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eigenvalues of the covariance 
matrix as early warning signals for 
critical transitions in ecological 
systems
shiyang Chen1, eamon B. o’Dea2,3, John M. Drake2,3 & Bogdan I. epureanu1

Many ecological systems are subject critical transitions, which are abrupt changes to contrasting states 
triggered by small changes in some key component of the system. temporal early warning signals such 
as the variance of a time series, and spatial early warning signals such as the spatial correlation in a 
snapshot of the system’s state, have been proposed to forecast critical transitions. However, temporal 
early warning signals do not take the spatial pattern into account, and past spatial indicators only 
examine one snapshot at a time. In this study, we propose the use of eigenvalues of the covariance 
matrix of multiple time series as early warning signals. We first show theoretically why these indicators 
may increase as the system moves closer to the critical transition. then, we apply the method to 
simulated data from several spatial ecological models to demonstrate the method’s applicability. 
This method has the advantage that it takes into account only the fluctuations of the system about 
its equilibrium, thus eliminating the effects of any change in equilibrium values. The eigenvector 
associated with the largest eigenvalue of the covariance matrix is helpful for identifying the regions that 
are most vulnerable to the critical transition.

Ecological systems can be found in highly contrasting states. For example, shallow lakes may be either clear or 
turbid from an abundance of cyanobacteria1, coral reefs may be highly diverse or dominated by macroalgae2, 
areas of land can be either wooded, grassy and open3, or altogether barren4, and time series of climatic and biolog-
ical indicators of oceans can contain abrupt jumps5. In fact, there is evidence6–8 that some transitions between all 
of these examples of contrasting states may occur abruptly as a consequence of a small change in one component 
of the system—for example, small changes in climate, ground water reduction, harvesting of certain species, and 
so on9,10. These easily triggered, abrupt changes among contrasting states are known as critical transitions.

A great deal of the support for the occurrence of critical transitions in nature relies on the linking of observa-
tions with mathematical models of the various ecological system. The critical transition corresponds to a move-
ment of the mathematical state variables from one dynamical pattern to a qualitatively different one. As such, 
the critical transition is often modelled as a dynamic bifurcation. Such models not only represent how a drastic 
change in the system’s state may occur following a small change in some parameters, but also how this drastic 
change may be irreversible and unrelated to the behavior of the state variables prior to the bifurcation. Evidence 
of such irreversibility in ecological systems includes the observation that shallow lakes dominated by cyanobac-
teria do not return to a clear state immediately following the reduction of nutrient levels11. On the one hand, the 
irreversibility makes the transition more important to avert and therefore predict as a consequence of a given 
course of action. On the other hand, the abruptness of the transition rules out naive forecasting methods such 
as the projection of past trends in the state variables. Nevertheless, analysis of models has suggested a variety of 
methods that may indicate when a critical transition is imminent.

In many models that represent the critical transition as a movement from one stable equilibrium to another, 
the movement is preceded by decreasing asymptotic stability of the equilibrium from which the movement 
occurs. This mathematical phenomenon is referred to as critical slowing down12. The asymptotic stability of the 
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equilibrium of a system of differential equations can often be determined by the eigenvalues of the Jacobian of the 
system evaluated at the equilibrium. The equilibrium is stable if the real part of all of the eigenvalues are negative 
and unstable if any real parts are positive. Critical slowing down occurs as one of the eigenvalues approaches 
zero and becomes less negative and thus the return to the equilibrium becomes slower. Thus in a completely 
deterministic, differential equation model, the rate at which small perturbations decay in the direction which the 
eigenvalue that is crossing zero pulls may form an indicator13,14. In models that include stochastic effects which 
interupt deterministic trajectories, other indicators have been proposed that estimate this return rate indirectly, 
such as the variance and autocorrelation of fluctuations in a time series of the observations of the state of a sys-
tem. Such indicators of critical slowing down are not simply mathematical constructions; indicators calculated 
from observations of natural systems have been found to prefigure critical transitions as predicted by models15–18. 
Although the extent to which such indicators can be useful for predicting critical transitions in many practical 
situations remains unclear, progress in this area is being made on the theoretical front by the development of a 
rich variety of indicators, also known as early warning signals19–26.

For example, recent studies suggest that spatial patterns can also provide useful early warning signals27–30. In 
particular, Dakos et al.28 point out that an increase in spatial correlation of the state variables of spatial models 
can serve as an early warning signal of bifurcations. This is because, as the parameters of the model approach the 
bifurcation point, the state variables become slow in recovering from perturbations, which might lead to stronger 
fluctuations of state variables around their average values under a given intensity of random perturbations31. In 
such cases, the fluctuations of state variables around the spatial mean can also increase. The ability of fluctuations 
in one area to influence fluctuations in nearby areas then leads to larger correlations among neighboring units 
and, more generally, larger spatial correlations32. Therefore, spatial early warning signals, such as the spatial vari-
ance, spatial skewness and spatial correlation have been proposed as indicators for critical transitions of spatially 
extended systems. By referring to these measurements as “spatial” we simply mean that they are calculated from 
observations at different locations at a given time, a set of observations which we refer to as a snapshot. These 
spatial early warning signals have two major drawbacks. First, they are largely dependent on the deviation of state 
variables from their spatial mean. Thus, these indicators are affected by the change of the temporal mean of state 
variables at different locations as the system approaches a critical transition, which is especially likely to occur 
in heterogeneous systems in which parameters vary among locations. Additional comments on this issue are 
included in the Discussion section. Second, these methods only look at one snapshot at one time, thus limiting 
the information they can gather from the system. It is hard, for instance, to identify the temporal pattern that is 
associated with the critical transition using only a single snapshot.

This paper proposes a set of indicators based on the fluctuations of several state variables around their temporal 
average values under stochastic excitations (e.g., random environmental perturbations). The proposed indicators 
are based on the observation that for models with multiple state variables, the dynamics of certain sums of state 
variables become much slower than dynamics of other sums as the system approaches the critical transition. This 
is another example of critical slowing down. The sum of state variables which slows down is the vector projection 
of the state variables onto the dominant eigenvector of the Jacobian matrix of the model, evaluated at the model’s 
deterministic equilibrium. The rate at which this projected variable recovers from perturbations slows down as the 
bifurcation approaches because of the decreasing magnitude of the dominant eigenvalue. If the extent to which 
this projected variable is randomly perturbed is not commensurately decreased, its variance must increase. Thus, 
we propose the largest eigenvalue of the covariance matrix of the state variables and the percentage it accounts for 
of the total variation as multivariate early warning signals. One important assumption must be satisfied for the 
proposed early warning signals to work: namely, the critical transition may be modelled as a co-dimension one 
bifurcation. This assumption means that in a suitable model the bifurcation can be caused by the variation of a 
single quantity (i.e., a single parameter or a single correlated variation in several parameters). The proposed early 
warning signals can be applied to data from spatially heterogeneous systems (systems with different characteristics 
at different locations) if we define state variables as the state of the system at different locations.

Eigenvalues of the covariance matrix have been proposed in the past as an early warning signal for high 
dimensional systems33,34. It was established that the largest eigenvalue of the covariance matrix will increase close 
to a bifurcation. In our paper, we take a step further to show that for a system with a co-dimension one bifur-
cation, not only does the largest eigenvalue of the covariance matrix increase close to the bifurcation, it also 
becomes dominant compared to other eigenvalues of the covariance matrix. The contributions of this paper are 
threefold: (1) it examines a linear high dimensional stochastic system modeled by a Fokker-Planck equation 
and shows the relationship between the eigenvalues of the covariance matrix and the eigenvalues of the Jacobian 
matrix; (2) it shows how the eigenvalues of the covariance matrix and the percentage it accounts for of the total 
variation can be estimated and used as early warning signals for spatially correlated ecological systems when a 
more detailed model of the system is not available; and (3) it compares the proposed early warning signals with 
past spatial early warning signals and discusses advantages and drawbacks. It is important to note that early 
warning signals based on the critical slowing down phenomenon focus on bifurcations caused by the loss of linear 
stability. This also applies to the proposed early warning signals. For a nonlinear system, we assume the deviation 
from equilibrium is small and hence, a linear approximation is adequate. Researchers have proposed other early 
warning signals (based on basin size and so on) to anticipate critical transitions that may not be modelled as a 
loss of linear stability35,36.

Results
Main concept. Many natural and physical systems are high-dimensional, are constantly affected by random 
environmental perturbations, and can be modeled using first-order differential equations with noise terms37–40. 
Consider a nonlinear dynamical system with a vector x(t) of state variables described by first-order stochastic 
differential equations
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= + .d dt dx f x D x W( ) ( ) (1)

The force vector f(x(t)) models the deterministic evolution of the system and we assume f(x(t)) does not depend 
on time t explicitly for simplicity. The deterministic system, dx/dt = f(x) may have one or more equilibria which 
satisfy dx/dt = 0. We also assume that f(x(t)) is continuous and differentiable in the vicinity of an equilibrium of 
interest, which we denote μ. dW is a vector of Gaussian white noises with zero mean. The covariance matrix of 
the noise term is denoted by D(x).

Let z(t) = x(t)−μ denote a vector of deviations from the equilibrium, where μ denotes the equilibrium of the 
state variables in the absence of noise. If the deviations are sufficiently small, little error occurs when we replace 
the force vector by its linear approximation

μ≈ + =f x f Fz Fz( ) ( ) , (2)

where f(μ) = 0 and F is the force matrix that determines the expected trajectory of z toward zero. In this study we 
assume D(x) to be independent of x. Due to the stochastic nature of the system, z is a random variable. Let p(z, 
t) be the probability density function that describes the likelihood of z falling within a particular range of values. 
The solution of the stochastic differential equations (Eq. 1) can be described using the probability density function 
p(z, t), which can be approximated as the solution to a linear Fokker-Planck equation41
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where D is the diffusion matrix that describes the covariance of a Gaussian white noise that acts on z. The ini-
tial condition of this Fokker-Planck equation is set to be p(z, t) = δ(0) and the boundary condition is p(±∞, 
t) = 0. The solution of this linear system is a multi-dimensional Gaussian density function37. We further consider 
that the fluctuations have reached a stationary distribution after the transients have died out. In such cases, the 
covariance matrix Σ of the solution, which describes the correlation between different state variables, is solely 
dependent on the force matrix F and the diffusion matrix D41. Therefore, we can use the covariance matrix Σ, 
which can be estimated directly from the measurements, to infer the characteristics of the force matrix F which is 
not necessarily available for a real dynamical system.

To calculate the covariance matrix Σ, we can use the decomposition of Kwon and coauthors42 which shows 
that Σ can be written as

Σ = − +−F D Q( )/2, (4)1

where Q is an antisymmetric matrix with zeros on its diagonal which satisfies

+ = −τ τFQ QF FD DF , (5)

where the superscript τ indicates the transpose.
Suppose F has distinct eigenvalues with negative real parts and that the dominant eigenvalue is real. Denote the 

eigenvalues of the covariance matrix Σ as σ1, σ2, …, σN. In the Supplementary Material, we prove that under the 
assumption of a codimension one bifurcation, the largest eigenvalue of the covariance matrix σ1 becomes much larger 
than the other eigenvalues σ2, σ3, …, σN if the real part of the dominant eigenvalue of the force matrix becomes closer 
to 0 compared to the rest of the eigenvalues of the force matrix. This is because the dynamics along the direction of 
the eigenvector corresponding to the dominant eigenvalue become slower as the dominant eigenvalue of the Jacobian 
matrix approaches zero. Because the other eigenvalues are not approaching zero at the same rate as the dominant eigen-
value, the variance of the dynamics along that direction increases at a much higher rate. Thus, the largest eigenvalue 
of the covariance matrix and the percentage it accounts for of the total variation can be used as early warning signals.

The Fokker-Planck equation has been used in a number of papers to study a system approaching the bifur-
cation43,44. However, it is important to note that the solution to the linear Fokker-Planck equation (Eq. 3) is an 
approximation to the probability density function of the original system, which is the solution to a nonlinear 
Fokker-Planck equation that cannot be guaranteed to remain Gaussian as the system becomes arbitrarily close to 
the bifurcation point. In addition, at the bifurcation point, the probability density function of the original system 
will depend on time (even at long times), and the variance will grow over time. Nevertheless, we observed that 
the covariance of the Gaussian distribution obtained from the linearization is a good approximation close to the 
bifurcation point, as shown below, and can be used as an indicator of the system approaching bifurcation.

For the case where the dominant eigenvalues of F are complex conjugate pairs, the relationship between 
the largest eigenvalues of the covariance matrix and the real parts of the dominant eigenvalues are similar. The 
difference is that the subspace in which the variance of the dynamics increases at a much higher rate is now 
two-dimensional. For simplicity the example we give in the following sections only has real eigenvalues. Further 
comments about systems with complex conjugate pairs are also included in the Supplementary Material.

spatial ecological model. We consider a general 2D spatial model under the assumption that the space is 
discrete and the dynamics take place in an n × n square lattice which consists of coupled cells45,46. A 2D spatial 
model can be considered as a high dimensional system if we define state variables as the state of the system at 
different locations. The dynamics at each location (i, j) are affected by a reaction-type process, a diffusion process 
and a random excitation modeled by a random walk process dWi,j. The reaction-type process is described by the 
nonlinear deterministic function gi,j(Xi,j, r(i, j), c). Each cell is also connected to its neighbors through a diffusive 
process. The general form of this model is

https://doi.org/10.1038/s41598-019-38961-5


4Scientific RepoRts |          (2019) 9:2572  | https://doi.org/10.1038/s41598-019-38961-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

σ= + + + + − ++ − + −dX g X r i j c R X X X X X dt dW( ( , ( , ), ) ( 4 )) , (6)i j i j i j i j i j i j i j i j i j, , , 1, 1, , 1 , 1 , ,

where Xi,j is the state variable at cell (i, j) in a 2D space, ri,j is the heterogeneous parameter that changes with loca-
tion, c is the bifurcation parameter, R is the constant dispersion rate, and σ is the standard deviation of the white 
noise dWi,j at location (i, j). i = 1, 2, ..., n and j = 1, 2, ..., n. We use a symmetric boundary condition such that cells 
at the boundary have exchange only with neighboring cells and not with the boundary. Consequently, Xn+1,l = Xn,l, 
Xl,n+1 = Xl,n, X1,l = X0,l, and Xl,1 = Xl,0, for l = 1, 2, ..., n.

In the case that σ = 0, Eq. 6 is deterministic and has one or more equilibria which satisfy dXi,j/dt = 0. We 
use μi,j to denote the values of μi,j for one particular equilibrium of interest. In the neighborhood any μi,j, the 
reaction-type process can be approximated by its linear approximation. Thus the probability density function of 
the state variables in Eq. 6 can be approximated by the Fokker-Planck Eq. 3 where z collects all the state variables 
in Eq. 6 concatenated and centered (i.e., zn(j−1) +i = Xi,j−μi,j), F is set to the Jacobian matrix of the force function 
evaluated at the equilibrium, and D is the matrix describing the covariance of the random excitation. In this study, 
D is set for simplicity to be an identity matrix, which means noise terms at different cells are independent of each 
other. In the Supplementary Material we have shown that the choice of D does not affect the results as long as the 
stochastic perturbations from the environment do not concentrate on one patch.

The equation for the elements of the Jacobian matrix F can be expressed as
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where gi is the reaction function at cell ( − + ⌈ ⌉i n i n[( 1) mod ] 1, / ), and O(R) is a term that is either 2R, 3R, or 4R 
depending on whether the cell has 2, 3, or 4 neighbors. Clearly F is a symmetric matrix containing real numbers. 
Thus, the eigenvalues of F must be real.

To illustrate how the proposed early warning signals can be used to anticipate critical transitions of an eco-
logical system, we adapt three well-studied models28,47,48 to the form of Eq. 6 by adding the dispersion and noise 
terms. The first model describes the dynamics of biomass under harvesting. The second model describes the 
dynamics of nutrients of a eutrophic lake, and the third model describes the dynamics of macrophytes in a shal-
low lake. All three models have alternative stable states in their original form for some choice of parameters. 
Further, if a threshold value of the models’ parameters is crossed, one of the alternative stable states disappears 
and a rapid transition to the remaining stable equilibrium may occur. For example, the amount of biomass of the 
harvesting model is stable at an equilibrium with high population at a low harvesting rate. As the harvesting rate 
increases, the system collapses to a low population equilibrium. Details about the three models we use can be 
found in Table 1. The parameter values are obtained from Dakos and coauthors28. Heterogeneous parameters (ri,j) 
are introduced by randomly setting the value of ri,j within a certain range. n2 = 20 × 20 = 400 cells are used in this 
model. The values of ri,j we use in this study are included in the GitHub repository.

The relationship between the dominant eigenvalue λ1 of the Jacobian matrix J and the bifurcation parameter c of 
the harvesting model is shown in Fig. 1a as an example. As the system moves toward the bifurcation, the dominant 
eigenvalue becomes closer to zero. Let λ2 be the second largest eigenvalue. The relationship between λ

λ
1

2
 and the 

bifurcation parameter c is shown in Fig. 1b. When the system is far away from the bifurcation, λ1 is close to λ2. 
However, as the system moves toward the bifurcation, λ

λ
1

2
 becomes closer to 0. Therefore, we expect to observe an 

increase of the largest eigenvalue of the covariance matrix as the system becomes closer to the bifurcation. The per-
centage the largest eigenvalue of the covariance matrix accounts for of the total variation is also expected to increase. 
The situation is similar for the other two models. To demonstrate how the proposed early warning signals can be 
used to forecast critical transitions, we apply the approach to all three spatial models in the following section.

early warning signals. We estimate the eigenvalues of the covariance matrix of the harvesting model at 
several different control parameter values as shown in Fig. 2. Each line shows all the eigenvalues of the covariance 
matrix in a descending order at a specific parameter value. The index is an integer which varies from 1 to 400, with 
index 1 meaning the largest eigenvalue, index 2 meaning the second largest eigenvalue, and so on.

As the system moves toward the bifurcation, the largest eigenvalue of the covariance matrix increases. Because 
the eigenvalues of the covariance matrix are identical to the variance of principal components, this discovery 
is consistent with the observation that the variance increases as the system moves toward the bifurcation. In 
particular, the largest eigenvalue of the covariance increases at a much larger rate than the other eigenvalues. 
Therefore, we propose two early warning signals:

•	 The first warning signal is the value of the largest eigenvalue of the covariance matrix σ1,
•	 The second warning signal is the percentage that the largest eigenvalue accounts for of the total variation 

σ

σ σ+ ... + N

1

1
2 2

, where N is the number of states.
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The relationship between the largest eigenvalue and the bifurcation parameter for all three models is shown 
in Fig. 3b,e,h. The eigenvalues are first calculated analytically using the decomposition described in the Main 
Concept. We also estimated the eigenvalues of the covariance matrix using a moving window on data obtained 
from a system with a time-varying bifurcation parameter c(t) = c0 + δt. In all simulations, time step δ is set to 
1/16000. A total of 16000 snapshots are collected from the simulation. The moving window has a size of 1000 
snapshots. As expected, the largest eigenvalue of the covariance matrix increases as the system moves toward the 
bifurcation point. Moreover, the largest eigenvalue of the covariance matrix becomes dominant as the dominant 
eigenvalue approaches 0. Therefore, Fig. 3c,f,i suggest that the percentage that the largest eigenvalue accounts for 
of the total variation also increases as the system approaches the bifurcation. The percentage as an early warning 

Model and Parameter Definition and value

Harvesting model

= − −
+( )g X r i j c r X c( , ( , ), ) 1i j i j i j i j

Xi j
K

Xi j

Xi j, , , ,
, ,

2

,
2 1

Xi,j Resource biomass at cell (i, j); state variable

c Maximum harvesting rate; bifurcation parameter

ri,j Maximum growth rate at cell (i, j); heterogeneous parameter

K Carrying capacity, 10

R Dispersion rate, 0.2

σ SD of white noise, 0.1

Eutrophication model

= − +
+

g X r i j c a r X c( , ( , ), )i j i j i j i j
Xi j

Xi j, , , ,
,
8

,
8 1

Xi,j Nutrient concentration at cell (i, j); state variable

c Nutrient loading rate; bifurcation parameter

ri,j Nutrient loss rate at cell (i, j); heterogeneous parameter

a Maximum recycling rate, 0.5

R Dispersion rate, 0.2

σ SD of white noise, 0.05

Vegetation-turbidity model

=



 −






+
g X r i j c r X X( , ( , ), ) 1i j i j v i j i j

ri j Ei j

ri j, , , ,
,
4

,
4

,
4

=
+

Ei j
hvc

hv Xi j, ,

Xi,j Vegetation cover at cell (i, j); state variable

c Background turbidity; bifurcation parameter

ri,j Half-saturation turbidity constant at cell (i, j); heterogeneous parameter

rv Maximum vegetation growth rate, 0.5

hv Half-saturation vegetation cover constant, 0.2

R Dispersion rate, 0.2

σ SD of white noise, 0.1

Table 1. Model details and parameter values used in the study.
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Figure 1. Variation of the eigenvalues of the spatial harvesting model; the largest eigenvalue (a) and the largest 
eigenvalue divided by the second largest eigenvalue (b) are shown versus the bifurcation parameter c.
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signal is particularly useful because it has a clear upper limit of 100%. That is in contrast to the largest eigenvalue 
of the covariance matrix, which theoretically can increase without bound.

It is important to note that the analytical expression of the covariance matrix is generally not available for 
a real system because the forms of the force matrix and the diffusion matrix are seldom known. However, we 
can estimate the covariance matrix directly from the time series data without relying on any prior knowledge 
of the system. Results from Fig. 3 show that the estimated eigenvalues of the covariance matrix agree quite well 
with the analytical eigenvalues close to the bifurcation. For parameters extremely close to the bifurcation point, 
the estimated eigenvalues generally have higher values compared to the analytical eigenvalues. This is caused 
by the moving window used in the estimation. The estimated eigenvalue is essentially an average of eigenval-
ues in that moving window. As the system approaches the bifurcation, the largest eigenvalue of the covariance 
matrix increases quickly, and that causes the early takeoff of the estimation compared to the analytical results. 
More details about the estimation method are presented in the Methods section, where we show that eigenvalues 
estimated using the shrinkage method agree well with the analytical results when a fixed parameter is used for 
simulation.

Locations of tipping points. Another advantage of the proposed methods is that by examining the covar-
iance matrix, we can obtain both the dominant eigenvalue and its corresponding eigenvector. We show in the 
Supplementary Material that as the dominant eigenvalue of the force matrix approaches zero, the dominant eigen-
vector of the covariance matrix approaches the dominant eigenvector of the force matrix. So by examining the 
eigenvector corresponding to the dominant eigenvalue, we can identify cells that are most affected by declining 
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Figure 3. (a,d,g) Sum of the state variables as the bifurcation parameter c changes over time. (b,e,h) Largest 
eigenvalue σ1 of the covariance matrix estimated using a moving window as the bifurcation parameter c changes 
over time. (c,f,i) Largest eigenvalue of the covariance matrix over the Euclidean norm of a vector consisting of all 
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asymptotic stability of the equilibrium. Knowledge of these areas may provide crucial direction for monitoring 
and possibly preventing critical transitions.

To examine the relationship between the dominant eigenvector of the covariance matrix and vulnerable 
regions, we calculate local eigenvalues corresponding to groups of cells. By local eigenvalues we mean the domi-
nant eigenvalue of the force matrix of a single cell or a local group of cells without considering the diffusion effects 
of the neighboring cells. Therefore, we assume that there is diffusion between cells within the local group, but not 
diffusion to cells that are outside the local group. We define a local group with size i × i at location (j, k) as cells:
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under the restriction that j + i−1, k + i−1 ≤ 20.
In Fig. 4, we show the dominant local eigenvalues of all the 1 × 1, 2 × 2, 3 × 3 and 4 × 4 local groups of the 

harvest model. Because of the diffusion effects, the dominant eigenvalues tend to decrease as the number of cells 
in the local group increases. The diffusion effect, on the other hand, does not have a significant effect on cells 
that are too far away from the local group. Therefore, the eigenvalue map stabilizes as the size of the local group 
reaches a certain level.

Now we want to compare the dominant local eigenvalues of the harvesting model with its eigenvector corre-
sponding to the dominant eigenvalue. Figure 5(a) exhibits the analytic eigenvector corresponding to the domi-
nant eigenvalue of the covariance matrix, while Fig. 5(b) shows the eigenvector corresponding to the dominant 
eigenvalue estimated from simulation data. It is obvious that they share a dominant peak in the upper right 
region. There are other smaller peaks in Fig. 5(b) due to estimation errors. In Fig. 5(c), we show the dominant 
local eigenvalues of the 4 × 4 groups. It is obvious that the area with the largest amplitudes in the eigenvector cor-
responding to the dominant eigenvalue coincides with the area with the largest local eigenvalues. Thus, regions 
with local eigenvalues closest to 0 are identified as regions most vulnerable to critical transition by the eigenvector 
corresponding to the dominant eigenvalue.
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Figure 4. Local eigenvalues of the harvesting model. Only the dominant eigenvalues of the local areas are 
plotted. For each local group, the dominant eigenvalue is plotted at the upper left cell of the group. (a) 1 × 1, (b) 
2 × 2, (c) 3 × 3 and (d) 4 × 4 cells are used to construct the local groups.
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Discussion
We proposed two spatiotemporal early warning signals. These signals are based on the eigenvalues of the covar-
iance matrix. Overall, our study suggests that an increase in the largest eigenvalue of the covariance matrix of a 
multivariate time series and the percentage it accounts for of the total variation can serve as early warning signals 
for critical transitions in multivariate systems. To provide a specific example, we have demonstrated an increase 
in these indicators as models of spatial ecological systems approach a bifurcation.

Here, we compared the two proposed early warning signals with past early warning signals27 including

 1. spatial variance σ = ∑ ∑ −= = z z( )
HL h

H
l
L

h l
2 1

1 1 ,
2, where H and L are the number of cells in the vertical and 
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, where wi,j;m,l is 1 if spatial 
units [i, j] and [m, l] are separated by a distance r, and is 0 otherwise, and W is the total number of ordered 
pairs of units separated by the distance r.

The two proposed early warning signals are different from past ones in the sense that it does not take the var-
iation of expected values of the state variables across space into account. Past spatial early warning signals are all 
affected by variation in the expected value of the state variables across space. To better explore this, we next take 
spatial variance as an example. The expected value of the spatial variance can be expressed as,
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where we used E(zizj) = Σij + μiμj. Thus we have
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where σ̂spatial
2  is the empirical spatial variance, M is the number of cells in the grid, μi is the expected value of state 

i, and Σ is the covariance matrix. Therefore, the spatial variance is affected by the expected values of the state 
variables (first half of the right hand side of the equation), and the covariance matrix (second half of the equa-
tion). As the parameters of the system change gradually, the expected value of the state variables may also vary. 
The changes in the indicators caused by the expected values, however, do not necessarily provide any information 
about the stability of the model’s equilibrium, especially for heterogeneous systems. Therefore, it is hard to predict 
in general how these proposed substitution spatial early warning signals are affected by the eigenvalues of the 
Jacobian of the model.
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Figure 5. (a) The eigenvector corresponding to the dominant eigenvalue of the covariance matrix (analytical), 
(b) The eigenvector corresponding to the dominant eigenvalue of the covariance matrix (estimated using 
simulation data), (c) Dominant eigenvalues of the force matrix of the local cell groups. In (a,b), we transform 
the dominant eigenvector back to 2D form, and plot the amplitude for each state variable at the corresponding 
location.
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Next, we use an example to illustrate how the changes in mean values can affect the performance of spatial 
variance as an early warning signal. Simulation data is collected from a simple spatial model

σ= − + + + + − ++ − + −dX r c X R X X X X X dt dW( ( 4 )) , (8)i j i j i j i j i j i j i j i j i j, , , 1, 1, , 1 , 1 , ,

where r is the same as the r we used for the harvesting model, and c is the control parameter. Other parameters are 
the same as in Table 1. In this simple model, there is no bifurcation as the control parameter c changes, therefore 
there is no critical slowing down.

Spatial early warning signals are calculated using simulation data, and are shown in Fig. 6. As the parameter c 
increases, values of the state variables also increase due to the change of their expected value. During this process, 
the largest eigenvalue of the covariance matrix remains stable due to a lack of critical slowing down. Spatial vari-
ance, on the contrary, has a clear upward trend. To compare different spatial early warning signals, we quantified 
their trend using the nonparametric Kendall’s τ rank correlation of the control parameter c and the spatial early 
warning signals. In this example, the spatial variance is strongly affected by the change of expected values with a 
Kendall’s τ of over 0.74.

To better illustrate this point, all the spatial early warning signals are calculated again using detrended simu-
lation data as shown in Fig. 7. As expected, the upward trend in spatial variance has disappeared after detrending 
the simulation data. Therefore, it is highly recommended to detrend the data before applying such spatial early 
warning signals.

Next, we apply the proposed and past early warning signals to the detrended simulation data from the harvest-
ing model. The results are shown in Fig. 8.

As the system moves towards the bifurcation, both the spatial variance and the spatial correlation increase, 
while the spatial skewness does not have an obvious trend. The proposed early warning signals, i.e. the largest 
eigenvalue of the covariance matrix and the ratio σ σ σ+ ... +/ n1 1

2 2, have the largest Kendall’s τ, which indicates 
that they have the most consistent upward trend compared to other spatial early warning signals. Moreover, the 
proposed early warning signals have sharp increases close to the bifurcation, while others increase linearly. 
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Figure 6. A comparison between the two proposed early warning signals, i.e. largest eigenvalue of the 
covariance matrix and the percentage it accounts for, with three past spatial early warning signals using 
simulation data obtained from system governed by 8.
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Therefore, the sharp increase in the proposed early warning signals can be seen as an indication that the system is 
approaching the bifurcation.

In conclusion, this study explored how eigenvalues and eigenvectors of a spatial covariance matrix related to 
critical transitions in spatially extended ecological systems.

Eigenvalues of the covariance matrix better capture critical slowing down due to their direct relationship with 
the eigenvalues of the force matrix that characterizes the dynamics, compared to past spatial early warning sig-
nals. We therefore propose to use the largest eigenvalue of the covariance matrix as a spatial early warning signal. 
By establishing the relationship between the eigenvalues of the covariance matrix and the eigenvalues of the force 
matrix, we mathematically show that the dominance of the largest eigenvalue of the covariance matrix can also 
be used as an early warning signal. We compared these proposed signals with proposed substitution ones. The 
proposed early warning signals can potentially be applied to other high dimensional systems, such as multispecies 
systems33, complex structures49 and so on.

This approach may be used to identify also the vulnerable regions in a spatially correlated system. By studying 
the eigenvector corresponding to the dominant eigenvalue of the covariance matrix (the vector which determines 
the coordinates of the first principal component), we can obtain important clues regarding the region where 
the transition is most likely to occur. The correlation between the vulnerable regions and this eigenvector of the 
covariance matrix will become stronger as the dominant eigenvalue of the Jacobian approaches zero. This means 
that the percentage of the total variation explained by the dominant eigenvalue of the covariance matrix is an 
indicator not only of a potential critical transition, but also of a better opportunity for dimension reduction.

Methods
Covariance matrix estimation. Here we show the process of covariance matrix estimation by choosing 
a parameter value close to the bifurcation, simulating the model to obtain a stationary response to the random 
excitation, and estimating the covariance matrix.

2 2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4
-5

0

5

D
et

re
nd

ed
 b

io
m

as
s

2 2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4
3.5

4

4.5

1

10-3

2 2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4
0.055

0.06

0.065

2 2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4
2

3

4

sp
at

ia
l v

ar
ia

nc
e 10-3

2 2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4
-0.5

0

0.5

S
pa

tia
l s

ke
w

ne
ss

2 2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4

c

-0.5

0

0.5

S
pa

tia
l c

or
re

la
tio

n

Kendall's  = -0.0289

Kendall's  = -0.0990

Kendall's  = 0.0966

Kendall's  = -0.1374

Kendall's  = -0.15

Figure 7. The comparison between the two proposed early warning signals, i.e. largest eigenvalue of the 
covariance matrix and the percentage it accounts for, with three past spatial early warning signals using 
detrended simulation data obtained from Model 8.
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An example of simulation results is shown in Fig. 9a, where the sum of the biomass is plotted. Three different 
ways are used to estimate the covariance matrix, i.e.:

 1. Unbiased empirical covariance matrix.
 2. Shrinkage approach.
 3. Analytical method.

First, the unbiased empirical covariance matrix S is used to estimate the covariance matrix. Each entry of S is 
defined as

∑=
−

− −
=

S
n

x x x x1
1

( ) ( )
(9)jk

i

n

ij j ik k
1

where xij is the ith measurement collected at the jth cell, and xj is the average of measurements collected at the jth 
cell over time, n is the number of snapshots used for the estimation.
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Figure 8. A comparison between the two proposed early warning signals, i.e. largest eigenvalue of the 
covariance matrix and the percentage it accounts for, with three past spatial early warning signals using 
detrended simulation data obtained from the harvesting model.
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However, the unbiased empirical covariance matrix is not a good estimate of the covariance matrix when 
the number of snapshots is small compared to the number of variables, as pointed out in50,51. This is because the 
sample covariance matrix S might not be positive definite anymore when only a small number of snapshots are 
available. In such cases, the sample covariance matrix tends to overestimate the value of its largest eigenvalues, 
while underestimate the rest. A shrinkage approach can be used to estimate the covariance matrix under such 
circumstances. The linear shrinkage approach suggests to combine a high-dimensional unconstrained estimate S 
and a low-dimensional constrained estimate T in a weighted average given by

η η= + −⁎S S T(1 ) , (10)

where S* is the regularized estimate, 1−η ∈ [0, 1] is the shrinkage intensity. η is estimated by minimizing a 
squared error loss risk function which is a combination of mean square error and variance as shown in50. The 
low-dimensional constrained estimate T is chosen based on the presumed lower-dimensional structure in the 
data set. In the case of the spatial harvesting model, the assumption is that the variance along different directions 
does not decrease dramatically after the first few principal components. Examples of values of T can be found in 
Schäfer and coauthors50.

The covariance matrix is obtained analytically also by calculating the Jacobian matrix F of the deterministic 
solution and using the decomposition method described above. The analytical covariance matrix is used as a 
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Figure 9. (a) An example of the time series of the total amount of biomass when the bifurcation parameter c is 
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benchmark for the estimation results. Eigenvalues estimated by the three methods are calculated and plotted in 
Fig. 10. The R package corpcor is used for the covariance matrix estimation. In particular, the function cov.shrink 
is used for the shrinkage estimations. Default parameters are used. As expected, the shrinkage method outper-
forms the sample covariance matrix in estimating the eigenvalues.

Data Availability
All necessary codes for simulations and analysis will be made available at Github following publication.
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