNA modifications to regulate 

gene expression279,280. Recent studies reveal links between air pollution and histone 

modifications. Zheng et al. explored how different components of air pollution (PM2.5, 

PM10, black carbon, and elemental components (potassium, sulfur, iron, silicon, aluminum, 

zinc, calcium, and titanium)) influenced various histone modifications (H3K9ac, H3K9me3, 

H3K27me3, and H3K36me3) in the blood leukocytes of exposed truck drivers and office 

workers in Beijing281. Their group identified differential associations between pollutants and 

various histone markers. Specifically, they noted an increase in ambient PM10 associated 

with lower H3K27me3 and H3K36me3 levels. They also observed that office workers had a 

stronger association between black carbon and H3K9ac and H3K36me3 than truck drivers, 

and that the association between black carbon exposure and H3K9ac and H3K9me3 status 

was sex-dependent281.

Similarly, exposure to air pollutants, particularly PM2.5 and PM10, induced significant 

epigenetic alterations in rat blood and lung tissue in a dose-dependent manner282. This 

study revealed that increased exposure to PM2.5 and PM10 generally led to decreased 

DNA methylation of LINE-1 and iNOS, while simultaneously increasing histone acetylation 

(H3K9ac) in both blood and lung tissue. Interestingly, PM2.5 exposure was also associated 

with increased methylation of p16CDKN2A and APC promoters. The effects of NOx were 

more variable, showing mixed impacts on methylation patterns. Notably, these epigenetic 

changes were often more pronounced in blood compared to lung tissue, with H3K9ac 

consistently increasing in response to PM2.5and PM10 exposure in both tissue types282.
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RNA MODIFICATIONS

RNA N6-methyladenosine (m6A) is the most studied and prevalent RNA modification, it 

is highly enriched in the brain, and associated with a suite of neurodevelopmental and 

neurodegenerative diseases, including AD. m6A influences transcript splicing, stability, 

translation, nuclear export, and RNA structure283,284. There is evidence that environmental 

exposure influences RNA modifications and subsequently, AD pathophysiology285 Li 

et al., 2023 found that exposure to PM2.5 is associated with a greater prevalence of 

m6A modifications, a global increase in gene expression, and a significant increase in 

the expression of prostaglandin-endoperoxide synthase 2 (PTGS2), which is involved in 

synthesizing the prostaglandin inflammation signaling molecules286.

Recent research shed light on the molecular mechanisms underlying the effects of PM2.5 

exposure on lung cells287. In the A549 lung cell line, PM2.5 exposure upregulated m6A 

RNA methylation coincident with increased expression of TGF-β, SMAD3, and the 

methyltransferases METTL3 and METTL14 (m6A writers). Importantly, inhibition of TGF-

β reversed the PM2.5 -induced changes, suggesting a pivotal role for the TGF-β signaling 

pathway in regulating m6A RNA methylation following PM2.5 exposure287. These findings 

revealed a potential mechanism by which lung inflammation triggered by PM2.5 exposure 

leads to m6A modifications observed in AD.

Using postmortem AD patient data, another study identified significantly reduced expression 

and soluble protein levels of METTL3, and no significant changes for METTL14 in 

the hippocampus288. Notably, insoluble fractions of AD brain samples had accumulated 

METTL3 that positively correlated with insoluble tau protein levels, although no direct 

interaction between METTL3 and tau was observed288. This research suggests that while tau 

pathology is a better predictor of disrupted m6A signaling than Aβ load, it likely does not 

directly cause the altered METTL3 expression seen in AD hippocampal neurons.

These findings were corroborated in a study of individuals diagnosed with AD vs. controls 

that reported a marked decrease in m6A modifications and METTL3, METTL14, WTAP, 

FTO, and YTHDF protein levels in cortex and hippocampus tissue with AD. The functional 

significance of this observation is suggested by experimental animal studies: knockdown of 

METTL3 in mouse hippocampus significantly increased memory loss, neurodegeneration, 

gliosis, oxidative stress, and apoptotic processes289. Knocking down METTL3, METTL14, 

and YTHDF in flies expressing TauR406W was found to worsen eye phenotype and reduce 

motor function, highlighting that reduced expression of m6A or the ability to read m6A is 

associated with worsened AD-associated phenotypes290.

Collectively, these studies suggest that the regulation of RNA writers, readers and erasers 

is a critical component for mediating G × E interactions, and aberrant regulation of these 

proteins has a large knock-on effect, influencing pathological outcomes.

NON-CODING RNA

A separate class of RNAs, non-coding RNAs, exert epigenetic control via control of 

transcription, transcript stability, and translation efficiency. These molecules are highly 
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dynamic, and their expression and stability can be influenced by exposure to environmental 

factors291–294.

To determine whether DEP induces pulmonary inflammatory response, Wang and colleagues 

explored the involvement of RNA binding protein LIN28B and non-coding microRNA 

Iet7 axis in the inflammatory response to DEP exposure in mice295. Let7-d and Iet7-g 

were significantly downregulated, while LIN28B protein levels were elevated from 6 to 

24 hours after DEP exposure. Furthermore, they found that LIN28B is responsible for 

the downregulation of Iet7, subsequently increasing expression of the pro-inflammatory 

cytokine IL-6295. A study involving a protein of the same class, LIN28A, in a VaD rat 

model, where VaD was introduced by bilateral common carotid artery occlusion, found 

that treatment with Lin28a siRNA ameliorated cognitive impairment, as well as upregulated 

expression of GFAP, and IBA-1 glial markers296. Moreover, treatment with siRNA alleviated 

BBB damage as measured by expression of PECAM-1, PDGFRβ, occludin, claudin-9, and 

ZO-1, and Ccr6296.

Furthering the link between environmental exposure, non-coding RNAs and modulation 

of inflammation, microarray analyses of blood samples from foundry workers exposed 

to metal-rich PM identified significantly increased expression of miR-421, miR-146a, 

miR-29a, and let-7g after 3 days of work exposure relative to baseline (first day of the 

work week after two days off).297 In addition to sampling miRNA expression, PCR was 

performed on 18 inflammatory genes, including TGFß1, TGFß2, TNF, ITGA2, ITGAX, 
NFKB1, NOS2, CCL2, CCL5. Significant differences were found in individual miRNAs 

and inflammatory genes that have differing targets and regulatory activity. This included 

miR-421 associated with NOS2 expression; miR-146a with TGFß1, CCL2 and CCL5 
expression; and let-7g with TGFß1, ITGAX, and NFKß1 expression297.

Additional research exploring the relationship between PM2.5 exposure and expression of 

non-coding RNAs has identified increased expression of the long non-coding RNA, HCG18, 

in the lung. HCG18 suppresses miR-195 expression and leads to upregulated ATG14 
expression and increased autophagy and progression of lung adenocarcinoma298. In addition 

to playing a significant role in the development of lung pathologies, reduced mir-195 

expression is observed with human aging and in AD progression, while increased mir-195 

prevalence is associated with improved cognitive performance and negatively correlated 

with cerebrospinal fluid tau levels. Human expression patterns of mir-195 are mirrored in 

ApoE ε4+/+ mice when compared with ApoE ε3+/+ mice. Furthermore, elevating miR-195 

levels was found to reduce amyloid burden and tau hyper-phosphorylation and improve 

cognitive impairment. Lastly, when cortical neurons and astrocytes generated from inducible 

pluripotent stem cells derived from ApoE ε4+/+ mice were co-cultured, miR-195 inhibition 

exacerbated AD-associated lysosomal phenotypes299.

In this section, we highlighted epigenetic mechanisms by which air pollutants may 

contribute to cognitive impairment and AD-associated pathologies. These studies underscore 

the crucial role of epigenetics as a mediator of G × E interactions in AD. Importantly, they 

indicate that the development of epigenetic markers of air pollution exposure may advance 

the identification of specific air pollutants that promote AD/ADRD-associated risk and 
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progression. Epigenetic analyses also hold the promise of providing targets for therapeutic 

interventions, offering modifiable pathways to potentially reduce AD pathophysiology.

Conclusions

Consistent with previous epidemiological findings regarding the association between 

air pollution and ADRD, recent epidemiological studies have largely reported positive 

correlations between air pollution and AD/ADRD. This association is mostly substantiated 

by experimental animal studies. Although there is general consensus that air pollution is an 

environmental risk factor for AD/ADRD, associations between specific air pollutants and 

ADRD subtypes are variable across different studies. This variability in part stems from 

the complexity of mixed ADRD pathologies and equivocal etiological links between genetic 

status, pathological manifestation, cognitive impairment, and clinical diagnoses. Currently, 

the field is reassessing diagnostic criteria utilizing biomarkers that more accurately delineate 

between AD and related dementias to better characterize pathology-specific disease 

progression. These refinements in diagnostic precision will improve efforts to identify 

environmental factors that modify risk and severity of AD/ADRD. Elucidating ADRD 

stratification and G × E contributions implicated in the development of ADRD will inform 

effective public health regulations and guidelines for air pollution and other environmental 

contaminants, with the aim of preventing and minimizing adverse neurological health 

outcomes.
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List of abbreviations

5hmC 5-hydroxymethylcytosine

5mC 5-methylcytosine

AD Alzheimer’s disease

ADRD Alzheimer’s disease-related dementias

Aβ Amyloid beta plaques

BBB Blood-brain barrier

BC Black carbon

C3 Complement 3

CAP Concentrated ambient particle
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CO Carbon monoxide

CSF Cerebrospinal fluid

DAM Disease-associated molecular biomarkers

DAMP Damage-associated molecular pattern

DEP Diesel exhaust particles

EOAD Early-onset Alzheimer’s disease

G × E Gene by environment interaction

HMGB1 High mobility group box 1

LOAD Late-onset Alzheimer’s disease

LPS Lipopolysaccharide

m6A N6-methyladenosine

MRI Magnetic resonance imaging

NFL Neurofilament light

NFT Neurofibrillary tau tangles

NOx Nitrogen oxides

O3 Ground-level ozone

PAMP Pathogen-associated molecular pattern

PET Positron emission tomography

PFAS Per-and polyfluoroalkyl substances

PM Particulate matter

PTGS2 prostaglandin-endoperoxide synthase 2

ROS/RNS Reactive oxygen or nitrogen species

SO2 Sulfur dioxide

TRAP Traffic-related air pollution

UFPM Ultrafine particulate matter

VaD Vascular dementia
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Box 1.

Air pollution composition, toxicology and regulations

Six criteria air pollutants are monitored and regulated by the U.S. Environmental 

Protection Agency National Ambient Air Quality Standards and the World Health 

Organization Air Quality Guidelines. These include: (1) coarse and fine particulate matter 

(PM10, PMzs); (2) nitrogen dioxide (NOz); (3) ground-level ozone (03): (4) carbon 

monoxide (CO); (5) sulfur dioxide (SO2); and (6) lead (Pb) (Figure 2). The composition 

and toxicity of these pollutants are determined in large part by their sources.222 Sources 

of these pollutants include industrial pollution, near roadway traffic-related air pollution 

(TRAP), wildfire, and agriculture51,60,317,318.

Amongst the six criteria air pollutants, PM has been most intensively monitored and 

studied as a health hazard because it deposits in the respiratory system, and the finer 

particles can enter the systemic circulation and be distributed to all organs in the body, 

including the brain219,222,224,319–321. Particulate matter ranges in size from coarse (PM10 

with an aerodynamic diameter <10 μm) to fine (PM2.5, diameter <2.5 μm) to ultrafine 

(UFPM, diameter <0.1 μm) (Figure 2). Fine PM0.1–2.5 are considered more toxic than 

coarse PM10 because of a higher penetrance into the lung parenchyma with smaller sizes. 

Fine PM2.5 from agriculture, TRAP, coal combustion and wildfire were found to be 

significant risk modifiers for dementia, including AD49,51,221,318,322,323. A wide range 

of organic and inorganic compounds from different sources of agriculture, wildfire, and 

TRAP can adsorb to PM2.5 and cause negative health outcomes in the lung and the 

brain.124,324,325 Likewise, the composition of gases in polluted air also depends on the 

source of emission. Traffic-related air pollution is one of the main sources of NOx, CO, 

benzene, and other volatile organic compounds (Figure 2), yet industrial boilers, gas 

stoves, and other fuel combustion processes also contribute to emissions of these gases. 

Traffic-related air pollution as a source of SO2 emissions has declined with the global 

transition to using low sulfur fuels for automobiles326. Yet, other sources like wildfire 

smoke, industrial sources, and ship emissions still contribute to the release of SO2
327. 

Ground-level O3 is a gaseous secondary air pollutant that forms from photochemical 

reactions with radicals derived from NOx and volatile organic compounds in the warm 

ambient atmosphere328.
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Figure 1. Gene by environment interactions.
Genetic, epigenetic, and environmental risk factors interact to promote ADRD etiology and 

disease progression. NOTE: ADRD, Alzheimer’s disease-related dementias. Created with 

BioRender.com.
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Figure 2. Composition of air pollutants.
Air pollutants consist of gaseous and particulate matter (PM) fractions with heterogenous 

sources, compositions, and sizes, all of which influence toxicity to the respiratory system 

and the brain. Created with BioRender.com.
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Figure 3. Potential mechanisms by which air pollutants promote neuroinflammation.
Schematic summary of potential pathways by which air pollutants mediate 

neuroinflammation. A. Direct pathway: Inhaled air pollutants infiltrate the brain 

parenchyma via retrograde transportation from olfactory nerve terminals into the olfactory 

cortex or by crossing the blood-brain barrier from the systemic circulation to directly 

activate microglia. B. Indirect pathway: Inhaled air pollutants cause neuroinflammation 

via the lung-brain axis. It is hypothesized that air pollutant-induced pulmonary 

inflammation leads to neuroinflammation via increased systemic inflammation and release 

of inflammatory mediators into the systemic circulation, which are then delivered to the 

brain and cross the blood brain barrier to activate innate immune cells in the brain. NOTE: 
ROS, reactive oxygen species; dotted arrows indicate hypothesized modes of actions; 

solid arrows indicate modes of actions supported by experimental evidence. Created with 

BioRender.com.
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