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Abstract

It is well-established that neural networks can predict or identify structural motifs of non-cod-

ing RNAs (ncRNAs). Yet, the neural network based identification of RNA structural motifs is

limited by the availability of training data that are often insufficient for learning features of

specific ncRNA families or structural motifs. Aiming to reliably identify intrinsic transcription

terminators in bacteria, we introduce a novel pre-training approach that uses inverse folding

to generate training data for predicting or identifying a specific family or structural motif of

ncRNA. We assess the ability of neural networks to identify secondary structure by system-

atic in silico mutagenesis experiments. In a study to identify intrinsic transcription termina-

tors as functionally well-understood RNA structural motifs, our inverse folding based pre-

training approach significantly boosts the performance of neural network topologies, which

outperform previous approaches to identify intrinsic transcription terminators. Inverse-fold-

ing based pre-training provides a simple, yet highly effective way to integrate the well-estab-

lished thermodynamic energy model into deep neural networks for identifying ncRNA

families or motifs. The pre-training technique is broadly applicable to a range of network

topologies as well as different types of ncRNA families and motifs.

Author summary

Intrinsic transcriptional terminators are essential regulators in determining the 3’ end of

transcripts in bacteria. The underlying mechanism involves RNA secondary structure,

where nucleotides fold into a specific hairpin motif. Identifying terminator sequences in

bacterial genomes has conventionally been approached with well-established energy mod-

els for structural motifs. However, the folding mechanism of transcription terminators is

understood only partially, limiting the success of energy-model based identification.

Neural networks have been proposed to overcome these limitations. However, their

adoption for predicting and identifying RNA secondary structure has been a double

edged sword: Neural networks promise to learn features that are not represented by the

energy models, while they are black boxes that lack explicit modeling assumptions and
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may fail to account for features that are well understandable based on decades-old energy

models.

Here, we introduce a pre-training approach for neural networks that uses energy-

model based inverse folding of structural motifs. As we demonstrate, this approach

“brings back the energy model” to identify transcriptional terminators and overcomes the

limitations of previous energy-model based predictions. Our approach works for diverse

types of neural networks, and is suitable for the identification of structural motifs of many

other RNA molecules beyond transcriptional terminators.

This is a PLOS Computational Biology Methods paper.

Introduction

The structure of non-coding RNAs (ncRNAs) plays a key role in various cellular mechanisms

[1], and a thorough understanding of their structural properties is key to deciphering these

mechanisms. Since probing of RNA structure experimentally is laborious, computationally

predicting secondary structure from sequence often serves as starting point to investigate

ncRNA secondary structure. For dealing with RNA structure computationally, numerous tools

have emerged over the past decades, ranging from energy-model based folding algorithms [2,

3] to statistical models that capture ncRNA evolution at the level of sequence and structure,

including profile hidden Markov models [4], covariance models [5] or heuristic approaches [6,

7]. All these now well-established approaches are founded on specific biophysical or statistical

models that capture explicit assumptions about ncRNA sequence and structure.

With the advent of deep neural networks in computational biology, it has become evident

that they often outperform conventional approaches in prediction or identification tasks, as

prominently demonstrated in the prediction of protein structure [8], functional assignment of

DNA [9], or in microscopic image analysis [10]. To no surprise, deep neural networks have

been employed successfully to predict RNA secondary structure [11, 12]. While success is

often limited to specific structures represented in the training data, the recent work by Sato

et al. [13] achieves remarkable success with a hybrid approach that integrates the Mathews-

Turner energy model into a deep neural network.

It is an inherent property of most deep neural networks that they lack explicitly stated

modeling assumptions, so that they are commonly considered as black boxes whose output is

opaque and lacks causal explanation [14]. This model-free approach has obvious advantages in

the context of non-coding RNA, since neural networks can potentially infer spurious combina-

tions of sequence or structure motifs or hidden correlations between those from the training

data, which may be difficult or impossible to incorporate in an explicit model. One way to look

at neural networks is that they possess an explicitly broad and only loosely defined inductive

bias as the only methodological modeling constraint [15], and thus shift the task of modeling

to the training data. If the training data contain variances that represent modeling assump-

tions, it is assumed that these variances will be learnable by the largely unconstrained inductive

bias of the neural network. Our approach follows this line of reasoning in the context of non-

coding RNA. Here, an obvious problem is the limited amount of training data for specific fam-

ilies or motifs of secondary structure. We tackle this problem by a model-based approach that
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generates training data through inverse folding of a given RNA secondary structure. The idea

is to obtain a deep learning model that has explicitly learned secondary structure through

inverse folding, whilst maintaining the unconstrained flexibility to learn unknown and implicit

variances beyond secondary structure subsequent to pre-training.

A key question when using deep learning in the context of ncRNA is whether and, if so,

how far trained models have learned representations of secondary structure. To address this,

we perform systematic in silico mutagenesis experiments that unveil whether a neural network

recognizes secondary structure elements.

We establish our in silico mutagenesis approach in the context of identifying intrinsic tran-

scription terminators in bacteria. These RNA elements can be found at the 3’-end of RNAs,

where they initiate the termination of transcription elongation. In distinction from other ter-

mination types, which involve proteins that either cause damaging (e.g. Mfd) or dissolving

(e.g. Rho) of the elongation complex, intrinsic terminators are also known as Rho-independent

terminators.

Background

In recent years, numerous deep learning approaches have been proposed to predict RNA sec-

ondary structures with or without pseudoknots, utilizing a diversity of input encodings, output

formats and network architectures.

Input formats. Arguably the most common input encoding for nucleotide sequences is

one-hot encoding of the input sequence, in which each sequence position is represented by four

input neurons, one for each of the four nucleotides, so that a sequence of length L is repre-

sented as a binary L × 4 matrix [12, 16–19] as displayed in Fig 1 (top). This input format has

been combined with different additional information, including position embedding [16, 17],

base frequency [12], and partition function [12, 20]. The other common input format trans-

forms the sequence of length L into an L × L matrix [21, 22] which scores potential comple-

mentary base pairings in the sequence as displayed in Fig 1 (bottom). In a recent variant, this

matrix representation was extended by encoding alternative pairings in additional channels

[11, 23].

Network architectures. Various deep learning architectures have been used for RNA

structure prediction. The smaller fraction of these utilizes long short-term memory cells

(LSTMs) [12, 18, 24]. Although LSTMs are conceptually predestined for processing sequential

data [25], most approaches dealing with ncRNAs utilize different variants of convolutional

neural networks (CNNs) [16, 17, 21], including CNN variants derived from GoogLeNet [22]

and U-Net [11]. References [16] and [17] additionally introduced the idea of enhancing

important sequence features via an attention mechanism [26]. [13] combined different net-

work architectures by stacking a CNN and LSTM layers. [19] combined ResNet blocks [27]

and a 2D-bidirectional LSTM layer.

Post processing. The output of most deep learning models for RNA structure is a matrix

representing base pair probabilities. Some authors [12, 21, 22, 24] obtain probabilities for

parentheses strings from this matrix, while other authors produce base pairing probabilities

for each possible base pair in an L × L matrix [11, 16, 19, 23]. In both cases, the model output

may involve inconsistent base pairing patterns, so that most proposed methods include a post-

processing step which maximizes the number of base pairs [24] or the probability sum [21–23]

in the final output structure. In contrast to other methods, [13] predict folding scores for helix

stacking, helix opening, helix closing and unpaired regions rather than pairing probabilities,

and combine these with energy parameters [28]and Zuker-style dynamic programming [3].
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Transfer learning. One common issue in deep learning is the quantitative lack of labeled

data with sufficient quality. To address this problem, Singh et al. [19] introduced a transfer

learning [29] approach, based on a first round of training on more than 10,000 sequences from

the bpRNA [30] database with automatically generated secondary structures. The resulting

model is transfer learned on a very small data set of less then 250 high-resolution RNA struc-

tures. In a further study, Singh et al. [20] combine this approach with blastn [31] based homol-

ogy search and the covariance based secondary structure models implemented in infernal [32].

The neural network integrates the one-hot encoded sequence along with base pair probabilities

predicting from a partition function [33]. Additionally, a direct-coupling-analysis was per-

formed, whose output also represents an input feature for the CNN.

Intrinsic transcription terminators

Transcription terminators are located at the 3’-end of RNA transcripts, as hindmost RNA ele-

ment upstream of the transcription termination site. They ensure that the transcription pro-

cess is terminated at defined 3’ends of transcripts. This prevents overflowing and incorrect

transcription of adjacent genes, as well as mutual interference of transcription machinery [34].

Thus terminators are one of the basic elements for the orderly flow of regulatory processes.

The forced dissociation of the transcription complex also enables the recycling of the elements

involved [35].

The sequence of intrinsic terminators can be divided into several sections (Fig 2A): the cen-

ter of the sequence is formed by a GC-rich hairpin. From this, an A-rich region (A-tail)

stretches in 5’-direction, and a U-rich region (U-tail) can be found at the 3’-end [36] which

acts as a pausing site for the RNA polymerase [37]. This pausing, enhanced by additional ele-

ments [38], temporarily suspends the change of thermodynamic parameters by constant

Fig 1. Model architectures and training strategy. The model input is formed by terminator sequences. In the pre-trained model, the models are first

trained with inverse-folding based data before training with terminator sequences. These pre-training data feature the structure of terminators, but not

their specific sequence properties. The input data are either one-hot encoded and fed into a 1D-CNN, or matrix encoded and then passed into a

2D-CNN. Both CNN architectures are followed by a fully connected layer and a single output neuron.

https://doi.org/10.1371/journal.pcbi.1010240.g001
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elongation of the transcript and allows the stable hairpin to form [39]. The hairpin then

extends, hijacking about 3 bp from the RNA:DNA hybrid, which destabilizes the elongation

complex and eventually initiates the dissociation of the complex [40]. Nonetheless, the exact

mechanistic details are still a subject of discussion [41, 42].

Fig 2. Impact of sequence and structure on terminator and tRNA recognition. (A) Intrinsic terminators comprise five sections: The hairpin

structure in the center consists of a stem and a loop, framed by an A-rich zone (A-tail) on the 5’-end and a longer U-rich zone (U-tail) on the 3’-end.

The terminator data used in this study additionally contain adjacent genomic sequences of the terminator (left pad and right pad). (B) Impact of

terminator sections as relative activation impact on CNN models (left) and relative detection impact on ARNold (right). Random mutations were

introduced in each of the 7 sections of the transcription terminators. The relative activation impact on the models is calculated from the difference

between the model output corresponding to the original sequences and sequences with random nucleotide mutations in half of all nucleotides per

section. The relative detection impact for ARNold is calculated for the same mutated sequences, and is estimated by averaging over binary outputs

across the mutation data set. (C) Impact of the base pairings in the stem of terminators for a growing number of mutated base pairs as relative activation

impact on CNN models and relative detection impact on ARNold. The relative activation impact is calculated from the difference between the model

output corresponding to mutations which retain or disrupt the pairing state in the stem structure. The relative detection impact for ARNold is

calculated for the same mutated sequences, and is estimated by averaging over binary outputs across the mutation data set. (D) Relative activation

impact of the base pairings in the stems of tRNAs on CNN models, for a growing number of mutated base pairs. The relative activation impact is

calculated from the difference between the model output corresponding to mutations which retain or disrupt the pairing state in the stem structure. (B),

(C): For k = 1, . . ., 10 and n 2 {93, 84, 102, 91, 94, 92, 93, 113, 99, 92} (D): For k = 1, . . ., 10 and n 2 {198, 203, 194, 202, 201, 201, 199, 201, 194, 201}.

https://doi.org/10.1371/journal.pcbi.1010240.g002
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The importance of defined 3’-ends for the regulatory processes of transcription is widely

acknowledged. Their transcriptome-wide characterization, however, has so far lagged behind

that of 5’-ends. In the past decade, RNA-Seq-based methods have been developed further,

which enabled the transcriptome-wide investigation of transcription start sites. These include

differential RNA-Seq [43], tagRNA-Seq [44] and Cappable-seq [45]. More recently, an analo-

gous method was developed for the targeted analysis of transcription endpoints: Term-Seq is a

high-throughput sequencing approach, aiming for transcriptome-wide discovery of transcrip-

tion termination sites in bacteria [46], and has been further developed to allow for direct quan-

tification of termination efficiency [47].

Simultaneous 5’ and 3’ end sequencing (SEnd-seq) is a different approach to identify tran-

scription termination ends, along with their associated start sites [48]. The key step in this

approach is the circularization of cDNA, where 5’- and a biotin-labeled 3’-ends are ligated.

After shearing of the cDNA-ring, the biotin-labeled pieces can be isolated, sequenced and used

to map transcription start sites and termination sites on a nucleotide-level resolution. By iden-

tifying transcription termination sites, Term-Seq as well as SEnd-seq can indicate the position

of transcription terminators.

Predicting intrinsic terminators. The correct annotation of intrinsic transcription termi-

nators is an important part of the deciphering of transcription processes and their underlying

rules and mechanisms. As their experimental identification is challenging, various attempts

have been made to solve this problem [49–54]. To date, most automated tools for intrinsic ter-

minator detection are based on a combination of stem stability estimation and motif finding

[55–57]. Since systematic and experimentally validated annotations of terminators are only

available in Escherichia coli and Bacillus subtilis, our study relies on data from these two spe-

cies. Although there are remarkable similarities across the species studied to date, differences

can be found as well: While the hairpin structure in B. subtilis contains more base pairs and is

more stable, the U-stretch has a slightly larger U-content in E. coli [58]. The terminator effi-

ciency of individual terminators is not necessarily transferable to other species [59]. Yet, the

basic characteristics of the terminators are similar among the terminators of these two well-

studied species [58, 60], and U-tail, as well as hairpin, have been demonstrated to be universal

elements for functionality in bacteria [59].

Materials and methods

Training data for transcription terminators

Sequences of rho-independent transcription terminators from two experimental studies about

E. coli [60] and B. subtilis [58] were used to train, test and validate different deep learning mod-

els. The terminator sequences were first filtered for sequence length. Terminators with a length

of more than 75 nt were discarded, leaving 316 sequences from E. coli and 859 sequences from

B. subtilis. Shorter sequences were padded to a length of 75 nt using the surrounding genomic

sequences. Genomic sequences from random non-terminator regions from both organisms

were used as negative set. The negative set was chosen with the same balance of genome origin

as well as strand orientation as the terminator data. While the amount of available positive

training data is limited to experimentally validated terminators, the possible negative training

data are only limited by the genome size of the two species included in this study. To increase

the number of data points for model training, we used threefold more negative training data

than terminators. The final data set included 1175 terminator and 3525 non-terminator

sequences.
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Training data for tRNAs

The tRNA sequences used for training and testing of the models were gathered from the

tRNA-DB [61]. All available tRNA sequences from Gamma-Proteobacteria were included.

Duplicated sequences as well as species without available genome assemblies were elimi-

nated, leaving 1380 tRNA sequences from 48 species in the positive set. The sequences were

padded to a length of 95 nt by adding the adjacent DNA up- and downstream of the tRNA.

Additionally, 3906 random non-tRNA sequences were extracted from the 48 genomes, keep-

ing the ratio of positive and negative training samples roughly the same as in the terminators

data set.

Deep learning approaches

We compare two different network topologies. First, a one-hot-encoding based CNN, hence-

forth referred to as one-hot CNN and secondly a matrix-encoding based CNN, referred to as

matrix CNN throughout the rest of the manuscript. Each of the two topologies is assessed

with and without a newly proposed pre-training approach. As a third topology, a state-of-

the-art long-short-term memory recurrent neural network topology has been examined. Due

to its comparatively weak performance, the topology along with validation are presented in

S1 Fig.

The convolutional layer of the one-hot CNN comprises of 30 filters, with a kernel size of 10

and an rectified linear activation function. The next layer is formed by a Max-Pooling layer

with a pool-size of 5 and a dropout rate of 0.2. This is followed by two fully connected layers, a

first dense layer with 360 nodes, which uses a rectified linear activation function, and a second

fully connected layer with 30 units and sigmoid activation function. The output layer is formed

by a single output neuron. Adamax [62] was used as optimizer, in line with previous work

[19]. The one-hot encoding layer encodes each nucleotide of an input sequence as a a bit-wise

vector of length 4 with one high and three low bits. The encoded sequence is represented by an

L × 4 matrix, with L being the sequence length.

The matrix CNN uses an L × L matrix as input, in which the self-pairing potential within

the input sequence is described. To reflect the varying stability of the two Watson-Crick base

pairs and the so-called wobble base pairs, G–C, A–U and G–U pairings are weighted with 1,

0.66 and 0.33, respectively. Nucleotide pairs not forming one of the three base pairs are repre-

sented as 0. For the sake of comparability with the one-hot CNN, all other parameters of the

matrix CNN architecture are the same as in the one-hot CNN. The output layer of all models

was formed by a single output neuron, which binary discriminates between a terminator and a

non-terminator input.

Cross validation

For training, testing and validation, the data were randomly split into 0.70%, 0.15% and 0.15%,

respectively. Monte Carlo cross-validation was used, for which the random split was carried

out ten times. Each of the ten resulting data sets was used to train, test and validate all models

used in this study. Throughout the training, the accuracy of the training data was used to assess

model performance. The training was stopped when the accuracy of the test set did not

improve further. Recall, specificity and F1-score of all models was determined on the corre-

sponding validation set, and the area under precision-recall curve (AUPRC) was calculated for

all models. The differences between the model types in F1-score as well as the AUPRC were

tested with the Wilcoxon rank-sum test. The p-values of this test are indicated by asterisks in

the corresponding Fig 3. Exact values are additionally stated in S2A and S2B Fig.
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Inverse-folding based pre-training

To gain training data with terminator-like secondary structures, we used the structure of B.
subtilis terminators, as previously published by [58], and generated structure-equivalent

sequences. As surveyed in [63], several algorithms have been proposed to determine sequences

that fold into a given structure. We chose the well-established RNAinverse [64] for the inverse

folding, which is implemented in the RNAlib module [65]. This process yields our pre-training

set comprising 3623 terminator-shaped RNAs and 3623 random sequences of the same length.

The inverse-folding generated sequences have a less pronounced GC-bias than the original

transcription terminators (S3 Fig), indicating that no further sequence-bias is introduced

through pre-training. 85% of the inverse-folding based data were used for the pre-training,

and 15% were used to determine the early stopping point of the pre-training. 5905 random

sequences with tRNA-like structures were generated accordingly, with structures deriving

from the entire training set of tRNAs. The negative set for pre-training of tRNA structures was

formed by 5905 random sequences of the same length. The inverse-folding data based on

Fig 3. Performance comparisons. F1-score (A), area under precision-recall curve (B) and precision-recall curve (C, D) of one-hot CNN and

matrix CNN with and without pre-training. The performance of ARNold on the same validation data is indicated in grey. The p-value of the

Wilcoxon rank-sum test between each model x and y is indicated as coloured dot above model x, and as asterisks above model y, with �:

p� 0.05, ��: p� 0.005, ���: p� 0.001.

https://doi.org/10.1371/journal.pcbi.1010240.g003
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tRNA structures were split into a set for pre-training (80%) and a set for determining early

stopping (20%).

Validation on SEnd-seq data

To confirm the results, we cross-validated the performance of all trained models on a tran-

scriptome-wide detection of transcription boundaries, using the SEnd-seq data set from Ju

et al. [48]. The scan for terminators was limited to the transcribed regions, as published in the

same study. To ensure that entire terminator sequences are included in the scan, each tran-

script was elongated with 150 nt on each end.

The prepared transcriptome was scanned with a sliding window with a step size of 3 nt.

Neighbouring hits with a model output above 0.5 were fused to one hit. For each hit, the cen-

tral nucleotide position and the maximum model output were used to calculate precision and

recall. An additional search for terminators in the transcriptome was performed with ARNold,

again using the central nucleotide as reference position for the ARNold hit.

For each trained model as well as ARNold, predicted terminators with a distance of at most

10, 15, 35, 50, 100, 150 and 250 nt to the next SEnd-seq hit were counted as true positives, and

as true negatives otherwise. SEnd-seq hits with no predicted terminators were considered false

negatives.

Results

Identifying terminators

The one-hot CNN and the matrix CNN were trained with terminator sequences from B. subti-
lis and E. coli, and were evaluated both with and without inverse pre-training. As a first indica-

tor, whether the models successfully learned to identify transcription terminators, precision,

recall, F1-score and AUPRC of the trained models were obtained on the validation data sets

(Fig 3).

The AUPRC as well as the F1-scores of the matrix CNN are significantly higher than of the

one-hot CNN, and higher when the models are pre-trained for all input types. The F1-score

shows that the matrix CNNs performs similarly to ARNold, and the pre-trained matrix CNN

outperforms all other models.

Mutation experiments unravel model attention

After observing a clear performance improvement due to pre-training, the question of model

interpretation arises, i.e., what sequence or structural features the model has learned during

pre-training.

As a way to tackle this question, we introduce a systematic scheme for mutating terminator

sequences and their secondary structure. This allows to observe the effect on model output,

expecting that the model output will be most affected by mutations of important features. Con-

versely, changes of sequence or structural features which are not important should not result

in any changes of the model output.

As displayed in Fig 2A, intrinsic transcription terminators are structurally divided into five

parts through the structural main features of a GC-rich helical enclosing a hairpin loop, framed

by A-residues and U-residues in the tail regions. To assess the identification of these structural

components, we introduced two types of in silico mutagenesis experiments, referred to as sec-
tion-mutations and structure-mutations. The data set for these experiments was established

using all B. subtilis terminators with known secondary structure from each validation set. This
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includes between 84 and 113 sequences for each model. More specifically, 84, 91, 92, 92, 93,

93, 94, 99, 102 and 113 sequences were used for the mutation experiments for the 10 data sets.

In the section-mutation experiment (Fig 2B), we tested which of the sections of a termina-

tor sequence (pad sequence, A-tail, stem, loop, U-tail) had an impact on the terminator recog-

nition. For each of the 7 sections, half of all nucleotides were randomly mutated. This was

repeated 15 times for each sequence in all validation sets. The relative activation impact of the

section on the model was calculated for each section in every validation set as 1 � ð�xS=�x0Þ,

with �x0 and �xS being the averaged model output, corresponding to the original sequences and

the mutated sequences, respectively. The relative activation impact of each section on each

model is displayed in S4 Fig.

As the section mutation experiments displayed in Fig 2B clearly show, pre-training strongly

shifts attention towards the structured hairpin regions. This attention-shift leaves open

whether the model learned RNA structure or rather a hidden sequence motif. To further inves-

tigate the impact of the stem stability on the model, we additionally introduced structure-

mutations of the mutation validation set (Fig 2C). An increasing number of base pairs was ran-

domly picked from the stem region. Both nucleotides involved in the pairing were mutated,

following rules which either retained or disrupted the base pairing. This was repeated 15 times

per mutation type for each sequence in each validation set. The model output for each muta-

tion type is shown in S5 Fig. The relative activation impact of the stem stability on the model

was calculated as 1 � ð�xd=�xrÞ, with �xr and �xd denoting the averaged model output, corre-

sponding to mutations retaining and disrupting the stem structure.

The section-mutation as well as structure-mutation sequences of all validation data were

further used as input for ARNold (Fig 2B and 2C). Unlike neural networks, the output of

ARNold is not a real number, but rather the number of hits detected in the tested sequence.

To be able to compare both methodological approaches anyway, the rate of sequences with at

least one terminator detected by ARNold was determined and used as basis for calculating

the relative detection impact of the section-mutation and the structure-mutation experi-

ments. Accordingly, the output of ARNold is not directly comparable to neural network

output.

Results of mutation studies

In the one-hot CNN without pre-training, the U-tail receives the highest attention in the sec-

tion-mutation (Fig 2B), exceeding the attention of all other sections. Consistent with this

observation, the destabilization of the stem has no impact on the model output (Fig 2C).

Inverse folding based pre-training affects the attention pattern of the one-hot CNN substan-

tially. This matches the expectation that inverse pre-training reduces prominence of the U-tail,

while strengthening the identification of RNA structure. The influence of the U-tail is lowered,

and in particular the stem region gains influence in mutation experiments (Fig 2B and 2C).

For the matrix CNN, the impact of the structured stem is considerably higher than for the

one-hot CNN, and the influence of the U-tail is weakened (Fig 2B). Even without inverse pre-

training, the matrix encoding clearly strengthens the identification of structuring elements.

This matches expectations since the matrix encoding accounts for all possible self pairing

structures within the RNA molecule.

Attention to structural features is further enhanced when combining the matrix CNN with

inverse pre-training. In fact, the two stem sites can be identified as the part which has by far

the largest influence on model output, nearly matching the impact pattern of ARNold (Fig

2B). The reason for this effect is apparently not, or at least not exclusively, an increased recog-

nition of a sequence motif in the area. The destruction of the stem stability also has a drastic
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influence. This can be seen from the fact that the model output drops drastically with the

destruction of the base pairings (Fig 2C).

In order to assess whether the observed effects of inverse pre-training and matrix encoding

on the identification of stem stability extends to more complex structures, we repeated the

training of all models with tRNA sequences, and repeated the introduction of retaining and

destabilizing mutations in the stems of tRNAs (Fig 2D and S6 Fig). The results were similar to

the findings from mutation experiments with terminators: The matrix CNN reacted stronger

to destabilizing mutations compared to the one-hot CNN. The same effect was observed when

the model was pre-trained with inversely generated sequences. This confirms that both meth-

ods shift the focus of the model from the nucleotide sequence to the secondary structure.

In summary, we observe that inverse pre-training consistently and significantly affects

attention towards secondary structure, with matrix encoded input starting at a higher baseline

than one-hot encoded input.

Transcriptome annotation

In order to assess whether neural networks are suitable for detecting RNA elements on a tran-

scriptome-wide scale, we tested our trained models on the transcription termination sites of E.
coli using the SEnd-seq-based results from [48].

We predicted terminators around the determined transcript ends with all trained models

(Fig 4A). The average model output peaked at up to 35 nt upstream of the termination site for

all our model types, where the terminator hairpin is located.

We then scanned the E. coli transcriptome for terminators, and calculated precision and

recall, using the determined transcript ends as ground truth. Predicted terminators were

counted as true positives if the distance to the next SEnd-seq hit did not exceed 10 nt, and false

positive otherwise. SEnd-seq hits with no terminator predicted in the 10 closest nucleotides

were counted as false negatives. We calculated the area under precision-recall curve (AUPRC)

for these results, and compared them with the AUPRC for distance thresholds of 15, 35, 50,

100, 150 and 250 nts (Fig 4B). The AUPRC reached a local maximum at a distance threshold

of 35 nt. Considering that the model input spans over 75 nt and the termination site is placed

upstream of the detected terminator, a distance of about 35 nt to the termination site is

expected for large terminators of a maximum length of 70 nt, while the termination site would

still be included in the model input.

We compared the neural network based predictions with ARNold as a reference method.

We computed the precision and recall at a distance threshold of 35 nt for ARNold’s 1304 hits

and compared them to the precision-recall curves of the neural-networks based transcriptome

scans (Fig 4C). The transcriptome-scan of the pre-trained matrix CNN was of the same reli-

ability as the one performed with ARNold. Both matrix CNNs outperformed the two one-hot

CNNs, and the pre-training of the matrix CNN significantly improved the result. Thus, the

ability of the models to detect terminators in the transcriptome was positively correlated with

their ability to recognize RNA structures, indicating that structure recognition is a beneficial

ability in the case of terminator detection.

Discussion

We introduced inverse folding based pre-training for different neural network architectures,

and demonstrated its effectiveness for the identification of secondary structure motifs of

ncRNAs, specifically in the context of identifying intrinsic transcription terminators and

tRNAs.
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Our inverse pre-training differs from the transfer learning method proposed by Singh et al.

[19] in two ways. First, inverse pre-training does not require large numbers of sequences with

reference secondary structure, and secondly, inverse pre-training is intended to be family spe-

cific by generating training sequences for one specific family of non-coding RNA.

The effectiveness of pre-training is observed consistently across different neural network

architectures, covering different CNNs as well as an LSTM model and both ncRNA families

under our investigation. All models were able to learn to detect terminators with considerably

high precision, recall and F1-score on the validation set (Fig 3 and S1B–S1D Fig). Additionally,

all models were able to detect terminators in a transcriptome-wide search, including previ-

ously unseen sequences (Fig 4 and S7 Fig).

Fig 4. Transcriptome annotation of intrinsic terminators. (A) Average model output of one-hot CNN and matrix CNN with and without pre-

training, relative to the position of transcription termination sites identified with SEnd-seq. (B) Average area under precision-recall curve for a

transcriptome-wide search for transcription terminators in E. coli. The distance to transcription termination sites identified with SEnd-seq is

used as ground truth. The distance threshold, up to which a predicted terminator is attributed to a close-by termination site, is varied and shown

on the x-axis. (C) Precision-recall curve for all models at a distance threshold of 35 nt, in comparison to precision and recall of ARNold. (D)

Area under precision-recall curve at a distance threshold of 35 nt. The p-value of the Wilcoxon rank-sum test between each model x and y is

indicated as coloured dot above model x, and as asterisks above model y, with �: p� 0.05, ��: p� 0.005, ���: p� 0.001. N = 10 for each model

type in A and B.

https://doi.org/10.1371/journal.pcbi.1010240.g004
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The non-pretrained one-hot CNN shows limitations in the capability of recognizing RNA

structures. However, with matrix encoding and inverse pre-training we identified two strate-

gies to enhance the structure recognition and to direct the attention of neural networks on sec-

ondary structures.

The structural information obtained during pre-training was apparently preserved

throughout the main training with real terminator data. We were able to detect the sustainabil-

ity of this pre-training effect in mutation experiments, in which we detected a higher impact of

the stem structure on pre-trained models compared to models without inverse pre-training

(Fig 2). Interestingly, the effect was transferable onto another deep learning topology, more

specifically an LSTM (S8B and S8C Fig), where the impact of the structure on terminator

detection was also enhanced after pre-training the model.

Second, we adjusted the encoding technique to provide more information about possible

base pairings in the terminator sequence. We used a matrix to encode G–C, A–U and G–U

pairings, with entries according to the pairing stability. By providing information about the

stability directly, this feature was moved further into focus of the learning process. Interest-

ingly, models which had an enhanced structure recognition ability also performed better in

detecting all terminators in the validation set and thus had a higher precision and recall on the

validation set (Fig 3), and the matrix CNN also had a higher precision and recall in the tran-

scriptome scan (Fig 4D). The pre-trained LSTM also showed a slightly higher response

towards structural changes of the stem region (S8B and S8C Fig). However, it did not outper-

form the naive LSTM in precision and recall on the validation set (S1C and S1D Fig) nor in

the transcriptome scan (S7D Fig).

It must be noted that all training and validation in the course of this study have been per-

formed with data from the same species, B. subtilis and E. coli. Transcription terminators in

other species might differ in various characteristics, and thus be overlooked when no similar

terminators are included in the training data. For example, in genomes with a divergent GC-

content, terminators could be expected to have a differing U-frequency in the 3’-end. Nonethe-

less, the existence of a U-tail is known to be required for the function of a terminator [59]. It is

therefore advantageous that the recognition of U-tails is not completely vanished when the

models learn RNA structures.

The inevitable restriction to B. subtilis and E. coli data also inherently limits the generaliz-

ability of the trained models. Recently, [59] re-tested intrinsic terminators from the study of

[58] on B. subtilis. They did not find sufficient termination efficiency for 5 of the 80 tested

sequences. Like all data-driven methods, the models we present here reproduce biases and

errors from the underlying data sets. With the increasing availability of high-throughput meth-

ods like term-seq [46] and SEnd-seq [48], however, more large-scale studies might be available

soon. A systematic comparison with such experimental data will provide a clear characteriza-

tion of those terminators that could be identified by our deep learning approach, but not by

previous approaches (Fig 4C).

Conclusion

Deep learning models for RNA secondary structure lack precision whenever the structure of a

target RNA is not represented or underrepresented in the training data. Our newly proposed

inverse folding based pre-training method promises to overcome this limitation whenever the

target secondary structure is sufficiently well understood. Our pre-training easily extends to

larger and more complex RNA structures, and provides an almost unlimited number of sam-

ples for the pre-training rounds. We successfully tested RNAinverse to generate pre-training

data [64, 65]. For structure classifications with even fewer known RNA structures or structural
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patterns defined by more abstract RNA shapes, the method could be further expanded by

applying other inverse folding algorithms [63]. As we demonstrated, inverse pre-training does

not hinder the model from learning additional features in the subsequent main training, while

the features learned during the pre-training do not fall into oblivion.

RNA secondary structure depends not only on the primary sequence, but also on other fac-

tors such as RNA modifications [66] which are known to be identifiable by neural networks

[67, 68]. While it is difficult to combine such factors with secondary structure constraints in

model-based approaches, neural networks provide an attractive model-free alternative. From

this perspective, our inverse folding based pre-training provides means by which model-based

understanding can be transferred to a neural network. Identifying signals of less understood

factors of an ncRNA family is then left to the subsequent main training of the network. By

investigating the structure prediction of the stem loop and the motif recognition of the U-tail,

our work constitutes a first step in this direction.

Supporting information

S1 Fig. Model architecture and measure of LSTM models. Model architecture (A), F1-score

(B), area under precision-recall curve (C) and precision-recall curve (D) of the LSTM with and

without pre-training on the validation data.

(TIF)

S2 Fig. Wilcoxon rank-sum test. P-values of Wilcoxon rank-sum tests of the F1-score (Figs

3A and S1A), the area under precision-recall curve tested on the validation data sets (Fig 2B

and S1B Fig), and the area under precision-recall curve tested on the transcriptome scan (Figs

4D and S7D).

(TIF)

S3 Fig. GC–content of training and pre-training data. GC–content of terminators and nega-

tive data in the training set as well as the inverse-folding based data and negative data in the

pre-training set.

(TIF)

S4 Fig. Impact of section mutations in terminators. Relative activation impact of pre-trained

and non-pre-trained one-hot CNN (A, D), matrix CNN (B, E) and one-hot LSTM (C, F), as

well as relative detection impact of ARNold (G), for all k = 10 validation sets, corresponding to

point mutations in different terminator sections. For k = 1, . . ., 10 and n 2 {93, 84, 102, 91, 94,

92, 93, 113, 99, 92}.

(TIF)

S5 Fig. Impact of base pair mutations in terminators. Model output of pre-trained and non-

pre-trained one-hot CNN (A, D), matrix CNN (B, E) and one-hot LSTM (C, F), as well as

detection rate of ARNold (G), corresponding to an increased number of mutated base pairs in

terminators. The mutations either retain (blue) or disrupt (red) the pairing in the stem. The

model output is averaged over k = 10 trained models.

(TIF)

S6 Fig. Impact of base pair mutations in tRNAs. Model output of pre-trained and non-pre-

trained one-hot CNN (A, D), matrix CNN (B, E) and one-hot LSTM (C, F), corresponding to

an increased number of mutated base pairs in tRNAs. The mutations either retain (blue) or

disrupt (red) the pairing in the stem. The model output is averaged over k = 10 trained models.

(TIF)
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S7 Fig. Transcriptome annotation of intrinsic terminators with LSTM models. (A) Average

model output of the LSTMs with and without pre-training, relative to the position of transcrip-

tion termination sites identified with SEnd-seq. (B) Average area under precision-recall curve

for a transcriptome-wide search for transcription terminators in E. coli. The distance to tran-

scription termination sites identified with SEnd-seq is used as ground truth. The distance

threshold, up to which a predicted terminator is attributed to a close-by termination site, is

varied and shown on the x-axis. (C) Precision-recall curve for LSTMs with and without pre-

training at a distance thresholds of 35 nt, in comparison to precision and recall of ARNold.

(D) Area under precision-recall curve at a distance threshold of 35 nt. The p-value of the Wil-

coxon rank-sum test between each model x and y is indicated as coloured dot above model x,

and as asterisks above model y, with ��: p� 0.005. N = 10 for each model type in A and B.

(TIF)

S8 Fig. Impact of sequence and structure on terminator and tRNA recognition of LSTM

models. (A) Relative activation impact of terminator sections on LSTM models. Random

mutations were introduced in each of the 7 sections of the transcription terminators. The rela-

tive activation impact on the models is calculated from the difference between the model out-

put corresponding to the original sequences and sequences with random nucleotide mutations

in half of all nucleotides per section. (B) Relative activation impact of the base pairings in the

stem of terminators on LSTM models, for a growing number of mutated base pairs. The rela-

tive activation impact is calculated from the difference between the model output correspond-

ing to mutations which retain or disrupt the pairing state in the stem structure. (C) Relative

activation impact of the base pairings in the stems of tRNAs on LSTM models, for a growing

number of mutated base pairs. The relative activation impact is calculated from the difference

between the model output corresponding to mutations which retain or disrupt the pairing

state in the stem structure. (A), (B): For k = 1, . . ., 10 and n 2 {93, 84, 102, 91, 94, 92, 93, 113,

99, 92} (C): For k = 1, . . ., 10 and n 2 {198, 203, 194, 202, 201, 201, 199, 201, 194, 201}.

(TIF)

Author Contributions

Conceptualization: Vivian B. Brandenburg, Franz Narberhaus, Axel Mosig.

Funding acquisition: Franz Narberhaus.

Investigation: Vivian B. Brandenburg.

Methodology: Vivian B. Brandenburg, Axel Mosig.

Software: Vivian B. Brandenburg.

Supervision: Franz Narberhaus, Axel Mosig.

Validation: Vivian B. Brandenburg.

Visualization: Vivian B. Brandenburg.

Writing – original draft: Vivian B. Brandenburg, Axel Mosig.

Writing – review & editing: Vivian B. Brandenburg, Franz Narberhaus, Axel Mosig.

References
1. Cech TR, Steitz JA. The noncoding RNA revolution—trashing old rules to forge new ones. Cell. 2014;

157(1):77–94. https://doi.org/10.1016/j.cell.2014.03.008 PMID: 24679528

PLOS COMPUTATIONAL BIOLOGY Inverse folding based pre-training for identifying terminators

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010240 July 7, 2022 15 / 19

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010240.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010240.s008
https://doi.org/10.1016/j.cell.2014.03.008
http://www.ncbi.nlm.nih.gov/pubmed/24679528
https://doi.org/10.1371/journal.pcbi.1010240


2. Mathews DH, Turner DH. Prediction of RNA secondary structure by free energy minimization. Current

Opinion in Structural Biology. 2006; 16(3):270–278. https://doi.org/10.1016/j.sbi.2006.05.010 PMID:

16713706

3. Zuker M, Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and aux-

iliary information. Nucleic Acids Research. 1981; 9(1):133–148. https://doi.org/10.1093/nar/9.1.133

PMID: 6163133

4. Eddy SR. Profile hidden Markov models. Bioinformatics (Oxford, England). 1998; 14(9):755–763.

https://doi.org/10.1093/bioinformatics/14.9.755 PMID: 9918945

5. Nawrocki EP, Kolbe DL, Eddy SR. Infernal 1.0: inference of RNA alignments. Bioinformatics. 2009; 25

(10):1335–1337. https://doi.org/10.1093/bioinformatics/btp157 PMID: 19307242

6. Mosig A, Sameith K, Stadler P. Fragrep: an efficient search tool for fragmented patterns in genomic

sequences. Genomics, Proteomics & Bioinformatics. 2006; 4(1):56–60. https://doi.org/10.1016/S1672-

0229(06)60017-X PMID: 16689703

7. Macke TJ, Ecker DJ, Gutell RR, Gautheret D, Case DA, Sampath R. RNAMotif, an RNA secondary

structure definition and search algorithm. Nucleic Acid Research. 2001; 29(22):4724–4735. https://doi.

org/10.1093/nar/29.22.4724 PMID: 11713323

8. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein struc-

ture prediction with AlphaFold. Nature. 2021; 596(7873):583–589. https://doi.org/10.1038/s41586-021-

03819-2 PMID: 34265844

9. Quang D, Xie X. DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the

function of DNA sequences. Nucleic Acids Research. 2016; 44(11):e107. https://doi.org/10.1093/nar/

gkw226 PMID: 27084946

10. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation.

In: International Conference on Medical image computing and computer-assisted intervention.

Springer; 2015. p. 234–241.

11. Fu L, Cao Y, Wu J, Peng Q, Nie Q, Xie X. UFold: Fast and Accurate RNA Secondary Structure Predic-

tion with Deep Learning. bioRxiv. 2021; p. 2020.08.17.254896.

12. Lu W, Tang Y, Wu H, Huang H, Fu Q, Qiu J, et al. Predicting RNA secondary structure via adaptive

deep recurrent neural networks with energy-based filter. BMC Bioinformatics. 2019; 20(25):684. https://

doi.org/10.1186/s12859-019-3258-7 PMID: 31874602

13. Sato K, Akiyama M, Sakakibara Y. RNA secondary structure prediction using deep learning with ther-

modynamic integration. Nature Communications. 2021; 12(1):941. https://doi.org/10.1038/s41467-021-

21194-4 PMID: 33574226

14. Guidotti R, Monreale A, Ruggieri S, Turini F, Giannotti F, Pedreschi D. A survey of methods for explain-

ing black box models. ACM computing surveys (CSUR). 2018; 51(5):1–42. https://doi.org/10.1145/

3236009

15. Baxter J. A model of inductive bias learning. Journal of artificial intelligence research. 2000; 12:149–

198. https://doi.org/10.1613/jair.731

16. Wang Y, Liu Y, Wang S, Liu Z, Gao Y, Zhang H, et al. ATTfold: RNA Secondary Structure Prediction

With Pseudoknots Based on Attention Mechanism. Frontiers in Genetics. 2020; 11. https://doi.org/10.

3389/fgene.2020.612086 PMID: 33384721

17. Chen X, Li Y, Umarov R, Gao X, Song L. RNA Secondary Structure Prediction By Learning Unrolled

Algorithms. arXiv:200205810 [cs, stat]. 2020;.

18. Mao K, Wang J, Xiao Y. Prediction of RNA secondary structure with pseudoknots using coupled deep

neural networks. Biophysics Reports. 2020; 6(4):146–154. https://doi.org/10.1007/s41048-020-00114-

x

19. Singh J, Hanson J, Paliwal K, Zhou Y. RNA secondary structure prediction using an ensemble of two-

dimensional deep neural networks and transfer learning. Nature Communications. 2019; 10(1):5407.

https://doi.org/10.1038/s41467-019-13395-9 PMID: 31776342

20. Singh J, Paliwal K, Zhang T, Singh J, Litfin T, Zhou Y. Improved RNA secondary structure and tertiary

base-pairing prediction using evolutionary profile, mutational coupling and two-dimensional transfer

learning. Bioinformatics. 2021; 37(17):2589–2600. https://doi.org/10.1093/bioinformatics/btab165

PMID: 33704363

21. Zhang H, Zhang C, Li Z, Li C, Wei X, Zhang B, et al. A New Method of RNA Secondary Structure Predic-

tion Based on Convolutional Neural Network and Dynamic Programming. Frontiers in Genetics. 2019;

10. https://doi.org/10.3389/fgene.2019.00467 PMID: 31191603

22. Shen B, Zhang H, Li C, Zhao T, Liu Y. Deep Learning Method for RNA Secondary Structure Prediction

with Pseudoknots Based on Large-Scale Data. Journal of Healthcare Engineering. 2021; 2021:

e6699996.

PLOS COMPUTATIONAL BIOLOGY Inverse folding based pre-training for identifying terminators

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010240 July 7, 2022 16 / 19

https://doi.org/10.1016/j.sbi.2006.05.010
http://www.ncbi.nlm.nih.gov/pubmed/16713706
https://doi.org/10.1093/nar/9.1.133
http://www.ncbi.nlm.nih.gov/pubmed/6163133
https://doi.org/10.1093/bioinformatics/14.9.755
http://www.ncbi.nlm.nih.gov/pubmed/9918945
https://doi.org/10.1093/bioinformatics/btp157
http://www.ncbi.nlm.nih.gov/pubmed/19307242
https://doi.org/10.1016/S1672-0229(06)60017-X
https://doi.org/10.1016/S1672-0229(06)60017-X
http://www.ncbi.nlm.nih.gov/pubmed/16689703
https://doi.org/10.1093/nar/29.22.4724
https://doi.org/10.1093/nar/29.22.4724
http://www.ncbi.nlm.nih.gov/pubmed/11713323
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
http://www.ncbi.nlm.nih.gov/pubmed/34265844
https://doi.org/10.1093/nar/gkw226
https://doi.org/10.1093/nar/gkw226
http://www.ncbi.nlm.nih.gov/pubmed/27084946
https://doi.org/10.1186/s12859-019-3258-7
https://doi.org/10.1186/s12859-019-3258-7
http://www.ncbi.nlm.nih.gov/pubmed/31874602
https://doi.org/10.1038/s41467-021-21194-4
https://doi.org/10.1038/s41467-021-21194-4
http://www.ncbi.nlm.nih.gov/pubmed/33574226
https://doi.org/10.1145/3236009
https://doi.org/10.1145/3236009
https://doi.org/10.1613/jair.731
https://doi.org/10.3389/fgene.2020.612086
https://doi.org/10.3389/fgene.2020.612086
http://www.ncbi.nlm.nih.gov/pubmed/33384721
https://doi.org/10.1007/s41048-020-00114-x
https://doi.org/10.1007/s41048-020-00114-x
https://doi.org/10.1038/s41467-019-13395-9
http://www.ncbi.nlm.nih.gov/pubmed/31776342
https://doi.org/10.1093/bioinformatics/btab165
http://www.ncbi.nlm.nih.gov/pubmed/33704363
https://doi.org/10.3389/fgene.2019.00467
http://www.ncbi.nlm.nih.gov/pubmed/31191603
https://doi.org/10.1371/journal.pcbi.1010240


23. Booy MS, Ilin A, Orponen P. RNA secondary structure prediction with Convolutional Neural Networks.

bioRxiv. 2021; p. 2021.05.24.445408.

24. Wang L, Liu Y, Zhong X, Liu H, Lu C, Li C, et al. DMfold: A Novel Method to Predict RNA Secondary

Structure With Pseudoknots Based on Deep Learning and Improved Base Pair Maximization Principle.

Frontiers in Genetics. 2019; 10. https://doi.org/10.3389/fgene.2019.00143 PMID: 30886627

25. Hochreiter S, Schmidhuber J. Long Short-Term Memory. Neural Computation. 1997; 9(8):1735–1780.

https://doi.org/10.1162/neco.1997.9.8.1735 PMID: 9377276

26. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention Is All You Need.

arXiv:170603762 [cs]. 2017;.

27. He K, Zhang X, Ren S, Sun J. Identity Mappings in Deep Residual Networks. In: Leibe B, Matas J, Sebe

N, Welling M, editors. Computer Vision – ECCV 2016. Lecture Notes in Computer Science. Cham:

Springer International Publishing; 2016. p. 630–645.

28. Turner DH, Mathews DH. NNDB: the nearest neighbor parameter database for predicting stability of

nucleic acid secondary structure. Nucleic Acids Research. 2010; 38(Database issue):D280–D282.

https://doi.org/10.1093/nar/gkp892 PMID: 19880381

29. Pan SJ, Yang Q. A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineer-

ing. 2010; 22(10):1345–1359. https://doi.org/10.1109/TKDE.2009.191

30. Danaee P, Rouches M, Wiley M, Deng D, Huang L, Hendrix D. bpRNA: large-scale automated annota-

tion and analysis of RNA secondary structure. Nucleic Acids Research. 2018; 46(11):5381–5394.

https://doi.org/10.1093/nar/gky285 PMID: 29746666
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