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Abstract

The notion of a saliency-based processing architecture [1] underlying human vision is central to a number of current
theories of visual selective attention [e.g., 2]. On this view, focal-attention is guided by an overall-saliency map of the scene,
which integrates (sums) signals from pre-attentive sensory feature-contrast computations (e.g., for color, motion, etc.). By
linking the Posterior Contralateral Negativity (PCN) component to reaction time (RT) performance, we tested one specific
prediction of such salience summation models: expedited shifts of focal-attention to targets with low, as compared to high,
target-distracter similarity. For two feature-dimensions (color and orientation), we observed decreasing RTs with increasing
target saliency. Importantly, this pattern was systematically mirrored by the timing, as well as amplitude, of the PCN. This
pattern demonstrates that visual saliency is a key determinant of the time it takes for focal-attention to be engaged onto
the target item, even when it is just a feature singleton.

Citation: Töllner T, Zehetleitner M, Gramann K, Müller HJ (2011) Stimulus Saliency Modulates Pre-Attentive Processing Speed in Human Visual Cortex. PLoS
ONE 6(1): e16276. doi:10.1371/journal.pone.0016276

Editor: Michael H. Herzog, Ecole Polytechnique Federale de Lausanne, Switzerland

Received August 17, 2010; Accepted December 9, 2010; Published January 21, 2011
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Introduction

Every single second, the human vision system takes in

approximately 107 to 108 bits of information [1] transmitted via

the optic nerve. From this enormous data pool (and in addition to

the data from the other senses), we need to select relevant or

salient information in order to determine adequate actions and

control their execution. Due to our inability to process all

incoming information at once, we typically resolve this data

overload by selectively attending to individual objects in the scene,

deploying attention serially from one object to another (see, e.g.,

Wolfe’s Guided Search, GS, theory [2]).

One prominent conception of how visual selection is accom-

plished refers to the notion of a saliency map [3]. In this framework,

the external world is initially registered by a set of dimensionally

organized feature analyzer units (e.g., for color, orientation,

motion). Each dimensional module encodes the presence of feature

contrast for all locations across the visual field, with feature

contrast computations being modulated by the spatial separation

between neighboring items [4]. The feature contrast signals are

then integrated across dimensions, in a location-specific manner,

by units in an overall-saliency map of activations; again, this

integration, or saliency summation, process is spatially scaled [5].

Following this, the most active unit on this map is determined in a

competitive, winner-take-all process, and focal attention will be

deployed to the location represented by this unit. Focal-attentional

selection, in turn, mediates high-level stimulus analysis and

response decision processes. Importantly, an active overall-saliency

map unit signals only that there is a feature difference at the

location it represents relative to surrounding locations, but not

what the identity (dimensional, featural) of the stimulus is that

gives rise to this signal. Consequently, stimulus identification

requires gradual backtracking, by recurrent processes, to hierar-

chically lower stages (dimensional feature contrast and feature

maps) in order to ‘extract’ the information of interest [6–8]. Thus,

on this ‘classical’ view, the saliency map represents the physical

(bottom-up) distinctiveness of objects in the visual scene; signaling

supra-dimensional feature contrast rather than absolute feature

values at a given location relative to its surround [9]. However,

these signals may be also top-down modulated, at least to some

extent, based on observers’ stimulus expectancies [1,8,10].

Over the last two decades, a large amount of research has been

devoted to identifying the neural correlates of such a (putative)

saliency map in non-human primates as well as humans based on

single-cell recordings [11–18], functional magnetic resonance

imaging (fMRI) [19,20], and repetitive transcranial magnetic

stimulation (rTMS) [21,22]. For instance, Sato and colleagues

[16,23] have demonstrated that manipulating target-distracter

similarity in a visual search task had a strong impact on the time

required by monkey FEF neurons to dissociate a target from the

distracters. Furthermore, Beck and Kastner [19] recorded

hemodynamic brain responses for stimulus arrays in which a

single item differed in color and orientation from its surrounding

three items (i.e., homogeneous ‘pop-out’ displays), compared to

when all four items differed in color and orientation from each

other (heterogeneous displays). Beck and Kastner found that

suppressive sensory interactions that usually arise from simulta-

neously presented multiple stimuli are eliminated at the level of

V2/VP and V4 when one of the items was a feature singleton.

Thus, extrastriate areas seem to play a significant role in biasing
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the selection of salient visual stimuli (for V1 modulations, see also

[24]). Further neural populations that provide topographic

representations of the external space have been identified, for

instance, in the inferior and lateral subdivisions of the pulvinar

[25], the superior colliculus [26], lateral intraparietal cortex [27],

and in dorsal-stream areas [28]. In sum, a number of neurological

results indicate that multiple areas along the visual processing

pathways encode stimulus saliency, pointing to the possibility of a

distributed saliency map [29]. While this is in general agreement

with the notion of a saliency-based processing architecture, in

which saliency signals are computed at different hierarchical levels,

it remains an open issue whether these computations are

integrated by an overall-saliency map, thereby modulating visual

selection times.

To investigate the temporal dynamics underlying the formation

of salience representations in the human visual system, we recorded

electro-cortical brain responses (the electroencephalogram, EEG)

during a visual feature singleton (i.e., pop-out) search task.

Specifically, we tested a direct implication of salience summation

models, such as the dimension-weighting account (DWA) of

Müller and colleagues [7,30–32]. In contrast to, for instance,

interactive race [33] or serial (exhaustive) processing architectures

(e.g., Feature Integration Theory [34]), the DWA assumes that

selective (focal) attention operates on a map of cross-dimensionally

integrated (summed) feature contrast signals, with the most active

location on this overall-saliency map determining the allocation of

focal attention. Thus, presentation of high-, as compared to low-,

salient pop-out targets should result in the computation of stronger

feature contrast signals in early sensory coding, which in turn

would speed up the accrual of activation at the level of the overall-

saliency map. According to the DWA, this should result in faster

focal-attentional target selection and, thus, expedited reaction

times (RTs). Note that lower levels of feature contrast are often

assumed to produce inefficient search, where the likelihood that

the target is the first item selected is reduced, due to noise in

feature contrast computation, and consequently RTs increase with

increasing number of items in the display [18,35–37]. Recently,

however, Zehetleitner and colleagues [38,39,62] have shown that

a reduction in feature contrast can lead to slower RTs without

making the search inefficient. The contrast levels used in the

present study lie within the range in which the probability that the

target will be selected as the first item is constantly one, but where

the time required for selection is modulated (see figure 1).

To assess whether the initiation of focal-attention shifts is indeed

determined by visual (target) saliency in feature singleton searches,

we specifically focused on the Posterior-Contralateral Negativity (i.e.

PCN) component of the event-related potential (ERP), which has

been demonstrated [41–43] to reflect visuo-spatial attention shifts

based on perceptual stimulus attributes. Traditionally, this compo-

nent has been referred to as N2-posterior-contralateral (N2pc);

however, given its clear-cut independence, in terms of timing

and activation, of the non-lateralized N2 [40], we prefer to use the

term PCN (instead of N2pc) in order to prevent misleading

associations. The PCN is typically observed as a negative-going

deflection over visual brain areas of the hemisphere contralateral

to the location of an attended stimulus approximately between 175

and 300 ms post stimulus. Combining event-related magnetic

fields, fMRI, and ERPs, Hopf and colleagues [44] have recently

shown that the neural generators underlying this component are

sited within the human homologues of monkey inferotemporal

cortex and area V4. Interestingly, most previous ERP studies

focused solely on the activation and/or presence (versus absence)

of this component in order to study covert attention shifts and/or

the extent of attentional-resource allocation. In fact, most of these

studies implicitly assumed that the timing of the PCN is constant

and linked to the non-lateralized N2 component. Recently,

however, a growing number of studies [31,45,46] has specifically

concentrated on the timing of the PCN, which can be taken as a

(temporal) marker of the transition from the pre-attentive sensory

coding of the whole stimulus display to the focal-attentional

selection and analysis of the selected item. Thus, it has been

demonstrated that the speed of visual target selection varies

dependent on, for instance, stimulus intensity [47], set size [48],

the dimensional identity of the target on the previous trial [31],

and the definition of a feature singleton in one versus multiple

(redundant) feature dimensions [46].

Linking the theoretical implications of a salience summation

architecture to event-related brain potentials, which permit a

millisecond-by-millisecond measure of neural processing based on

scalp-recorded voltage fluctuations, we hypothesized that the timing

of the PCN component should vary systematically as a function of

the visual saliency of feature singletons, thus reflecting their

Figure 1. Stimulus displays used in the present visual pop-out binary localization task. Participants were required to give a speeded
forced-choice response indicating the position (left vs. right hemi-field) of the feature singleton, which was selected randomly from one of the six
lateral positions on the middle circle.
doi:10.1371/journal.pone.0016276.g001
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differential encoding rates in the pre-attentive, feed-forward sweep

of visual processing. That is, the more a (pop-out) target differs

from its surround, the earlier the PCN should be triggered – which,

when cascaded forward to later, response-related processes, should

yield speeded RT performance.

Materials and Methods

Participants
Thirteen observers (4 female) took part in this experiment.

Their ages ranged from 20 to 30 (median 25) years. All had

normal or corrected-to-normal vision and reported no history of

neurological disorders. Observers gave their written informed

consent and were either paid or received course credit for

participating. The experimental procedure was approved by the

ethics committee of the Department of Psychology, University of

Munich, in accordance with the Code of Ethics of the World

Medical Association (Declaration of Helsinki).

Stimuli, Task, and Study Design
The visual search display consisted of 34 colored bars (0.6u of

visual angle high62.7u wide) presented against a black back-

ground. The stimuli were arranged around the circumferences of

three imaginary (concentric) circles centered on a white fixation

spot. The circles were 4.5u, 8.5u, and 12.5u of visual angle in radius

and were made up of 6, 12, and 16 items (inner, middle, and outer

circle), respectively. On each trial, the stimulus display contained a

singleton target, amongst 33 distracters, that was equally often

defined in the color and, respectively, the orientation dimension.

All distracter bars were yellow (CIE .456, .469, 23) and oriented

horizontally (i.e. 90u tilt to the vertical) and independently

uniformly randomly jittered in tilt 67u (to the horizontal, see

Figure 1). Target-distracter similarity was parametrically manip-

ulated using three different feature-contrast levels for color (high:

CIE .595, .332, 23; intermediate: CIE .555, .367, 23; low: CIE

.540, .388, 23) and orientation targets (high: 33.5u; intermediate:

58u, low: 67u tilt to the vertical), all with equal probability. A

control experiment verified that the targets of low as well as those

of intermediate and high feature contrast in the orientation and

color dimensions were indeed found efficiently. In this experiment,

target-absent trials were mixed with trials in which displays

contained either an orientation or a color target of either the

highest or the lowest feature contrast used in the main experiment.

Observers indicated target presence by a speeded mouse click

(withholding a response on target-absent trials). To estimate search

efficiency, set size (i.e., the number of items in the display) was

either 7 or 19 items. The slopes of the functions relating search

RTs to set size were shallow with both high- and low-feature-

contrast targets (range between 20.2 and 1.5 ms/item). All slopes

were significantly less than 5 ms/item (all p,.003) – a generally

agreed criterion for efficient search [49].

The position of the target singleton was selected randomly from

one of the six lateral positions on the middle circle. Observers were

instructed to maintain central fixation throughout the experiment

and to give a speeded forced-choice response indicating the

location (left vs. right) of the singleton, by pressing the

corresponding mouse button (left- vs. right-hand thumb response).

Note that on notions deriving from Feature Integration Theory

[34,50], detection of feature-based signals may be mediated by a

route that is separate from a localization route. However, recent

work [51] has shown that even detection responses exhibit spatial

characteristics. In addition, Töllner and colleagues [52] found that

the (timing and amplitude of the) PCN is elicited absolutely

independent of whether the target had to be detected or localized.

This indicates that the same spatial mechanism or representation

(e.g., saliency map) underlies both detection and localization

responses (thereby refusing the notion of dual routes).

The experiment was conducted in a dimly illuminated, sound-

attenuated, and electrically shielded cabin (IAC). The stimuli were

presented on a 170 computer screen, placed at a distance of

approximately 75 cm to the observer. One experimental session

consisted of 24 blocks of 72 trials each, resulting in a total of 1728

trials. A trial started with the presentation of the central fixation

point for 500 ms, followed by the search display for 200 ms. Trials

were terminated by the observer’s response or after a maximum

duration of 1000 ms. During the inter-trial interval (ITI), the

fixation point was visible for a variable duration between 950 and

1050 ms (uniformly distributed). In case of a response latency

longer than 1000 ms or a wrong response, the word ‘FEHLER’

(German word for ‘error’) was centrally presented for 1000 ms,

providing direct response speed and error feedback. Prior to the

start of the experiment, one block of practice was performed to

familiarize observers with the stimuli and the stimulus-response

mapping. After each block, participants received summary

performance statistics (mean error rate and reaction time) as

feedback information.

EEG Recording and Data Analysis
The electroencephalogram (EEG) was recorded continuously

from 64 scalp sites at a digitization rate of 1000 Hz. Electrodes

were mounted on an elastic cap (Easy Cap, FMS), with positions

corresponding to the 10-10 System [53]. Horizontal and vertical

EOG was monitored by means of electrodes placed at the outer

canthi of the eyes and, respectively, the superior and inferior

orbits. All electrodes were referenced to Cz and re-referenced

offline to linked mastoids. Impedances were kept below 5 kV.

Electrophysiological signals were amplified using a 0.1–250-Hz

bandpass filter using BrainAmp amplifiers (BrainProducts, Mu-

nich) and filtered offline with a 1–40-Hz band-pass (Butterworth

zero phase, 24 dB/Oct). Prior to epoching the EEGs, an

independent-component analysis (ICA), implemented in the Brain

Vision Analyzer software (BrainProducts, Munich), was run to

identify and backtransform components that represent blinks and/

or horizontal eye movements. The EEG was then epoched into

500-ms segments relative to a 200-ms baseline, which was used for

baseline correction. Only trials with correct responses and without

artifacts – defined as any signal exceeding 660 mV, bursts of

electromyographic activity (permitted maximal voltage steps/

sampling point of 50 mV), and activity lower than 0.5 mV within

intervals of 500 ms (indicating dead channels) – were selected on

an individual-channel basis, prior to averaging. The PCN

component was quantified by subtracting ERPs obtained at lateral

posterior electrode positions PO7/PO8 ipsilateral to the side of the

singleton in the search array from contralateral ERPs. PCN

latencies were determined individually as the maximum negative

deflection in the 150–350-ms time window post stimulus. PCN

amplitudes were calculated averaging five sample points before

and after the maximum deflection. PCN onset latencies were

estimated based on Ulrich and Miller’s (2001) jackknife-based

scoring method, which defines the onset as the point in time at

which the amplitudes reaches a specific criterion relative to the

pre-stimulus baseline. As suggested by Ulrich and Miller [54], we

used 50% maximum amplitude as an optimal criterion for

determining the onset of stimulus-locked ERP potentials. Electro-

physiological (latencies, onset latencies, and amplitudes of the

PCN) as well as behavioral measures (reaction times, error rates)

were subjected to two-way repeated-measure analyses of variance

(ANOVAs) with the factors Dimension (color, orientation) and

Neural Indices of Visual Feature Contrast
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Saliency (high, middle, low). Significant main effects and/or

interactions were further examined using Tukey HSD post-hoc

comparisons.

Results

Behavioural Data
Figure 2 presents the error rates and reaction times separately

for orientation (Figure 2a) and color targets (Figure 2b). For both

feature dimensions, participants made the fewest errors when the

target was highly salient (2,5%), with a gradual increase for targets

of intermediate (5.4%) and low saliency (7.0%): F(2,22) = 31.5,

p,.0001. Furthermore, error rates were overall higher for color

than for orientation targets (5.6% vs. 3.6%), F(1,11) = 27.3,

p,.0003, with the effect of the feature contrast manipulation

being more pronounced for the color than for orientation:

F(2,22) = 3.8, p,.04. Subsequent post-hoc contrasts (Tukey

HsD) confirmed error rates for all feature contrast levels to differ

significantly from each other.

A similar pattern was obtained for the reaction times (RTs). As

illustrated in Figure 2, RTs were fastest for high-saliency targets

(340 ms) and increasing gradually for targets of intermediate

(354 ms) and low saliency (372 ms): F(2,22) = 104, p,.0001.

Furthermore, RTs were overall faster for orientation (353 ms)

than for color (359 ms): F(1,11) = 7.4, p,.02, and the effect of

saliency was more pronounced for color than for orientation

targets (two-way interaction): F(2,22) = 7.4, p,.004. Post-hoc

contrasts revealed all feature contrast levels to differ significantly

different from each other.

Electroencephalographic Data
Grand average ERP waveforms elicited by visual displays that

contained singleton (pop-out) targets of high, intermediate, and

low saliency are shown separately for color and orientation

singletons in Figure 3 and 4, respectively. Separate waveforms for

contra- and ipsilateral targets with respect to the hemisphere of

the recording electrode (PO7/PO8) are shown in the top panels,

while the bottom panels present the corresponding contralateral-

minus-ipsilateral difference waveforms. For all six (dimension6
saliency) experimental conditions, a solid PCN was triggered,

which is evident as a more negative (i.e., less positive) voltage

starting within a time window approximately 150 to 200 ms post

stimulus.

As can be seen from these figures (bottom panels), for both

feature dimensions, the rise of the PCN occurred the earlier and

was the more pronounced the more the target differed from its

distracter surround. These observations are substantiated by

significant main effects of Saliency for PCN onset latencies,

PCN peak latencies, and PCN amplitudes [onset latencies: Fc

(2,22) = 47.799, pc,.001; peak latencies: F(2,22) = 70.563, p,.001,

g2 = .865; see below for the amplitude effect]. Statistically, the

shortest onset and peak latencies were observed for high-saliency

targets (onset: 187 ms; peak: 223 ms), followed by targets of

intermediate (203 ms; 240 ms) and of low saliency (215 ms;

250 ms); post-hoc comparisons confirmed all (saliency) conditions

to differ significantly different from each other (p,.001). In

addition, peak and onset latencies differed with respect to the

dimensional identity of the target [onset latencies: Fc(1,11) = 48.310,

pc,.001; peak latencies: F(1,11) = 17.894, p,.001, g2 = .619], with

shorter latencies for orientation (190 ms; 229 ms) than for color

targets (214 ms; 247 ms). Note that the interactions between the

two factors were non- significant [onset latencies: Fc (2,22) = 1.223,

pc..314; peak latencies: F(2,22) = 0.105, p..901, g2 = .009],

suggesting that the saliency-dependent timing of the PCN can

be generalized across (at least) these two visual dimensions.

Furthermore, the degree of target-distracter similarity was

signalled by the PCN amplitudes [F(2,22) = 7.135, p,.004,

g2 = .393], with the strongest activations for high-saliency targets

(22.64 mV), and gradually decreasing activations for intermediate-

(22.37 mV) and low-saliency targets (22.08 mV). Post-hoc anal-

yses revealed only the difference between high- and low-saliency

targets to be significant (p,.002; p..148 for comparisons

involving intermediate-saliency targets). In contrast to the PCN

latencies, there was no influence of the target-defining dimension

on the PCN activations, as evidenced by the absence of a

significant effect involving Dimension [main effect:

F(1,11) = 1.032, p,.332, g2 = .086; Saliency6Dimension interac-

tion: F(2,22) = 1.024, p..376, g2 = .085].

Discussion

When introducing the idea of a saliency map in 1985, Koch and

Ullman inspired researchers across disciplinary boundaries in

cognitive, neurophysiological, and computational sciences. Two

and a half decades later, a large body of studies [11–28] has

revealed the neural expression(s) of saliency by means of single-cell

Figure 2. Behavioural results. (a) Reaction times (lines) and error rates (bars) as a function of Saliency (High, Middle, Low) for orientation-defined
(pop-out) targets. (b) Reaction times (lines) and error rates (bars) as a function of Saliency (High, Middle, Low) for color-defined (pop-out) targets.
doi:10.1371/journal.pone.0016276.g002
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recordings, fMRI, and TMS in the non-human primate as well as

the human visual system.

Here, we have reported electro-cortical evidence for modulations

of pre-attentive processing speed as a function of visual target

saliency (high,middle,low) in the human visual cortex. For two

distinct feature-dimensions (color and orientation), we found visual

saliency to systematically influence the timing (and amplitude) of

the Posterior Contralateral Negativity – a component generally agreed

to reflect focal-attention shifts in visual space [41–43]: the shortest

(onset and peak) latencies were elicited in response to high-saliency

feature singletons, with a graded increase in PCN latencies for

singletons of intermediate and low saliency. Importantly, this

electrophysiological activation pattern was systematically mirrored

by the latencies of the behavioral RTs, demonstrating that the

salience of a given stimulus plays a crucial role for the time it takes

for focal attention to be engaged onto the target object, even when

the target is just a feature singleton.

Our results are closely in line with Guided Search-type of

models (e.g., GS [2]; dimension-weighting account; [30]),

according to which this saliency-based activation pattern arises

at the stage of pre-attentive visual coding. That is, early sensory

feature detection mechanisms (e.g., for color, orientation, motion)

are assumed to compute feature contrast (i.e., dimensional

saliency) signals for all locations across the visual field. These

signals are then passed to a common master map of locations; with

each unit accumulating activity towards a threshold [55,56]. The

unit that reaches the threshold first triggers a shift of focal-

attentional processing resources to the location it represents,

thereby mediating deeper and explicit stimulus analyses (e.g.,

feature identification) and motor response decisions. Accordingly,

high- (relative to intermediate- and low-) saliency targets give rise

to enhanced coding of feature contrast signals at pre-selective

processing stages, which – cascaded forward to later response-

related processes – leads to speeded RTs.

This saliency-based activation pattern of the PCN complements

a series of recent EEG studies that specifically focused on the

timing of this component in order to dissociate pre-attentive versus

post-selective contributions to (extensively studied) RT effects.

Based on PCN latency variations, these studies revealed pre-

attentive perceptual encoding stages to be involved in the

Figure 3. Grand averaged event-related brain potentials elicited in response to color-defined (pop-out) targets at electrodes PO7/
PO8. (a) Waveforms contra- and ipsilateral to the singleton location. (b) Topographical maps of PCN scalp distributions for each of the three Salience
conditions (High, Middle, Low) at the point in time when the difference between contra- and ipsilateral waveforms reached its maximum. These maps
were computed by mirroring the contra-ipsilateral difference waves to obtain symmetrical voltage values for both hemispheres (using spherical
spline interpolation). (c) PCN difference waves obtained by subtracting ipsilateral from contralateral activity for each of the three Salience conditions
(High, Middle, Low).
doi:10.1371/journal.pone.0016276.g003

Neural Indices of Visual Feature Contrast
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generation of redundancy gains by pop-out targets defined in

multiple dimensions [46], dimension-specific intertrial (dimension

repetition vs. change) effects [31], as well as (semantic) dimensional

pre-cueing effects [32]. Crucially, all these effects were likewise

interpreted as arising from modulated saliency signals computed at

the level of pre-attentive vision, indicating that the timing of the

PCN reflects the speed of those coding stages that occur prior to,

and provide the basis for, focal-attentional target selection.

In addition to the saliency-based PCN latency effects, the present

data also revealed an amplitude effect: the greater the difference of

the target from its surround, the larger the PCN amplitude. This

effect of target-distracter similarity appears to be at variance with

findings reported by Hopf and co-workers [57]. In their study, the

stimulus displays comprised of twelve circles, each with differently

colored upper and lower halves; there were two target circles, one

in the left and one in the right (lower) visual field, both surrounded

by five distracter circles. The task (Experiment 1) was to determine

which of the two central target items contained a predefined color

(e.g., yellow), with the response being based on the relative location

of this color (upper vs. lower half) within the target item.

Contrasting conditions in which target and distracters shared two

features (color and orientation) as compared to only one feature

(color), Hopf et al. observed enhanced neural activity underlying

the PCN with greater feature overlap between the target and

distracter items. They took this as evidence that the processes

underlying the PCN reflect the suppression of distracter interfer-

ence, so as to resolve ambiguous target feature coding [58]. The

present study, however, used simple pop-out search displays in

which the target was easily detectable based on high physical

distinctiveness, without a need for deeper focal-attentional stimulus

analysis. This contrasts with the displays used by Hopf et al., in

which the target – defined by an instructed color, which was

however shared by the surrounding distracters – could appear at

one of two possible locations. To solve the task, participants had to

first select and then attentionally analyze the target item (to

determine the elevation, top vs. bottom, of the instructed color)

before they could decide upon the appropriate motor response.

Given this, the conclusion of Hopf et al. that enhanced PCN

activations reflect suppressive processes engaged to attenuate

distracter interference may be limited to the particular demands

Figure 4. Grand averaged event-related brain potentials elicited in response to orientation-defined (pop-out) targets at electrodes
PO7/PO8. (a) Waveforms contra- and ipsilateral to the singleton location. (b) Topographical maps of PCN scalp distributions for each of the three
Salience conditions (High, Middle, Low) at the point in time when the difference between contra- and ipsilateral waveforms reached its maximum.
These maps were computed by mirroring the contra-ipsilateral difference waves to obtain symmetrical voltage values for both hemispheres (using
spherical spline interpolation). (c) PCN difference waves obtained by subtracting ipsilateral from contralateral activity for each of the three Salience
conditions (High, Middle, Low).
doi:10.1371/journal.pone.0016276.g004

Neural Indices of Visual Feature Contrast
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of their task. By contrast, searching visual scenes that contain a

(relatively) salient feature singleton target reverses the PCN

activation pattern, giving rise to stronger activations with reduced,

rather than increased, target-distracter similarity.

Although the present findings indicate a major role of bottom-

up processes in the elicitation of the PCN (for feature singleton

search) on the basis of physical distinctiveness, it should be noted

that the activation and timing of this difference waveform can be

modulated by top-down factors, such as ‘task (feature) set’ [59] or

‘dimensional set’ [32,60]. In a recent study by Eimer and Kiss

[59], a PCN and, thus, visuo-spatial shifts of attention were

observable only when the feature singleton was relevant to the

current task. More specifically, participants were asked to

discriminate the orientation of a target bar, which was preceded

by a cue array in which the location of a feature singleton, such as

a color-defined singleton, was unrelated to the position of the

upcoming target item. Eimer and Kiss found that a color singleton

cue triggered a PCN (associated with a behavioral spatial-cueing

effect) only when the subsequent target was also a color singleton

(among color-homogeneous nontargets), but not when it was the

only (luminance-defined) onset item in the target display. This

pattern suggests that attention shifts elicited by spatially uninfor-

mative feature singleton cues are contingent upon the stimulus

parameters specified in the top-down task set [cf. 61]. Consistent

with this observation, behavioral detection responses to a feature

singleton have been found to be expedited – associated with

shorter PCN latencies – when observers are provided in advance

with a cue word (e.g., shape) that indicates the probable target-

defining dimension on a given trial [32]. This further underscores

the notion that top-down control processes are able to modify the

time course of focal-attentional target selection by altering the

initial feedforward sweep of visual processing.

In conclusion, the present findings advance our knowledge of

how visual saliency affects the processing of feature singleton

targets. Recording electroencephalographic brain responses, we

found that the conspicuity of visual (pop-out) target objects was

strongly tied to the timing and magnitude of the PCN component,

indicating that focal-attention shifts were triggered as a function of

visual (target) saliency. Given this, our findings provide further

support for a saliency-based processing architecture of the human

visual system, in which the outcome of early sensory feature

contrast computations guides the deployment of focal-attentional

processing resources.
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