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P S Y C H O L O G I C A L  S C I E N C E

Severe violations of independence in response 
inhibition tasks
Patrick G. Bissett1*, Henry M. Jones1, Russell A. Poldrack1, Gordon D. Logan2

The stop-signal paradigm, a primary experimental paradigm for understanding cognitive control and response 
inhibition, rests upon the theoretical foundation of race models, which assume that a go process races independently 
against a stop process that occurs after a stop-signal delay (SSD). We show that severe violations of this indepen-
dence assumption at short SSDs occur systematically across a wide range of conditions, including fast and slow 
reaction times, auditory and visual stop signals, manual and saccadic responses, and especially in selective stop-
ping. We also reanalyze existing data and show that conclusions can change when short SSDs are excluded. Last, 
we suggest experimental and analysis techniques to address this violation, and propose adjustments to extant 
models to accommodate this finding.

INTRODUCTION
An essential adaptive feature of cognition and action is that they can 
be controlled and directed toward the achievement of goals. How-
ever, goals can change immediately and completely, as when a green 
light turns red while driving. In this case, the current course of ac-
tion (accelerating) must be stopped. In such instances, a behavioral 
kill switch, known as response inhibition, is a necessary mechanism 
for control. Response inhibition is also a necessary part of modifying 
action as goals change (1–3). Thus, response inhibition is a funda-
mental control mechanism (4–6) that affords behavioral flexibility 
whenever actions need to stop or change in accordance with changing 
goals or environmental conditions.

A primary paradigm used to understand response inhibition is 
the stop-signal paradigm (7), which usually involves making a choice 
response to a go task and attempting to stop that response when an 
infrequent stop signal occurs after a stop-signal delay (SSD). This 
paradigm has grown in its use and is a common tool across various 
disciplines including neuroscience, psychiatry, psychology, and more 
[see (8), appendix 1]. The main theoretical vehicle for understanding 
and analyzing data from the stop-signal paradigm is the independent 
race model (7, 9), which assumes that a go process begins when the 
go stimulus occurs and races independently against a stop process 
that begins when the stop stimulus occurs. Stop finishing first results 
in stop success (i.e., no response); go finishing first results in stop 
failure (i.e., an overt response that escapes inhibition).

The independent race model provides a theoretical framework for 
understanding the stop-signal task and captures the main features 
of stop-signal performance. First, as the SSD increases, the proba-
bility of stop failure should increase (7) as longer SSDs handicap the 
race in favor of the go process. Second, stop-failure reaction time 
(RT) should be faster than no-stop-signal RT (i.e., responses on trials 
without a stop signal) because the stop process cuts off the upper tail 
of the go RT distribution, and stop-failure RT should decrease with 
decreasing SSD, because shorter SSDs will cut off more of the upper 
tail (7, 10, 11). These predictions tend to be supported by data.

The independent race model (7, 9) assumes context independence, 
which means that the finishing time distribution of the go process is 
the same whether or not a stop signal is presented [P(Tgo < t | no 
stop signal) = P(Tgo < t | stop signal)]. This assumption is essential 
to the race model account of the major dependent variables in the 
stop task: the probability of inhibiting response at each SSD, RTs on 
stop-failure trials, and the finishing time of the stop runner in the 
race, stop-signal RT (SSRT). Context independence allows the model 
to use the observed go distribution on no-signal trials as an estimate 
of the distribution of go runners on stop-signal trials. Violations of 
context independence invalidate the application of the race model 
to the data and call into question conclusions based on race-model 
measures (see the “Violations contaminate main dependent variables” 
section in the Supplementary Materials). The independent race 
model also assumes stochastic independence, which means that 
the finishing times of the go and stop processes are independent 
on a given trial [P(Tgo < tgo AND Tstop < tstop) = P(Tgo < tgo) × 
P(Tstop < tstop)]. The present manuscript focuses on the assumption 
of context independence.

Stop-failure RTs have been used to assess context independence 
(7, 12). If mean stop-failure RT is faster than mean no-stop-signal RT, 
then the context independence assumption is assumed to hold, and the 
race model is applied to the data (7, 12). If stop-failure RT is longer than 
the race model predicts, then the context independence assumption 
is violated. In severe violations, stop-failure RT may be longer than 
no-stop-signal RTs, which is not possible in the independent race model. 
We report extensive evidence for such severe violations below.

Violations of context independence are not only problematic for 
the original independent race model (7) but also a general issue for 
extant models of stopping. Parameterized versions of the indepen-
dent race model that are intended as process models (9) or mea-
surement models (13) also assume context independence. Models 
aimed at the underlying physiology also assume context independence 
up to the point at which stop and go processes interact (14, 15). 
These models assume that the parameters that generate the distri-
butions of stop and go finishing times are context independent in 
that they take the same values on stop and go trials. Therefore, for 
all of these models, assuming context independence is essential to 
fitting the data and essential to estimating the distribution of SSRTs. 
Violations thus have important consequences for a broad range of 
theories in this domain.
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Severe violations also challenge extant models that assume “trigger 
failures,” which are complete failures to detect, discriminate, or re-
spond to the stop signal, as if the stop process was not “triggered” 
on that trial (7, 16). They are assumed to occur on a subset of trials 
regardless of SSD, as if the subject neglected the stop goal. When a 
trigger failure occurs, the go process races alone, resulting in stop- 
failure RTs that are just as long as no-stop-signal RTs. Therefore, 
trigger failure models can accommodate stop-failure RTs that are 
faster than no-stop-signal RTs (if only a subset of stop-failure trials 
results from trigger failure), like the independent race model (7, 9), 
or as long as no-stop-signal RTs (if all stop-failure trials result from 
trigger failure), but not stop-failure RTs that are longer than no-
stop-signal RTs. Hence, the presence of stop-failure RTs that are 
longer than no-stop-signal RTs would also challenge extant models 
of trigger failures (16).

Some previous work suggested that context independence may 
be violated at short SSDs. Colonius and colleagues (17–20) showed 
that violations tended to occur at SSDs of <200 ms. Logan and Cowan 
(7) found violations in the same range of SSDs. However, this work 
only included a total of 18 subjects across five published studies. 
Some of this work relies on model fitting to generate predictions for 
independence to compare with observed data, and that is only fea-
sible in studies with many trials per participant. Few studies include 
that many trials, which led us to develop an alternative method that 
would apply more generally.

We evaluated violations of context independence with a novel 
method that compared observed stop-failure RTs to observed no-
stop-signal RTs from the immediately preceding trial. Crucially, the 
race model predicts that stop-failure RTs should be progressively 
faster than no-stop-signal RTs as SSDs decrease. Therefore, if ob-
served stop-failure RT is found to be longer than observed no-stop 
RT at short SSDs, then this is evidence of a severe violation of con-
text independence. In addition, by comparing stop failures to their 
immediately preceding no-stop-signal trials, we are able to eliminate 
the contamination of slow fluctuations in RT and SSD that occur 
throughout the experiment (21–23). Furthermore, this method should 
eliminate the influence of any response slowing including proactive 
slowing (21, 24), as the stop-failure trial and the immediately pre-
ceding trial should be similarly influenced by such slowing. In the 
following section, we apply this method to 860,568 trials obtained 
from 675 subjects across 25 conditions in 14 datasets (see Table 1) 
to evaluate the ubiquity of violations and to inform the mechanisms 
underlying them. We reveal violations at short SSDs across fast and 
slow conditions, auditory and visual stop signals, manual and saccadic 
responses, and selective stopping. The data and all analysis codes are 
openly available (http://doi.org/10.5281/zenodo.4432816).

RESULTS
Violations at short SSDs in experiments with  
fixed SSDs
A common procedure for determining SSD is the 1 up 1 down track-
ing procedure (25), but this can result in a small number of trials at 
short SSDs. To evaluate violations across SSD, we designed two ex-
periments that used a broad range of fixed SSDs (100 to 500 ms in 
fixed SSD 1 and 0 to 500 ms in fixed SSD 2; see Table 1). In these 
experiments, a set of SSDs is presented in random order with the 
same number of trials at each SSD. This ensures that short SSDs are 
as probable as intermediate and longer SSDs.

To evaluate the prevalence of violations at short SSDs, we plot 
the violation (mean stop-failure RT from trial N minus mean no-
stop-signal RT from trial N-1) against SSD. The positive values 
demonstrate evidence of a severe violation of the context indepen-
dence assumption of the independent race model.

In our fixed SSD 1 study (see Fig. 1A), we observed violations at 
the shortest 100-ms SSD, but not at the longer ≥200-ms delays. To 
sample short SSDs with greater granularity, we included 11 SSD values 
from 0 to 500 ms in fixed SSD 2 (see Fig. 1B) and showed violations 
at the 0-, 50-, and 100-ms SSDs. In both fixed SSD studies, we ran a 
linear mixed effects model to evaluate whether violations were 
significantly greater than zero. In fixed SSD 1, the violation did not 
reach significance (see Fig. 1A), but in fixed SSD 2, we showed that 
the violations were not only positive but also significantly greater 
than 0 at the 0-ms SSD (see Fig. 1B).

Severe violations at short SSDs across studies
In our fixed SSD experiments, we showed numerical evidence of 
violations at shorter SSDs, with violations significantly greater than 
zero at the 0-ms SSD. However, the stop-signal literature is domi-
nated by studies that use a 1 up 1 down tracking procedure (25) to 
determine SSDs. Therefore, we aimed to assess whether violations 
are also present when this procedure is used. We plot the violation 
against SSD across 25 conditions (see Fig. 2A and figs. S2, S4, and 
S6), including the two fixed SSDs from above for comparison. To 
summarize the prevalence of violations, we also plot the proportion 
of datasets (Fig. 2B) and individual subjects within each dataset 
(Fig. 2C and figs. S3 and S6) that show violations (i.e., numerically 
positive values from Fig. 2A) at a given SSD. These violations did 
not result from different subjects contributing to short and long 
delays (see fig. S1).

To evaluate whether violations were significantly greater than zero 
at short SSDs, we ran a series of linear mixed effects models. First, 
we ran linear mixed effects models separately on each condition, 
which revealed short SSD violations that were significantly greater 
than zero in at least one short SSD in 6 of the 25 conditions. How-
ever, short SSD trials are rare and stop-failure trials are rare at short 
SSDs, so we may not have the power to robustly evaluate the statis-
tical significance of violations at short SSDs. To increase power, we 
ran a hierarchical linear mixed effect model that included all 25 
conditions and revealed violations that were significantly greater than 
zero at short SSDs (see Fig. 2A, gray confidence band). This was the 
case even if stimulus selective stopping conditions were removed 
(see fig. S9). Therefore, the go process is slowed or impaired at short 
SSDs, which is inconsistent with not only the independent race 
model (7, 9) but also extant models of trigger failures (16). We will 
discuss the implications of this result in the Discussion.

Together, Fig. 2 (A to C) reveals that violations are common at 
short SSDs and rare at long SSDs. Violations dominate at short SSDs, 
with mean violations being numerically positive at SSDs of <200 ms 
(see Fig. 2A). This result is notable because the independent race 
model predicts that stop-failure RTs should be progressively shorter 
than no-stop-signal RTs as SSD becomes shorter. Extant models of 
trigger failures predict that stop-failure RTs are less than or equal to 
no-stop-signal RTs, so these data are inconsistent with both the in-
dependent race model (7, 9) and trigger failure models (16). In ad-
dition, although most of the studies included in the present analysis 
used a commonly used SSD tracking procedure that was not designed 
explicitly to result in SSDs of <200 ms, these short SSDs made up 

http://doi.org/10.5281/zenodo.4432816
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Table 1. Basic information on analyzed datasets and conditions. N is the number of subjects before excluding based on an insufficient number of trials at 
short SSDs (see the Supplementary Materials for details). Trial N is the number of total trials per subject. 

Condition no. Condition 
description N Trial N Collection 

method Stop modality Stop rule (Citation no.)

1 Fixed SSD 1 24 1200 In person Auditory Simple (36)

2 Fixed SSD 2 24 2400 In person Auditory Simple (36)

3 Deadline 3  
(300 ms) 24 480 In person Auditory Simple (36)

4 Deadline 1  
(500 ms) 480 In person Auditory Simple (36)

5 Deadline 1  
(700 ms) 480 In person Auditory Simple (36)

6 Deadline 2  
(300 ms) 24 480 In person Auditory Simple (36)

7 Deadline 2  
(500 ms) 480 In person Auditory Simple (36)

8 Deadline 2  
(700 ms) 480 In person Auditory Simple (36)

9 Stop probability 0.2 24 1200 In person Auditory Simple (21), E. 1

10 Stop probability 0.4 1200 In person Auditory Simple (21), E. 1

11 Turk simple 0.2 339 300 Mechanical Turk Visual Simple (40)

12 Turk simple 0.4 300 Mechanical Turk Visual Simple (40)

13 Turk stim 
selective 300 Mechanical Turk Visual Stim selective (40)

14 Turk motor 
selective 300 Mechanical Turk Visual Motor selective (40)

15 Saccadic eye 
movements 11 600 In person Auditory Simple (36)

16 Between-subjects 
modality auditory 1 24 1200 In person Auditory Simple (42) E. 1

17 Between-subjects 
modality auditory 2 24 1200 In person Auditory Simple (42) E. 2

18 Between-subjects 
modality visual 1 32 1200 In person Visual Simple (42) E. 3

19 Between-subjects 
modality visual 2 24 1200 In person Visual Simple (42) E. 4

20
Between-subjects 
stimulus selective 

stop
24 1200 In person Auditory Stim selective (27) E. 1

21
Within-subjects 

central go simple 
stop

24 520 In person Auditory Simple (36)

22
Within-subjects 

central go 
selective stop

520 In person Auditory Stim selective (36)

23
Within-subjects 

peripheral go 
simple stop

520 In person Auditory Simple (36)

24
Within-subjects 

peripheral go 
selective stop

520 In person Auditory Stim selective (36)

25 Variable difficulty 53 576 In person Visual Simple (38)
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Fig. 1. Violations at short SSDs in experiments designed to evaluate violations. Violations across SSDs in the fixed SSD 1 (A) and fixed SSD 2 (B) conditions using 
linear mixed effects modeling (corrected for multiple comparisons across SSD values). Positive values indicate violations of context independence. Shaded areas indicate 
the 95% confidence interval. Fixed SSD 1 (A) includes SSDs between 100 and 500 ms at 100-ms increments, and fixed SSD 2 (B) includes SSDs between 0 and 500 ms at 
50-ms increments.

Fig. 2. Severe violations of independence. The thick black line is the mean across studies, and colored lines are individual conditions or studies. (A) Positive values in-
dicate severe violations. The gray band around the mean is the 95% confidence interval of the results of the linear mixed effect model using data from all conditions and 
studies (corrected for multiple comparisons across SSD values). Figure S2 is identical but includes a legend. (B) Proportion of conditions that violate [i.e., positive values 
from (A) at each SSD]. (C) Proportion of individual subjects from each condition that violate the independence assumption at each SSD. Figure S3 is identical but includes 
a legend. (D) Cumulative proportion of SSDs in our 23 conditions that tracked SSD with a 1 up 1 down tracking algorithm. Note: A small proportion of stop trials had 
negative SSDs (0.02) or SSDs above 750 ms (0.007) and are not displayed here or included in any analyses of violations. Figure S7 is identical but includes a legend.
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approximately half of all stop trials (40% ≤150 ms and 53% ≤200 ms; 
see Fig. 2D). Thus, we anticipate that this result may be rele-
vant to most subjects and virtually all datasets in the stop-signal 
literature.

Violations generalize across various common variables
To understand the mechanisms underlying these violations, we in-
vestigated whether they are influenced by common stop-signal task 
variables, which are reflected in the different colored lines in Fig. 2 
(A, C, and D). Most variables including fast versus slow subjects, 
fast versus slow conditions, manual responses versus saccadic eye 
movements, and auditory versus visual stop signals did not interact 
with the violation presented in Fig. 2A (see Table 2 and the Supple-
mentary Materials for statistical details). The preceding results pro-
vide clarity on one central point: The violations tend to occur across 
these manipulations. Therefore, these severe violations appear to 
result from short SSDs, rather than as a result of speed, specific 
effector use, or stimulus modality.

There are factors that do modulate the violation: Extreme go 
speed pressure tends to reduce it (see Table 2, row 2), and slower 
selective stopping tends to increase it (see Table 2, rows 6 to 8). There-
fore, the violation appears to increase with the time that a subject is 
concurrently processing both the go and the stop process, an expla-
nation that we will return to in the Discussion. However, note the 
equivocal Bayesian results that suggest similar evidence for the null 
and alternative hypothesis (see Table 2), so additional research is 
necessary to draw any strong conclusion about the effect of go speed 
pressure or selective stopping on the size of the violation. Related, 

although some of the largest violations are in stimulus selective stop-
ping conditions, as we mention above, the violation across all 
conditions is still significantly greater than zero if the four stimulus 
selective stopping conditions are removed (see fig. S9), showing that 
even in a smaller set of only 21 stopping conditions, the violations 
cannot be explained by the independent race model (7, 9) or extant 
trigger failure models (16).

Removing short SSDs that are prone to violations can 
change conclusions
We have shown severe violations, but that does not mean that they 
are consequential. Perhaps short SSD trials or short SSD subjects 
could be removed and the same conclusions would be drawn from 
data. As we showed in Fig. 2D, short SSDs were approximately half 
of the stop trials in our data, showing that they are common and 
suggesting that if they are removed, this may be consequential. To 
test the latter, we compared SSRT estimates in our 25 conditions 
with short SSDs included or excluded. In 24 of our 25 conditions, 
SSRTs were significantly faster when short SSDs (<200 ms) were 
excluded (see Fig. 3A and fig. S8; also see fig. S5 for SSRTs across all 
SSDs in the fixed SSD 2 dataset). The only exception was the 
saccadic eye movement condition (see dotted blue line in Fig. 3A 
with SSRT of around 80 ms).

We also examined two example datasets to evaluate whether their 
conclusions would change if short SSDs were removed. First, an open 
question in the inhibition literature is whether reactive response in-
hibition, as measured by SSRT, is influenced by proactive control, 
which can be manipulated by increasing the probability of a stop signal 

Table 2. Which variables influence the violation? Most variables do not affect the violation (although note that Bayes factors (BF10) in support of the null 
hypothesis in rows 1 and 3 to 5 were approximately 3, suggesting anecdotal evidence), but extremely short deadlines (row 2) reduce the violation and 
introducing stimulus or motor selectivity increases the violation (rows 6 to 8, though note equivocal Bayes factors). Numbers in parentheses in the condition 
column correspond to the condition column in Table 1. Statistics were based on the analysis of variance (ANOVA) interaction of the trial type (preceding no stop 
versus stop fail) and the condition on mean RT. ƞ2 is a measure of effect size 

Comparison Condition Violation P BF01 2

1 Fast vs. slow  
subjects

RT below median  
(1/2) vs. RT above 

media (1/2)
6 vs. 15 ms 0.549 3.034 0.0009846

2 Varying go  
response deadlines

300 ms (3/6) vs. 500 ms 
(4/7) vs. 700 ms 

 (5/8)
−16 vs. −5 vs. 3 ms 0.011 2.478 0.008

3 Low vs. high stop  
probability

0.2 (9/11) vs. 0.4 stop 
probability (10/12) 8 vs. 27 ms 0.127 2.582 0.007

4 Saccadic vs. manual  
responses

Saccadic (15) vs. 
manual responses (9) −9 vs. −3 ms 0.754 3.799 9.382 × 10−5

5 Auditory vs. visual  
responses

Auditory (16/17) vs. 
visual responses 

(18/19)
−22 vs. −13 ms 0.637 3.095 0.0007657

6 Stimulus selective  
vs. simple stopping

Stimulus selective (20) 
vs. simple stopping (9) 55 vs. −1 ms 0.064 0.802 0.018

7 Stimulus selective  
vs. simple stopping

Stimulus selective 
(13/22/24) vs.  

simple stopping (9)
49 vs. 24 ms 0.018 0.794 0.014

8 Motor selective vs.  
simple stopping

Motor selective (14)  
vs. simple stopping 

(11/12)
69 vs. 36 ms 0.019 1.467 0.015
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(21, 26). In a comparison of Table 1, conditions 11 versus 12, when 
we include all subjects, we found faster SSRT at the higher stop prob-
ability than the lower stop probability. However, this effect was only 
present in subjects with predominantly shorter SSDs, not those with 
predominantly longer SSDs (Fig. 3B). Therefore, removing subjects 
with short SSDs eliminated the effect of proactive control on SSRT.

Second, Bissett and Logan (27) suggested that performance in 
selective stopping tasks can be understood by categorizing subjects 
into different strategies, some of which are defined by violations of 
the race model (dependent discriminate then stop, which involves 
evaluating an ambiguous secondary signal before engaging inhibi-
tion if judged to be a stop signal) and others that are defined by 
context independence (e.g., stop then discriminate, which involves 
stopping before completing a more time-consuming discrimination 
process to evaluate an ambiguous secondary signal). Our reanalysis 
of Bissett and Logan’s data (Table 1, condition 20) shows that subjects 
who were categorized into the strategy defined by violations had 
shorter SSDs (M = 198 ms) than those categorized into the strategy 

defined by independence (M = 340 ms). In addition, there was a 
crossover interaction in which all subjects, irrespective of strategy, 
violated the race model when their SSDs were short but not long 
(Fig. 3C). Therefore, these results suggest that the apparent hetero-
geneity in strategies can be explained by whether a subject has 
predominantly short or long SSDs, bringing into question the indi-
vidual differences in strategies proposed by Bissett and Logan (27). 
Together, the three preceding analyses provide a proof of concept 
that scientific conclusions can change when violation-prone short 
SSDs are removed.

DISCUSSION
Independence between going and stopping is an essential assump-
tion of the race models that are used to understand virtually every 
stop-signal dataset (7, 9). We show that violations of the race model 
are severe and can be consequential. The only necessary and suffi-
cient condition for producing the violation was short SSDs, with 

Fig. 3. Fundamental conclusions can change when short SSDs are removed. Note: Error bars in (B) and (C) represent 95% confidence intervals from bootstrapping. 
(A) SSRT is significantly faster in 24 of our 25 conditions when short SSDs (< 200 ms) were removed. Figure S8 is identical but includes a legend. (B) SSRT is only faster in 
the 40% stop signal than the 20% stop signal condition in subjects with predominantly shorter (mean < 300 ms) SSDs. (C) Violations are present at shorter SSDs (<250 ms; 
left) but not at longer SSDs (>250 ms; right) for all subjects in stimulus selective stopping, bringing into question the putative differences in strategies (SD, stop then 
discriminate; DDS, dependent discriminate then stop) proposed by Bissett and Logan (27).
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severe violations occurring often at SSDs of <200 ms and seldom at 
SSDs of ≥200 ms (Fig. 2, A to C). Therefore, data that include short 
SSDs, which is likely the case for nearly all published studies using 
the stop-signal task (Fig. 2D), may have come to erroneous conclu-
sions based on invalid dependent measures (see Fig. 3).

Toward models that can accommodate violations 
of independence
All models of the stop task assume context independence, so none 
of them can account for the violations we observed, as they are cur-
rently formulated. Newer models that parameterize the stop and go 
processes to improve measurement (13) or incorporate choice (9) 
also assume context independence, as does a recent model that 
assumes perfect negative dependence between stop and go (28). 
Recent models characterize the stop and go processes as stochastic 
accumulators that rise to separate thresholds, and successful inhibi-
tion occurs when the stop process finishes first (9), inhibiting the go 
process (14) or blocking its input (15), reversing its rate of growth 
before it reaches the response threshold. These models assume con-
text independence for the model parameters that produce the distri-
butions of go and stop RTs (accumulation rate, threshold, and 
nondecision time), which implies assuming context independence 
for response time distributions. In addition, these violations do not 
appear to result from attentional blinks (29) or psychological refrac-
tory periods (30), as those phenomena involve impaired processing 
to a second (stop) stimulus, whereas the violation reflects impaired 
processing of the first (go) stimulus.

We have begun to explore modifications to extant models that 
might account for the violations, simulating the model with hand-
picked parameters and assessing their predictions for mean stop- 
failure RTs and the probability of stop failure across SSDs. We 
considered two classes of models: ones that assume that short SSDs 
are special and violations only occur at short SSDs, and ones that 
assume that violations occur with some probability at all SSDs but 
are manifest only at short SSDs with our conservative criterion be-
cause they provide more time for the violations to take effect.

Short SSDs are special
We considered several “short SSDs are special” models and were able 
to find sets of parameters for short and long SSDs that produced 
violations at short SSDs but not at long ones, as observed. The orig-
inal independent race model (7), which addresses only the finishing 
time of the stop and go processes and not the computations that 
give rise to them, can produce violations if stop and go processes are 
both delayed at short SSDs. A more recent version of the indepen-
dent race model (9), which assumes that stop and go processes are 
stochastic accumulators whose finishing time distributions are 
governed by rate of accumulation, threshold, and nondecision time, 
could produce violations if stop and go nondecision times were 
prolonged or stop and go accumulation rates were reduced at short 
SSDs. Such slowing of both go and stop could be driven by a lapse 
of attention. In our fixed SSD datasets (see the Supplementary 
Materials), choice accuracies on stop-failure trials were similar at 
short SSDs to those at long SSDs and go trials, which is more consistent 
with prolonged nondecision time (which should not change choice 
accuracy) than reduced drift rates (which should reduce choice 
accuracy) at short SSDs. Perceptual fusion of go and stop stimuli 
could explain an increase in nondecision time (31–34), and capacity 
sharing between go and stop processes could explain a reduction in 

drift rate (9, 35). Logan and colleagues (9) suggested that go and 
stop do not share capacity, but this may be the case only at longer 
SSDs. The Boucher and colleagues’ interactive race model (14), which 
models stop and go processes as stochastic accumulators that interact 
with each other, could account for violations if both the stop ac-
cumulation rate was reduced and within-trial variability in the 
accumulation rate (the diffusion coefficient) was reduced on some 
proportion of the trials. The Logan and colleagues’ blocked input 
model (15), which is similar to the interactive race model but inhibits 
by reducing the go accumulation rate to zero, can also predict viola-
tions if the rate is reduced by a small amount and stop within-trial 
variability is reduced. Thus, there is potential to develop “short SSDs 
are special” models to account for the violations of context indepen-
dence observed at short SSDs. These models would justify special 
treatment of data from short SSDs, either excluding the data or 
allowing different model parameters to deal with it.

Variable potency of inhibition across all SSDs
Alternatively, violations may be produced by processes that occur at 
all SSDs but result in violations that are particularly severe at short 
SSDs. We hypothesized (36) that introducing variability in the 
potency of the stop process across all stop trials could produce 
violations that are only severe enough to be recognized with our 
conservative criterion at short SSDs. This possibility would present 
a more fundamental challenge to current theories [e.g., (7, 9)] and 
consensus stop analysis procedures (8), as it would not justify simply 
excluding short SSDs and would require fitting new models to mea-
sure SSRT and interpret stop task data.

We have explored this possibility in interactive race (14) and 
blocked input (15) models that implement weakened inhibition on 
some proportion of stop trials at all SSDs. Our interactive race model, 
which reduces stop accumulation rate to near zero and reduces stop 
within-trial variability substantially on some proportion of the trials 
at all SSDs, can produce the observed violations at short SSDs and 
apparent nonviolations at long SSDs. Our blocked input model, 
which varies go accumulation rate across trials and reduces stop 
within-trial variability, also produces the observed pattern of results. 
These models predict that violations will be smaller as SSD increases 
because longer SSDs reduce the time that the weakened inhibition 
can affect go accumulation. With short SSDs, the weakened inhibi-
tion takes effect shortly after go accumulation begins and affects it 
until go accumulation hits the threshold. With longer SSDs, the 
weakened inhibition takes effect well after go accumulation begins, 
when go activation is closer to the threshold, so there is less time for 
weakened inhibition to affect go RT. These models are consistent 
with our finding that the violation may be smaller with extreme go 
speed pressure, as there is less opportunity for a protracted interac-
tion with a very fast go process, perhaps because of reduced go 
encoding time under time pressure (37). These models are also con-
sistent with our finding that the violation may be larger in selective 
stopping, as complicating the stop process may encourage a weaker 
stop process that prolongs but does not fully inhibit the go process. 
These models are important because they argue against excluding 
short SSDs or subjects with short SSDs to salvage existing models. 
They urge new model development.

Implications for trigger failures
Our results challenge extant trigger failures models (16) that assume 
that a trigger failure entails the go process racing alone, because 
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they predict stop-failure RTs that are faster or as slow as no-stop-
signal RTs but not slower, and we show stop-failure RTs that are 
significantly slower than no-stop-signal RTs (see Fig. 2A). However, 
violations and trigger failures may be related. In particular, trigger 
failures may be graded rather than absolute such that partially 
triggering the stop process may yield weak inhibition and violations 
(see the “Implications for trigger failures” section in the Supple-
mentary Materials). In addition, as mentioned by a reviewer, slower 
stop failures could arise if a trigger failure entails a lapse in process-
ing of both the go and the stop process.

Limitations
First, all of our modeling suggestions should be taken as preliminary, 
and additional modeling studies (including parameter search, model 
fitting, model comparison, parameter recovery, and model recovery) 
will be necessary to create a full model capable of validly estimating 
SSRT in the presence of such variable potency of inhibition. Second, 
some of our studies include a small number of short SSDs (see 
Fig. 2D), limiting the statistical power of some of our analyses, espe-
cially those in Table 2. This motivated our inclusion of the two fixed 
SSD datasets and the inclusion of a large number of datasets. Third, 
our analysis focuses primarily on data that we have acquired, which 
leaves open the possibility that idiosyncrasies in our experimental 
design or procedures could drive the observed violations. However, 
the presented experiments have been administered in various settings 
(Vanderbilt University, Stanford University, and online), using dif-
ferent code bases, and by different experimenters, reducing experi-
mental similarities across our conditions. In addition, we included 
a dataset from Matzke and colleagues (38) in our main analyses. Last, 
previous work from Colonius and colleagues (17–20) has shown evi-
dence for similar short SSD violations. For these reasons, we believe 
that the severe violations will generalize to other stopping datasets.

Practical considerations
The context independence assumption is a keystone assumption for 
all modern models of response inhibition, and we have shown 
severe violations of this assumption. Therefore, to validly estimate 
SSRT, we believe that it is necessary to develop a new computational 
model for stopping that accommodates context dependence. We are 
currently developing such models, and we hope that our preliminary 
models presented above will also spur modeling work by others. 
Until such models are validated, users of the stop-signal task may 
consider the following strategies to limit the degree to which viola-
tions contaminate their results. Across all suggestions, we recommend 
evaluating violations at all SSDs of all subjects using the methods 
described above and the linked open-source code.

One class of mitigating strategies involves adjusting experimental 
parameters to try to avoid the conditions and parameters that we 
found to result in the most severe violations. First, the violations 
appear to be most severe at SSDs of <200 ms, so study designers 
could restrict the range of SSDs to values of ≥200 ms. However, this 
may encourage RT slowing, as subjects may recognize that they 
cannot stop faster responses, and progressive RT slowing has been 
shown to contaminate SSRT estimates (39). If implementing this 
strategy, it will be important to emphasize in instructions and feed-
back that subjects should not slow their responses to wait for stop 
signals. This first strategy may also result in missing the intermediate 
portion of the inhibition function for faster subjects, which has been 
shown to be the most informative for constraining SSRT estimates 

(12). Second, researchers could focus on simple stopping (stop all 
responses to one unambiguous stimulus) instead of the apparently 
more violation-prone selective stopping conditions. Selective stop-
ping paradigms address selectivity in controlled behavior, as subjects 
stop only certain responses or responses to certain stimuli. This 
allows additional comparisons including between stop trials and 
high-level control conditions that involve similar attentional de-
mands but putatively do not involve inhibition per se [e.g., ignore 
trials (27)]. Therefore, the empirical questions under investigation 
may require introducing selectivity, so abandoning selective stopping 
may not be possible. If selective stopping is used, particular care 
should be taken to test for violations and consider the implications 
of their presence. Third, study designers could implement short go 
response deadlines, which we showed somewhat reduced violations. 
However, a short go response deadline will be difficult to meet when 
the go task is more challenging. In addition, at very short deadlines, 
we found that some subjects required negative SSDs to successfully 
stop (see the two most positive lines in Fig. 2D at 0-ms SSD that 
correspond to the fastest 300-ms go response deadline conditions), 
and negative SSDs may change the subjective nature of the task (i.e., 
being told to stop something that has not started). Future work could 
evaluate whether the reduced violations at short SSDs was driven by 
the presence of negative SSDs. Fourth, short SSDs could be avoided 
by choosing a go task that yields longer RTs, perhaps by including a 
more difficult stimulus to response mapping. When coupled with 
the usual 1 up 1 down tracking algorithm (25), this may avoid short 
SSDs entirely (i.e., the lower end of the inhibition function will 
be ≥200 ms). However, we have not evaluated whether violations 
interact with experimental manipulations that would prolong go 
RT, like a more difficult stimulus to response mapping.

The second class of mitigating strategies involves analytical strat-
egies to avoid short SSDs. First, short SSD trials could be excised 
and SSRT could be computed only from stop trials with SSDs above 
a threshold, perhaps ≥200 ms. Second, SSRT could be computed 
only for subjects with few or no short SSDs. However, these strategies 
share substantial shortcomings. Both would likely involve substantial 
data loss. For example, in our sample of 25 conditions, eliminating 
stop trials with SSDs of ≤150 ms would involve removing 40% of all 
stop trials. In addition, if using a tracking algorithm for SSD like the 
common 1 up 1 down algorithm (25), short SSDs arise from fast go 
RTs and slow SSRTs. When the go process is fast and the stop pro-
cess is slow, the go process tends to win and SSD is reduced, resulting 
in short SSDs. Therefore, if subjects with short SSDs were removed, 
the sample would be biased toward subjects with slower go processes 
and faster stop processes. If short SSD trials were removed, subjects 
with more short SSD trials would have less data from which to base 
their SSRT estimates, making them less robust. In addition, this re-
quires defining a threshold for what qualifies as “short.” In our analy-
ses, we have primarily focused on SSDs of <200 ms because these 
were the SSDs that produced violations that were numerically greater 
than 0 ms in Fig. 2A. However, the requirement of numerically 
positive violations is a conservative criterion and may miss less 
severe violations.

We do not believe that any of these mitigating strategies are un-
qualified solutions, and many of the strategies (e.g., removing short 
SSD trials or subjects with short SSDs) implicitly suggest that short 
SSDs are special. As we show in our preliminary simulations above, 
the severe violations that are apparent at short SSDs may arise from 
processes that occur on all stop trials, so short SSDs may not be as 
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special as they appear. If this is the case, new modeling may be the 
only solution to extract trustworthy estimates of SSRT, as all stop 
trials involve dependence between go and stop. We believe that new 
modeling is an essential step to placing the stop-signal literature on 
sound theoretical ground that accommodates severe violations of 
context independence.

MATERIALS AND METHODS
Experimental design
Below, we describe the design of each of the 25 conditions included 
in our study. There were no prespecified components.
Condition 1
Subjects. Twenty-four adults recruited from the Nashville area were 
given $12 for a single 1-hour session. All subjects had normal or 
corrected-to-normal vision. One subject was replaced for mean go 
RT more than 3 SDs above the group mean RT. In this and all sub-
sequent data acquisition, we have complied with all relevant ethical 
regulations including study approval from the Vanderbilt or Stanford 
University IRB (institutional review board) and informed consent 
from each participant.

Apparatus and stimuli. The experiment was run on a Pentium 
Dual-Core PC running E-Prime 1 (pstnet.com). The stimuli were 
presented on a 19-inch cathode ray tube monitor. The go task was 
to respond to a single black shape (triangle, circle, square, or diamond) 
on a white background presented in the center of the screen. The 
height and width of each shape was 4 cm at the longest point. Sub-
jects responded on a QWERTY keyboard. The stop signal was a 
500-Hz tone (70 dB, 100 ms) presented through closed headphones.

Procedure. Each trial began with a 500-ms fixation cross, followed 
by the presentation of the go stimulus for 850 ms, and followed by a 
1000-ms blank-screen intertrial interval (ITI). The go task was to 
respond as quickly and accurately as possible based on the identity 
of the centrally presented shape. Two of the shapes were mapped on 
the “z” key, and the other two were mapped onto the “m” key, and 
subjects responded with their left and right index fingers, respec-
tively. The shape to key response mapping was counterbalanced 
across subjects.

A stop signal occurred on a random 20% of all trials, and sub-
jects were instructed to try their best to stop their response when 
they heard it. There were five SSDs: 100, 200, 300, 400, and 500 ms. 
The SSD was randomly selected on each stop trial, with the only 
constraint being each was presented exactly 48 times for each 
subject.

Subjects were instructed to respond quickly and accurately to 
the shapes and then were given 12 trials of experimenter-supervised 
practice on trials without stop signals. Then, stop-signal trials were 
introduced, and subjects were instructed to also do their best to stop 
on stop-signal trials. They were given another 12 trials of practice 
that included two stop signals. After practice, subjects completed 
the main task of five blocks of 240 trials each. Between blocks, sub-
jects were given feedback on the speed and accuracy of their no-
stop-signal trials from the previous block.
Condition 2
Subjects. Twenty-four adults recruited from the Nashville area were 
given $24 for a single 2-hour session. All subjects had normal or 
corrected-to-normal vision.

Apparatus and stimuli. The apparatus and stimuli for condition 
2 matched those for condition 1.

Procedure. The procedure for condition 2 was the same as condi-
tion 1 with the following exceptions. The probability of a stop signal 
was 0.22 instead of 0.2. There were 11 SSDs with 48 stop trials each: 
0, 50, 100, 150, 200, 250, 300, 350, 400, 450, and 500 ms. There were 
10 blocks of 240 trials each. At the end of the fifth block, subjects took 
a 5-min break before beginning the second half of the experiment.
Conditions 3 to 8
Subjects. Forty-eight subjects were recruited from the Nashville com-
munity and were compensated $12 for a single 1-hour session. All 
subjects had normal or corrected-to-normal vision. Ten subjects were 
replaced, whose probabilities of successful stopping fell outside the 
95% confidence interval of 0.5.

Apparatus and stimuli. The apparatus and stimuli for conditions 
3 to 8 matched those for condition 1.

Procedure. The procedure was the same as condition 1 with the 
following exceptions. The deadline for the go response was manip-
ulated by varying go-stimulus duration (300 ms for conditions 3 and 
6, 500 ms for conditions 4 and 7, or 700 ms for conditions 5 and 8) 
and instructing subjects to respond before the go stimulus disap-
peared. There were six blocks of 240 trials each, and go-stimulus 
duration varied across the first three blocks in an order that was 
counterbalanced across subjects. The order of blocks for a given sub-
ject was the same for the first three blocks and the last three blocks. 
Each trial began with a 500-ms fixation display, followed by the go 
stimulus. In 24 of the subjects, a 1000-ms ITI followed the go stim-
ulus (conditions 3 to 5), and in the other 24 subjects, the ITI was 
1200, 1000, and 800 ms for go durations of 300, 500, and 700 ms 
(conditions 6 to 8), respectively. The performance in these two groups 
was very similar, so they were collapsed into one sample for the 
analyses presented in row 2 of Table 2.

On a random 25% of trials, a stop signal occurred that indicated 
that subjects should withhold their response for that trial. The SSD 
was varied with a tracking algorithm to achieve P(respond|stop 
signal) = 0.5 (25). When subjects successfully inhibited, SSD in-
creased by 50 ms; when subjects failed to inhibit, SSD decreased by 
50 ms. There were three separate SSD tracking algorithms, one for 
each deadline.

Subjects were told to try to respond before the go stimulus left 
the screen and to sacrifice go response accuracy to respond before the 
deadline (although responses were still recorded after the deadline). 
After the instructions, subjects were given 24 trials of experimenter- 
supervised practice with the 500-ms deadline. After practice, subjects 
completed the main task. At the end of each block, subjects were 
given feedback on mean RT and mean accuracy from that block, as 
well as the percentage of trials in which they met the deadline.
Conditions 9 and 10
The methods are described in detail in experiment 1 of (21). The 
methods are similar to condition 1 except that SSD was tracked with 
a 1 up 1 down tracking algorithm (as in conditions 3 to 8). The go 
stimuli were four visual shapes (triangle, circle, square, or diamond) 
mapped onto two keypress responses. The stop signal was a 500-Hz 
auditory tone.
Conditions 11 to 14
Subjects. Six hundred sixty-two subjects were recruited from Amazon 
Mechanical Turk (MTurk) and were compensated $6/hour to com-
plete a 10-hour battery of 63 tasks at their own pace within the con-
straint that they completed within 1 week. Subjects had to have 95% 
of past MTurk assignments approved, have completed at least 2000 
assignments, live in the United States, and be an adult. Five hundred 

http://pstnet.com


Bissett et al., Sci. Adv. 2021; 7 : eabf4355     17 March 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

10 of 14

twenty-two subjects completed all tasks and passed basic quality 
assurance applied to all 63 tasks [in general, this included median 
response times longer than 200 ms, no more than 25% omission rate, 
accuracy higher than 60%, and no single response given on most 
trials; see (40) for details]. We also applied additional criteria specif-
ically to the stop-signal tasks. One hundred twenty subjects were 
removed, whose probability of successful stopping fell outside the 
95% confidence interval of 0.5 for at least one of conditions 11 to 14. 
We also applied the binomial test to ensure that accuracy was sig-
nificantly higher than 0.5 in all conditions, which was not the case 
for 62 subjects in the noncritical go trials in the motor selective 
stopping task and another 1 subject on ignore trials in the stimulus 
selective stopping task, resulting in another 63 subjects being re-
moved. This resulted in a final sample of 339 subjects.

Apparatus and stimuli. The experiments were run on the subject’s 
PC operating on either Windows or OSX. The experiments were 
coded using jsPsych (www.jspsych.org/) and were published to MTurk 
via expfactory [expfactory.org (41)]. Shapes differed between tasks 
and are listed below:

1) Simple stop signal: Pentagon, hourglass, teardrop, square
2) Motor selective stop signal: Circle, rhombus, L shape, triangle
3) Stimulus selective stop signal: Rectangle, oval, trapezoid, moon
Each shape was 275 pixels at the longest point, and all were black. 

Subjects responded on a QWERTY keyboard. Like the preceding 
conditions, conditions 11 to 14 involved a 4 to 2 stimulus to response 
mapping, with the responses being z and m on the keyboard. The 
stop signal was a 14-sided star, which was black in the simple stop 
and motor selective stop tasks and either blue or orange in the stim-
ulus selective stop task. All stimuli were created with default shapes 
in PowerPoint.

The visual angle between the go and stop stimulus varied from <1° to 
~2°. Based on feedback on a previous version of this work, we eval-
uated the possibility that violations in this dataset may be driven by 
smaller visual angles. To do so, we computed the violation separately 
for each go stimulus and found that violations were not significantly 
or even numerically larger when the visual angle between the go and 
stop stimulus was smaller, providing evidence against this possibility.

Procedure. Subjects completed a total of 63 tasks and surveys, of 
which three were stop-signal tasks. The order of tasks and surveys 
was randomized across subjects. Subjects were encouraged to spread 
work for the battery over the week and not do too many tasks in a 
row. The timing for each trial matched condition 1. Each stop-signal 
task will be discussed in more detail below.

Simple stop (conditions 11 and 12):
Subjects completed two types of practice: The first (20 trials) focused 
on speed and accuracy of shape-to-key mapping, while the second 
(12 trials) included stop signals. Subjects repeated practice blocks of 
each type until they completed five practice blocks or they met 
task-specific quality assurance (QA) thresholds. Between each practice 
block, subjects were given feedback on relevant QA thresholds. 
These thresholds are the following:

1) Average RT of less than 1000 ms
2) Go accuracy greater than 80%
3) Omit no more than 10% of all go trials
4) Stop accuracy is between 20 and 80%
There were 12 blocks and 50 trials in each block. Six blocks had 

a stop probability of 0.2 (condition 11), and the other six had a stop 
probability of 0.4 (condition 12). The order of conditions was counter-
balanced across subjects, and subjects completed all six blocks for 

one condition before they completed all six blocks for the other 
condition. As in conditions 9 and 10, subjects were not instructed 
about the manipulation of stop probability. Between blocks, subjects 
were given feedback on all relevant thresholds.

Stimulus selective stop (condition 13):
Subjects were instructed to try their best to stop their response if they 
saw a blue star but not if they saw an orange star. Therefore, stop-
ping was selective to the stimulus color dimension. SSD was updated 
on trials that required subjects to stop their response, and ignore 
signal delay was yoked to SSD. There were six blocks and 50 trials in 
each block. In each block, stop signals occurred on a random 20% of 
trials, while ignore trials occurred on another random 20% of trials.

Trial timing and instructions were the same as conditions 11 and 
12 except the first no-stop practice included 12 trials and the second 
practice that included stop and ignore trials included 30 trials. In 
addition, an additional QA threshold was applied such that subjects 
had to respond on more than 60% of ignore trials. Between blocks, 
subjects were given feedback on all relevant thresholds.

Motor selective stop (condition 14):
Subjects were instructed to try their best to stop their response if 
they saw a black stop signal and they were going to respond with the 
critical stop response (e.g., z); otherwise, they were instructed to ignore 
the stop signal and keep responding (e.g., if they were going to 
respond m). Therefore, inhibition was selective to a certain motor 
response (the critical response) but not the other (the noncritical 
response). SSD was updated on critical response stop trials. There 
were five blocks and 60 trials in each block. In each block, stop sig-
nals occurred on a random 40% of trials, half of which occurred on 
critical response trials and the other half on noncritical response 
trials. As in conditions 11 to 13, between blocks, subjects were 
given feedback.
Condition 15
Subjects. Eleven young adults recruited from the Nashville area were 
given $60 for five 1-hour sessions on five consecutive days. All sub-
jects had normal or corrected-to-normal vision. Four subjects were 
replaced because their eyes could not be tracked satisfactorily, 
and two subjects were replaced because they did not complete all 
five sessions.

Apparatus and stimuli. The experiment was run on a PC running 
SR Research Experiment Builder software connected to a PC run-
ning EyeLink 2000. The stimuli were presented on a 19-inch cathode 
ray tube monitor displaying a 1024 × 768 pixel resolution. The go 
task was to saccade to a black X presented on the right or left side of 
the screen. The X was 50 pixels by 50 pixels, and its center was posi-
tioned at coordinate 172 × 384 if presented on the left and 852 × 384 
if presented on the right. The stop signal was either a 500-Hz tone, 
750-Hz tone, or 1000-Hz tone (70 dB, 100 ms) for a given subject, 
and the tone choice was counterbalanced across subjects. The tone 
was presented through closed headphones.

Saccades were registered by EyeLink if above a velocity threshold 
of 30°/s (and remained above the threshold for 4 ms) or an acceler-
ation threshold of 8000°/s per second. The minimum motion thresh-
old was 0.1°. Saccades were registered as correct on a go trial if they 
landed within a circle around the target X with a radius of 170 pixels. 
Stop trials were registered as correct if no saccades were registered.

Procedure. Subjects completed five sessions across five consecu-
tive days. The first session was a training session in which subjects 
completed only no-stop-signal trials, and they received trial-by-trial 
feedback as to whether their response was recorded as correct by the 
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eye tracker. This session was intended to train subjects to appropriately 
fixate and saccade. The final four sessions involved simple stopping 
to auditory stop stimuli, simple stopping to visual stop stimuli, stim-
ulus selective stopping to auditory stop and ignore stimuli, and 
stimulus selective stopping to visual stop and ignore stimuli. The 
order of the final four sessions was counterbalanced across subjects. 
We focus on the results from the simple stopping to auditory stop 
stimuli session. Simple stopping to auditory stimuli is common, and 
the questions of whether modality and stimulus selectivity influence 
the violation are addressed in conditions 16 to 19 on larger datasets 
that involve manual responses. Subjects pressed the spacebar to begin 
each trial, which initiated drift correction and began a 500-ms fixa-
tion period before the target appeared for 1000 ms, followed by the 
850-ms blank-screen ITI.

SSD was tracked with a 1 up 1 down tracking algorithm (25). 
Auditory stop signals were presented on 20% of all trials. Subjects 
were instructed to look promptly at the X when it appeared but try 
to remain fixated on the center of the screen if they heard a tone. 
After instructions, subjects were given 20 trials of practice. The main 
task included 10 blocks of 60 trials per session. At the end of each 
block, subjects were given rest but no feedback.
Conditions 16 to 19
The methods are described in detail in experiments 1 to 4 of (42). 
For the analyses in row 5 of Table 2, experiments 1 and 2 are com-
bined to produce the auditory stop signals’ dataset and experiments 
3 and 4 are combined to produce the visual stop signals’ dataset. To 
summarize, the methods were similar to fixed SSD 1 except SSDs 
were tracked with a 1 up 1 down tracking algorithm. The auditory stop 
signals were tones (experiment 1 and 2), and the visual stop signals 
were colored stars (experiment 3) or black bars presented above or 
below the go stimulus (experiment 4). Go responses were keypresses.
Condition 20
The methods are described in detail in experiment 1 of (27). To 
summarize, subjects responded to go stimuli that were black shapes 
on a white background, and the stop and ignore stimuli were audi-
tory tones of different frequency. Go responses were keypresses.
Conditions 21 to 24
Subjects. Twenty-four young adults recruited from the Nashville area 
were given $36 for two 90-min sessions on consecutive days. Two 
subjects were replaced, one for not showing for the second session 
and the other for having a probability of stopping outside the 95% 
confidence interval of the expected probability of stopping.

Apparatus and stimuli. The apparatus was the same as all previous 
keypress experiments, although the stimuli differed in the following 
ways. The go task in both sessions began with three “+” signs, one in 
the center of the screen flanked horizontally by one 2 inches to the 
left and one 2 inches to the right. The go task differed across sessions, 
and the order of sessions was counterbalanced across subjects. In 
one session, the central + changed to a “<” or “>,” which informed 
subjects to respond z or m on the keyboard, respectively. In the other 
session, either the left or the right + changed to an X, which informed 
subjects to respond z or m, respectively. All stimuli were presented 
in 24-point font. Both 500-Hz tones and 750-Hz tones were pre-
sented through closed headphones. There were three conditions in 
each session: simple stopping with 20% stop signals, simple stopping 
with 40% stop signals, and selective stopping with 20% stop signals 
and 20% ignore signals.

Procedure. The procedure was the same as fixed SSD 1 with the 
following exceptions. SSD was tracked with a “1 up 1 down” track-

ing algorithm (25). Here, we only compared the 20% simple stop-
ping condition to the selective stopping condition. The order of 
conditions was counterbalanced across subjects, but the order was 
the same for both the central and peripheral session for each subject.

In simple stopping blocks, subjects were instructed to stop if either 
the high (750 Hz) or the low (500 Hz) tone was presented. In the 
selective stopping block, subjects were instructed to stop to one of 
the two tones and ignore the other (which tone was the stop signal 
was counterbalanced across subjects). Subjects stopped to the same 
tone in both sessions.

Subjects were given 10 trials of experimenter-supervised practice 
on trials without stop signals. They were given another eight trials 
of practice that included stop signals for their first condition of the 
day and six trials of practice before starting each of the subsequent 
two sessions of each day. After the initial practice, subjects completed 
two blocks of 260 trials each for the first condition, then practiced 
the second condition and completed two blocks of 260 trials each for 
the second condition, and then practiced the third condition and 
completed two blocks of 260 trials each for the third condition. This 
procedure was repeated in the second session. Between blocks, sub-
jects were given feedback on the speed and accuracy of their no-
stop-signal trials from the previous block.
Condition 25
The methods are described in detail in (38). Briefly, subjects responded 
with the “Z” or “/” keys with their left or right index finger to indicate 
whether a random-dot kinematogram displayed 45° left or right up-
ward global motion, respectively. There were two interleaved diffi-
culty levels, with greater coherence in the easier condition. The stop 
signal was a gray square around the go stimulus. Stop signals oc-
curred on 29% of all trials. For most stop-signal trials (86%), SSD 
was determined by a 1 up 1 down tracking algorithm (25) with a 
step size of 33 ms. On a small subset of stop trials (14% of all trials), 
SSD was presented at a fixed 50 ms. Given that most SSDs were 
determined by tracking, we present these results with the other track-
ing studies in the main text.

Statistical analysis
Computing the violation
In each condition, we computed observed mean stop-failure RT and 
compared it to observed mean no-stop-signal RT on the trial imme-
diately preceding each stop failure. This comparison was only made 
if the trial immediately preceding the stop-failure trial was a no-
stop-signal trial and if this preceding trial was not an omission. Using 
the no-stop-signal RTs that immediately precede stop failures allows 
us to more accurately test for violations in experiments that use the 
typical staircased tracking algorithm for determining SSD. This is 
because go RTs fluctuate throughout the experiment, and SSD tends 
to fluctuate with it, so when RTs are fast, SSD tends to be short, and 
when RTs are slow, SSD tends to be long (21, 22). Therefore, to test 
for prolonged stop-failure RTs, which are evidence of violations of 
the race model, we assume that the no-stop-signal RT on the imme-
diately preceding trial is the best baseline to compare the current 
stop-failure trial against. This procedure is not necessary for fixed 
SSD conditions, but most of our conditions and most of the experi-
ments in the human stopping literature include a staircased tracking 
algorithm, so for consistency, we apply this procedure to all of our 
analyses, including our fixed SSD conditions.

We computed these stop failure and preceding no-stop-signal RTs 
for each subject at each SSD for which they have at least two of such 
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pairs of trials. In general, a cutoff point of one resulted in very noisy 
individual subject data, and cutoff points larger than two eliminated 
too many subjects. This resulted in only a subset of subjects contrib-
uting to the group average at a given SSD, because only a subset of 
subjects have two stop-failure trials at any given SSD. For motor 
selective stopping, only no-stop stop-failure trial pairs in which both 
used the stop (critical) response were included, given that responses 
were considerably faster for the response that is never stopped 
(mean correct noncritical go RT = 529 ms) than the response that 
can be stopped (mean correct critical go RT = 611 ms), t(338) = 24.4, 
P < 0.001.

To test whether the results in Fig. 2 were driven by different sets of 
subjects within a given dataset contributing at short SSDs (<200 ms) 
and longer SSDs (≥200 ms), we recalculated the same violation 
measure but only included subjects who contributed both short and 
long SSDs. To do this, we took the data from Fig. 2 and found the 
range of continuous SSDs for which at least five subjects from that 
condition contributed to each SSD and which contained at least one 
SSD < 200 ms and one SSD ≥ 200 ms. If these criteria were satisfied 
by multiple ranges (e.g., 50 to 200 ms and 150 to 350 ms), we chose 
the range with the shortest SSD for its lower bound (50 to 200 ms in 
the above example). This result is displayed in fig. S1, which shows 
that the violations at short SSD are not driven by different sets of 
subjects within a condition contributing to short and long SSDs. In 
addition, the fixed SSD studies (see Fig. 1) argue that the main re-
sults presented in Fig. 2 cannot be driven by different sets of sub-
jects contributing to short and long delays, as all subjects experienced 
short and long delays.

Note that in analyses that combined data from multiple condi-
tions across SSDs (i.e., Fig. 2 and figs. S1 to S4, S7, and S9), values 
for the fixed SSD 1 and variable difficulty conditions were interpo-
lated to SSDs that were a multiple of 50 ms using a first-order spline 
to contribute to group averages at that SSD. When using linear mixed 
effects models to estimate violations at each SSD (i.e., the black lines 
in Fig. 2A and figs. S1, S2, S4, and S9), no interpolation was used. 
However, for visualization purposes, values for SSDs that were 
unique to the variable difficulty dataset (e.g., 133 ms, 167 ms, and all 
SSDs > 800 ms) were removed so that every SSD presented contained 
data from multiple conditions.

In addition, a reviewer suggested that our method for computing 
the violation may be contaminated by progressive RT slowing on 
repeated go trials. This suggestion would predict slower RT when 
go trials repeat. Across our 25 conditions, go trials that followed a 
go trial (M = 495 ms) were faster than go trials that followed a stop 
trial (M = 515 ms), consistent with the general finding of post–
stop-signal slowing (21). In addition, we found that the RT on the 
go trial immediately preceding a stop trial (M = 501 ms) and go 
trials immediately preceding a stop failure trial (M = 492 ms) were 
not slower than the overall mean RT (M = 502 ms), demonstrating 
that go trials that preceded stop trials were not unusually slow. 
Therefore, contamination by progressive RT slowing on repeated 
go trials cannot explain our severe violations.

We completed our Table 2 and Fig. 3 (B and C) analyses with 
JASP 0.12.2.0 (jasp-stats.org), an open-source project for flexible, 
intuitive frequentist and Bayesian analyses. In our Bayes factor com-
putations, we used the default prior values in JASP: r scale fixed effects 
of 0.5, r scale random effects of 1, and r scale covariates of 0.354. We 
have shared the full input to and output from JASP for our analyses, 
as well as all raw data, at http://doi.org/10.5281/zenodo.4432816.

Analysis pertaining to violations generalizes across various 
common variables
In our Table 2 analyses, we focused exclusively on SSDs of <200 ms, 
as this is the range under which we found evidence of severe viola-
tions in Fig. 2. When we compared the violation across conditions, 
we only included an SSD if it was <200 ms and if all conditions being 
compared had at least five subjects with at least two pairs of no-stop 
and then stop-failure trials at that SSD. Therefore, when two condi-
tions were compared, they were compared across the same range of 
SSDs (to help ensure that any differences between conditions were 
not driven by differences in SSDs over which the violation was eval-
uated), but different comparisons in this paper were evaluated over 
different SSD ranges. Then, each subject in each condition was 
either included or excluded in the group average for that condition 
based on whether they had a sufficient number of no-stop and then 
stop-failure trial pairs in the chosen range for that study. As men-
tioned above, the criterion was the subject needed to have at least 
one SSD (within the chosen range for that study) with at least two 
no-stop followed by stop-failure trial pairs. If they had more than 
one SSD within the chosen range for that study, then the means of 
the violation (observed stop-failure RT minus observed preceding 
no-stop-signal RT) were averaged across the SSDs that passed the 
criterion of at least two stop-failure trials.
Linear mixed effects modeling
To test whether the violations presented above were significantly 
greater than 0 at short SSDs, a linear mixed effects model was run 
using the lmer() function from the R package lme4 (43). First, a vio-
lation analysis was run on each condition following the procedure 
described above, producing a violation for each subject at each SSD.  
One subject from conditions 21 to 24 was removed because they did 
not have more than one pair of no-stop + stop-failure trials at any 
SSD that was shared with at least four other subjects from their 
dataset. This produced violation data for 674 subjects. Following this, 
subjects with only one data point (i.e., a single SSD with more than 
one stop failure preceded by a non-omission go trial) were excluded. 
This resulted in 2 participants being excluded, 1 from the saccades 
condition and 1 from the variable difficulty condition, leaving 
672 participants across 25 conditions. With this final dataset, a linear 
mixed effects model was run to estimate the mean violation at each 
SSD between 0 and 500, along with the bounds of a 95% confidence 
interval to be used for significance testing, which were adjusted for 
multiple comparisons using multivariate t distributions. Subjects and 
conditions were included as random intercepts in the model. The 
outputs are presented in Fig. 2A and revealed violations that were 
significantly greater than zero at SSDs of 0, 50, and 100 ms. Note 
that while all conditions were used in the fitting of the model and 
estimation of effects, only SSDs present in two or more conditions 
are included in the visualization to improve the readability of the 
figures. To determine whether these results were driven by stimulus 
selective stopping conditions, which have been known to produce 
violations in some subjects (27), this process was repeated excluding 
the stimulus selective stopping conditions (4 of 25), and the results 
are presented in fig. S9. We found that the lower bound of the 95% 
confidence interval was above 0 at SSDs of 0 and 50 ms, consistent 
with severe violations at short SSDs.

To test whether the results in Fig. 2A were driven by different sets 
of subjects within a given dataset contributing at short SSDs (<200 ms) 
and longer SSDs (≥200 ms), we sparsified the data to subsets of SSDs 
that contained at least one SSD < 200 ms and one SSD ≥ 200 ms and 

http://jasp-stats.org
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a set of five or more subjects present at each of these SSD for each 
condition, as described in the “Computing the violation” section. 
The sparsified data were run through a linear mixed effects model 
with subjects and conditions as random intercepts, again using SSDs 
between 0 and 500 ms and the same adjustment for multiple com-
parisons. The results are displayed in fig. S1, which shows that the 
violations at short SSD are not driven by different sets of subjects 
within a condition contributing to short and long SSDs, with viola-
tions remaining significantly above 0 at SSDs of 0 and 50 ms.

An additional linear mixed effects model was run on each condi-
tion using the same method as above (i.e., calculating a violation for 
each subject at each SSD between 0 and 500 and removing subjects 
with only one data point). Subjects were included as random inter-
cepts in the model, and the bounds of the confidence intervals were 
adjusted using the same method. Investigation of the lower bounds 
of the confidence intervals revealed violations at one or more short 
SSD (i.e., SSDs < 200 ms) in 6 of the 25 conditions. The outputs of 
these individual models are presented in Fig. 1 (A and B) and fig. S6.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/12/eabf4355/DC1

View/request a protocol for this paper from Bio-protocol.
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