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Abstract: The long-range control of gene expression is facilitated by chromatin looping and can be
detected using chromosome conformation capture—3C. Here we focus on the chromatin architecture
of the PTBP3 (Polypyrimidine tract binding protein 3) locus to evaluate its potential role in regulating
expression of the gene. PTBP3 expression in prostate cancer cell lines is found significantly higher
compared to skin fibroblasts using real-time PCR (p < 0.05) and digital droplet PCR (p < 0.01).
Exploration of the chromatin spatial architecture of a nearly 200-kb fragment of chromosome
9 encompassing the PTBP3 gene identified two elements located 63 kb upstream and 48 kb downstream
of PTBP3, which looped specifically to the PTBP3 promoter. These elements contain histone acetylation
patterns characteristic of open chromatin regions with active enhancers. Our results reveal for the
first time that long-range chromatin interactions between the −63 kb and +48 kb loci and the PTBP3
promoter regulate the expression of this gene in prostate cancer cells. These interactions support an
open chromatin form for the PTBP3 locus in cancer cells and the three-dimensional structural model
proposed in this paper.

Keywords: chromatin conformation; PTBP3; ROD1 (Regulator Of Differentiation 1); cancer epigenetic;
gene expression regulation; prostate cancer

1. Introduction

Regulation of gene expression involves multiple mechanisms at various stages leading to
decreased or increased protein synthesis. Gene regulation at the transcription level is a combination
of effects of chromatin conformation and interaction between the complex transcription machinery
and DNA [1]. Post-transcriptional modifications control gene expression at the mRNA stage [2], and
translational regulation affects the level of protein synthesized from mRNA by, for instance, controlling
ribosome recruitment [3]. Epigenetic mechanisms involve DNA modification or post-translational
modification of proteins that are closely associated with DNA as key mediators [4].

Some of the best known gene regulation mechanisms which play an important role in cancer
development are: DNA methylation, gene silencing by microRNA or histone modifications [5]. In the
recent years, chromatin was elevated to a key position as a mediator of the transformation of a normal
cell into a malignant state [6]. Modifications such as acetylation of histones (H3K27ac, H3K9ac) and
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their methylation (H3K4, H3K36) may activate spatial organization of chromatin structure to produce
a transcriptionally activated state [7]. Regulatory elements may interact with target genes or other
regulatory elements over large genomic distances or can even activate the expression of genes located
on different chromosomes [8]. Over the last 15 years, the development of Chromosome Conformation
Capture (3C) and its subsequent high-throughput variants (4C [9,10], 5C [11], HiC [12], T2C [13],
Capture C [14]) has given insights to better understand chromatin 3D organization and its correlation
with the regulation mechanisms of gene expression [15].

PTBP1 (Polypyrimidine tract binding protein 1,l hnRNP I) is a gene encoding a multifunctional
protein mainly known for its role in tissue-specific regulation of exon splicing [16–18]. PTBP1 is a
member of a larger family of 4 genes in mammals: PTBP1, PTBP2, PTBP3 and smPTB, characterized
by a similar protein architecture and containing four RNA-recognition motifs (RRMs) [19]. We were
interested in a PTBP1 paralog, the PTBP3(ROD1) gene (Polypyrimidine tract binding protein 3,
NM_005156), which plays a role in the negative regulation of differentiation [20]. ROD1 is expressed
preferentially in hematopoietic cells and has a known role in nonsense-mediated mRNA decay
(NMD) [21]. Cross-regulation between PTBP1 and PTBP3 by non-productive alternative splicing
has been reported [22], but other regulation mechanisms remain to be clarified. The PTBP3 regulation
mechanisms have not been thoroughly characterized.

Chromatin loops promote activation of gene expression at the mRNA level. Activation of gene
transcription by three-dimensional chromatin architecture has been demonstrated in several genes,
e.g., CFTR (Cystic fibrosis transmembrane conductance regulator) [23–25], TNFAIP3 (NF Alpha Induced
Protein 3) [26], PPARγ2 Peroxisome Proliferator Activated Receptor Gamma 2) [27]. We observed a
significant change in the PTBP3 mRNA levels in cancer cell lines versus normal cells, consistent with
high expression in lung cancer [28] and stomach cancer [29]. Therefore, we attempted to use the 3C
technique to investigate whether the chromatin architecture of the PTBP3 gene regulates its expression
at the transcriptional level in cancer cells.

2. Results

2.1. Levels of PTBP3 mRNA in Prostate Cancer Cell Lines

To determine whether the mRNA levels of PTBP3 differed between cancerous and non-cancerous
cells, two quantitative PCR methods were used: Quantitative reverse transcriptase real-time PCR
(qRT-PCR) and digital droplet PCR (ddPCR). The qRT-PCR assay using the Universal ProbeLibrary
(UPL) probes involved mRNA level analysis normalized using glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) and porphobilinogen deaminase (PBGD). The results were consistent for
both housekeeping genes (Figure 1). PTBP3 was increased in prostate cancer cell lines compared to
skin fibroblasts with GAPDH as the reference gene. The most significant increase in the PTBP3 mRNA
level was observed in the prostate cancer cell lines: PC3M cells (+/− 4.5-fold, p < 0.001) and the PC3
cells (+/− 2-fold, p < 0.01) compared to skin fibroblasts. With PBGD as the reference gene, the most
significantly increased level of PTBP3 mRNA was again observed in the PC3M cells (+/− 3-fold,
p < 0.001) and the PC3 cells (+/− 2-fold, p < 0.05) vs. skin fibroblasts (Figure 1). As in the qPCR assay,
in digital droplet PCR (ddPCR) the most significant increase in the PTBP3 expression was observed in
the PC3M cells (+/− 2.5-fold, p < 0.001) and the PC3 cells (+/− 1.4-fold, p < 0.01) compared to skin
fibroblasts (Figure 1).
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statistically  significant  changes  in  the PTBP3 mRNA  levels  in prostate  cancer  cells versus human 

fibroblasts * p < 0.5; ** p < 0.01; *** p < 0.001. Relative levels of PTBP3 mRNA using quantitative PCR 

(qPCR) assay. Gray columns represent experiment performed in triplicates with references genes: (A) 

PBGD  and  (B) GAPDH;  (C) PTBP3 mRNA  level  using ddPCR  assay.  Stars  represent  statistically 

significant changes  in the PTBP3 mRNA  levels versus human fibroblasts. Black columns represent 

experiments performed at least in triplicates. 

2.2. Looping Organization of the PTBP3 Locus in Prostate Cancer Cell Lines 

Figure 1. Comparison of the expression of PTBP3 in prostate cancer cell lines. Asterisks represent
statistically significant changes in the PTBP3 mRNA levels in prostate cancer cells versus human
fibroblasts * p < 0.5; ** p < 0.01; *** p < 0.001. Relative levels of PTBP3 mRNA using quantitative PCR
(qPCR) assay. Gray columns represent experiment performed in triplicates with references genes:
(A) PBGD and (B) GAPDH; (C) PTBP3 mRNA level using ddPCR assay. Stars represent statistically
significant changes in the PTBP3 mRNA levels versus human fibroblasts. Black columns represent
experiments performed at least in triplicates.

2.2. Looping Organization of the PTBP3 Locus in Prostate Cancer Cell Lines

To investigate the mechanism of higher level of PTBP3 in cancer cells, we examined chromatin
interaction of the PTBP3 locus. We used chromosome conformation capture (3C) for the evaluation
of long-range chromatin interaction across distant regulatory elements and active PTBP3 promoter.
We performed a 3C experiment using prostate cancer cell lines (PC3 and PC3M) with a statistically
significant high expression of PTBP3 versus human skin fibroblasts to identify chromatin interaction
across the PTBP3 locus.

To analyze three-dimensional chromatin organization of the PTBP3, we used a 5′-3′ROD1
Reverseprimer, located in the 5′ region upstream of the promoter of PTBP3, and a set of forward
primers across a 200-kb region encompassing the PTBP3 locus and flanking regions (Figure 2,
Supplementary Table S1). Within the primary human skin fibroblasts, which have a low level
of expression of the PTBP3 gene, interaction frequency with the PTBP3 promoter decreased as a
function of distance from the promoter, with no significant interaction between the promoter and
either of the distal fragments located across the PTBP3 gene.
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Figure 2. Two elements interacting with the PTBP3 transcription start site (TSS) revealed by
chromosome conformation capture (3C). Schematic representation of the PTBP3 gene with exons
marked with vertical bars and the TSS represented by a bent arrow. Small vertical lines under
the gene indicate HindIII restriction sites, and arrow heads indicate the localization of 3C primers
(black arrows—forward; white arrow—reverse). The black circle with a star represent Taqman probe
(bait). The X axis represents the position relative to the TSS. The Y axis represents the interaction
frequency relative to the interaction frequency between two HindIII fragments within the ubiquitously
expressed ERCC3 (ERCC Excision Repair 3) gene. The red arrow represents the bait region of the
PTBP3 promoter, which includes a primer and a Taqman probe. The 3C experiment was performed in
triplicates for each 3C library.
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In prostate cancer cell lines PC3 and PC3M, which express high levels of PTBP3 transcripts,
3C analysis demonstrated chromatin interaction between the PTBP3 promoter and distal or proximal
fragments encompassing regulatory elements.

The highest chromatin interactions within the PTBP3 promoter and distal regions of the gene were
observed in the PC3M cell lines with the highest PTBP3 expression. Frequent chromatin interactions
were observed for two restriction fragments upstream and downstream of the PTBP3 promoter. One
region, encompassing 63 kb upstream of the TSS, was a fragment also observed in the PC3 cells with a
3-fold higher interaction than that observed in a restriction fragment located close to the promoter,
and 9-fold higher than the background of non-specific interactions. Another fragment with a high
chromatin interaction was identified at the 48 kb region downstream of the transcription start point.
This interaction was 3-fold higher than that observed in a fragment located close to the PTBP3 promoter
and 6-fold higher than the background (Figure 2). The interacting fragments located 63 kb upstream
and 48 kb downstream from the promoter region demonstrated a greater interaction frequency with
the PTBP3 promoter than a HindIII fragment located close (<4 kb) to the PTBP3 promoter (Figure 2).

In the PC3 cells with a significant overexpression of PTBP3, frequent chromatin interactions
were observed between the promoter fragment and its nearby restriction fragments. Additionally,
frequent interactions with another restriction fragment were found, as evidenced by a local peak in
interaction frequency. The interacting fragment was located in the flanking region of the 5′ end of
PTBP3 encompassing 63 kb upstream of the TSS. The chromatin interaction between the promoter and
the fragment at −63 kb was approx. 2-fold higher than that between a fragment located close to the
promoter, and approx. 9-fold higher than the background.

2.3. The −63 kbp and +48 kbp Regions of the PTBP3 Promoter are Open Chromatin Regions

To verify open chromatin state at the −63 kb and +48 kb locations of PTBP3 in the PC3 and PC3M
cell lines, chromatin immunoprecipitation (ChIP) with antibodies specific for acetylation of histone H3
on lysine 27 (H3K27Ac) that marked both active promoters and distal enhancers was conducted [30,31]
Primer sets for the SYBR green qPCR were designed to amplify the regions of interests (−63 kb and
+48 kb) upstream and downstream of the PTBP3 promoter region, respectively.

In the PC3M cells, the fragment of interest located 48 kb downstream of the promoter region was
significantly (over 60-fold) enriched in H3K27 acetylation. The second analyzed fragment located at
−63 kb of the PTBP3 locus was also significantly (over 30-fold) enriched in H3K27ac (Figure 3).

In the PC3 cells, an almost 5-fold and a 3-fold enrichment in H3K27Ac at the −63 kb and +48 kb
positions, respectively, was found. The H3K27ac signal levels of fibroblast cell line (VH10) chromatin
were not significantly different between the background signal obtained with an Immunoglobulin
G (IgG) antibody across the analyzed regions of interests (−63 kb and +48 kb). In both prostate
cancer cell lines, PC3M and PC3, ChIP assays targeting H3K27ac revealed that this type of histone
modification was located at the same positions as those identified by the 3C assay of long-range
chromatin interactions with the PTBP3 promoter.

Results obtained in ChIP assay led us to in silico prediction of enhancer elements in the PTBP3 locus.
Our 3C approach employed the HindIII restriction enzyme and produced several DNA fragments of
1–16 kb in size. However, transcriptional enhancers are short DNA fragments (200–1500 bp) [32] that
make it necessary to narrow down the likely position of the putative enhancers within the obtained
−63 kb and +48 kb regions in the active PTBP3 gene. To identify any putative enhancer elements
localized in these upstream and downstream regions of PTBP3, respectively, we searched the Dragon
ENhancers database (DENdb), which predicts enhancers derived from 15 human cell lines form the
Encyclopedia of DNA elements (ENCODE) project [33]. DENdb determines enhancers using five
different methods (ChromHMM [34], Segway [35], Random-Forest Based Algorithm for Enhancer
Identification from Chromatin State RFECS [36], Chromatin signature identification by artificial neural
network (CSI-ANN) [37] and ENCODE [38] integrated annotation).
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Figure 3. Histone acetylation across the PTBP3 locus region in prostate cancer cells and skin fibroblasts.
ChIP was performed using anti-H3K27Ac or a mouse control IgG antibody. H3K27Ac enrichment is
shown relative to the IgG. Data are combined from at least two ChIP experiments. All data points
were calculated as percentage of input material. Asterisks represent statistically significant changes in
H3K27ac enrichment versus anti-IgG, with * p < 0.05 and ** p < 0.001.

In DENdb, we searched for putative enhancers focused on chromatin interacting positions of the
active PTBP3 gene: −63 kb (chr9: 115123248) and +48 kb (chr9: 115011604). We narrowed the −63 kb
region down to two putative regions with enhancers: chr9:115123100–115123500 in lymphoblastoid cell
line (Gm12878) and chr9: 115122550–115125100 in cervical cancer cell line (HeLa-S3). In the +48 kb region,
we also found two putative enhancer regions in cancerous cell lines: at position chr9: 115010400–115013400
in the Gm12878 lymphoblastoid cell line, and at position chr9: 115010700–115012700 in the HeLa-S3
cervical cancer cell line.
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3. Discussion

One of the epigenetic mechanisms of regulation of gene expression are chromatin conformation
changes. Three-dimensional (3D) chromatin looping brings widely-separated distant gene regulatory
elements into close spatial proximity with gene promoter to facilitate long-range control of gene
expression [8,12,39]. Chromatin conformation capture (3C) provides information on the 3D chromatin
organization of the analyzed loci that typically cover only ten to several hundred kb, using
locus-specific primers. In this study, we used 3C to identify long-range chromatin interactions that
may be mechanisms of the PTBP3 gene expression regulation. We explored the spatial chromatin
architecture of nearly 200 kb of chromosome 9 encompassing the PTBP3 gene.

Previous results of studies of PTBP3 expression indicated various expression patterns [20,28,29].
Our consistent qPCR and ddPCR results indicate a significantly increased level of PTBP3 mRNA in
prostate cancer cell lines compared to skin fibroblasts. To confirm that PTBP3 mRNA is overexpressed
in prostate cancer cells, we evaluated the PTBP3 expression pattern between prostate cancer and
normal tissues samples [on the basis of Gene Expression Omnibus(GEO) and Gene Expression Profiling
Interactive Analysis( GEPIA) annotations]. Microarray data obtained from GEO indicate that PTBP3 is
upregulated in prostate tumors versus normal prostate tissue (GDS2545/35600; GDS4114/207223).
Moreover, upregulation of the PTBP3 gene has been demonstrated in prostate cancer progression states
versus benign prostate cancer samples (GDS1439/224618). RNA sequencing expression data from the
GEPIA analysis of the PTBP3 expression across normal and cancerous prostate tissue also demonstrate
upregulation of the PTBP3 gene in prostate cancer tissue compared to normal samples (Figure S4,
Supplementary data). However, the underlying genetic mechanisms responsible for conferring these
different PTBP3 expression patterns are still poorly understood.

We evaluated the level of the PTBP3 protein in the freely available Human Protein Atlas database
(www.proteinatlas.org). As expected, based on the higher PTBP3 expression in prostate cancer cell
lines, a high protein level was detected in many human cancers: lung, stomach, colorectal, urothelial
and pancreatic (www.proteinatlas.org). Furthermore, overexpression of the PTBP3 protein in lung and
pancreatic cancers was associated with unfavorable prognosis.

However, mechanisms which regulate the PTBP3 expression in cancer cells have never been
explored. Therefore, we examined cancerous and non-cancerous cell lines differing in the PTBP3
mRNA levels to identify the spatial chromatin architecture of the PTBP3 locus that can affect the
activation of gene expression in PTBP3-expressing cells.

Our study revealed two elements (−63 kb and +48 kb) in a 200-kb region across the locus that
looped specifically to the PTBP3 promoter exclusively in PTBP3-expressing prostate cancer cell lines.
As expected, no chromatin interactions were identified in the same region in non-cancerous skin
fibroblasts with a low level of expression of the PTBP3 gene.

We identified for the first time novel long-range chromatin interactions between the −63 kb and
+48 kb loci and the PTBP3 promotor which activate PTBP3 expression in the cancerous prostate cell
lines: PC3 and PC3M. In normal skin fibroblasts, flexible chromatin fibers are observed, with absence of
specific long-range looping interactions in the PTBP3 locus. These data suggest that in skin fibroblasts,
there is no interaction within the region spanning 200 kb which could bring distal regulatory elements
close to the gene promoter.

Enhancer elements are known to be associated with certain histone modifications—acetylation of
lysine 27 in histone H3 (H3K27ac) and methylation of H3K4 [40]. H3K27ac is an important marker for
enhancer elements that allows distinguishing between active and inactive enhancer regions according
to the expression of proximal genes, in contrast to H3K4me1 that occurs in all enhancers [31]. Moreover,
changes in the modifications of active histones, such as histone H3 acetylation, are also important
in the three-dimensional organization of chromatin [41]. Therefore, we evaluated chromatin H3K27
acetylation at looping positions across the PTBP3 gene. Chromatin immunoprecipitation was carried
out in the prostate cancer cell lines PC3 and PC3M, and skin fibroblasts VH10 using antibodies specific
for acetylated H3K27.

www.proteinatlas.org
www.proteinatlas.org
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In the PC3 and PC3M cell lines with a highly active PTBP3 locus, H3K27ac enrichment was
detected at the analyzed −63 kb and +48 kb from the transcription startsites. In skin fibroblasts,
in which the PTBP3 locus is inactive, no statistical evidence for acetylated H3K27 was obtained at the
analyzed positions.

H3K27 acetylation detected at analyzed regions of the PTBP3 locus in prostate cancer cells
(PC3 and PC3M) may suggest that open chromatin regions are located at positions −63 kb and +48 kb
of the PTBP3 promoter, respectively, and may act as epigenetic activation regulators of the PTBP3 gene.

Data from DENdb, compared to our 3C and ChIP assay results, suggest a potential presence
of distal enhancer elements that come into physical contact with proximal promoter via looped
out chromatin in the prostate cancer cell lines PC3 and PC3M. The long-range chromatin looping
interactions obtained in our study correlated with the overexpression of the PTBP3 gene in prostate
cancer cell lines.

Using the 3C assay and its derivative methods, it has previously been demonstrated that long-
range chromatin interactions regulate many well-known genes associated with prostate cancer
through chromatin looping. The abnormal activation of the androgen receptor (AR) is a major
example of chromatin looping mechanisms that enhance gene expression in prostate cancer [42].
Recent studies have demonstrated that distal AR binding sites regulate well-known AR target
genes, such as PSA Prostate specific antigen), TMPRSS2 (Transmembrane serine protease 2), UGT1A
(UDP glucuronosyltransferase family 1 member A complex locus), UBE2C (Ubiquitin conjugating
enzyme E2 C), through chromatin looping [43–46]. Moreover, the chromosomal loops of UBE2C have
been reported to be a new therapeutic target in castration-resistant prostate cancer [41,46].

Our results are consistent with the present of three-dimensional structural model and open
chromatin form of the PTBP3 gene in prostate cancer cell lines (Figure 4). This proposed looping model
is clearly correlated with the expression of PTBP3 and suggests that chromatin conformation changes
are the main epigenetic mechanism that regulates PTBP3 expression in prostate cancer cells.
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4. Materials and Methods

4.1. Cell Line Cultures

The human prostate cancer cell lines PC3 and PC3M were grown in the Roswell Park Memorial
Institute (RPMI) 1640 medium supplemented with 10% fetal bovine serum (FBS), and the human skin
fibroblast cell line (VH10) was grown in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented
with 10% Fetal Bovine Serum (FBS). The tested cell lines were cultured at 37 ◦C in a humidified
atmosphere of 5% CO2. Cells were passaged every 2–3 days for exponential growth.

4.2. RNA Isolation and cDNA Synthesis

The total RNA from human prostate cancer cell lines (PC3, PC3M) and fibroblasts (VH10)
was isolated using the High Pure RNA Isolation Kit (Roche, Mannheim, Germany) according to
the manufacturer’s protocol. Complementary DNA (cDNA) was generated used the Transcriptor
High Fidelity cDNA Synthesis Kit (Roche, Mannheim, Germany) with Anchored-oligo(dT)18 Primer.
Denaturation of the template–primer mixture was carried out by heating the tube for 10 min at 65 ◦C.
Reverse transcription was carried out at 50 ◦C for 30 min and at 85 ◦C for 5 min. The purity of cDNA
was tested with agarose gel electrophoresis.

4.3. Real-time Reverse Transcriptase Polymerase Chain Reaction (RT-PCR)

Quantitative reverse transcriptase real-time PCR (qRT-PCR) was performed using RealTime
Ready Custom Panels 96-8 (Roche, Mannheim, Germany) with primers and probe from Universal
ProbeLibrary (Roche, Mannheim, Germany) specific to the PTBP3, GAPDH and PBGD genes, and
run with LC480 Probes Master (Roche, Mannheim, Germany). The experiment was performed in
triplicates for each cell line. Real-time PCR cycling conditions were as follows: One cycle at 95 ◦C,
10 min; 45 cycles of denaturation (95 ◦C, 10 s), annealing (60 ◦C, 30 s) extension (72 ◦C, 1 s) and cooling
(4 ◦C, ∞).

4.4. Digital Droplet Polymerase Chain Reaction (ddPCR)

Digital droplet PCR was conducted to quantify the concentration of the R transcripts in prostate
cancer cells and skin fibroblasts. TaqMan Gene Expression Assay was used to confirm the PTBP3 gene
expression profile by another quantifying method: ddPCR using the QX100 system (Bio-Rad, Hercules,
CA, USA). The copy numbers for each target were averaged across duplicates and normalized to
PBGD references genes. Endogenous mRNA levels were measured by ddPCR using the QuantaLife
droplet digital PCR system (Bio-Rad, Hercules, CA, USA) according to the manufacturer’s instructions.
Briefly, the 20-µL ddPCR mixture was prepared by combining cDNA, primers and probes with ddPCR
Supermix (Bio-Rad, Hercules, CA, USA). Oil emulsion droplets for each sample were prepared using
the QuantaLife droplet generator (Bio-Rad, Hercules, CA, USA). PCR reaction was under the following
conditions: One cycle at 95 ◦C for 10 min, 45 cycles of 95 ◦C for 30 s, 60 ◦C for 1 min, and 98 ◦C for
10 min in a standard thermal cycler (Bio-Rad, Hercules, CA, USA). Plates were read on a QuantaLife
droplet reader (Bio-Rad, Hercules, CA, USA), and the concentrations (copy numbers) of the targets
in the samples were determined using the QuantaSoft software (QuantaSoft Analysis Pro software
version 1.0).

4.5. Gene Expression Databases

The datasets for the analysis and visualization of the PBP3 expression level in prostate tumor
versus normal prostate samples were obtained from several gene expression repositories: Gene
Expression Ominbus (GEO) [47], the Cancer Genome Atlas (TCGA) [48] and Genotype-Tissue
Expression (GTEx) [49]. Additionally, the Gene Expression Profiling Interactive Analysis (GEPIA)
web-based tool was used for comprehensive expression analyses based on TCGA and GTEx data [50].
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4.6. Chromosome Conformation Capture (3C)

3C experiments were completed as described previously [51] with minor modifications. Briefly,
up to 10 million exponentially growing cells were fixed with 1% formaldehyde for 10 min at room
temperature. The cells were lysed in 5 mL of cold lysis buffer (10 mM Tris pH 8, 10 mM NaCl, 0.2%
NP-40) including 1× protease inhibitor, and nuclei were collected by centrifugation. The resulting
cell nuclei were pelleted in 0.5 mL of the appropriate 1.2× restriction buffer, and sodium dodecyl
sulfate (SDS) was added to each tube to a final concentration of 0.3%. Following extraction with 1.8%
Triton X-100, chromatin was digested overnight at 37 ◦C with 2000 U of HindIII (Roche, Mannheim,
Germany). Ligations were performed in a total reaction volume of 6.5 mL of ligation buffer, using
100 U of T4 DNA ligase and incubation at 14 ◦C for 4 h, followed by further incubation at room
temperature for 30 min. DNA was extracted with phenol–chloroform followed by ethanol precipitation.
The efficacy of restriction enzyme digestion was examined using SYBR green qPCR analysis with
specific primer sets (Supplementary data Table S3) and was found to be more than 85% for each 3C
library. The concentrations of 3C libraries were determined by quantitative PCR using the concINT9R2
F/R primer set and compared to a genomic DNA reference of known concentration. Samples were
subsequently diluted to a concentration of 100 ng/mL. The Taqman qPCR technique was used to
quantify the ligation frequency of the PTBP3 gene. The Taqman probe (bait) and the reverse primer
were generated within a restriction fragment at the promoter, and multiple forward primers were
designed within restriction sites in distal regions across the PTBP3 locus spanning a genomic distance
of 203,723 kb (Supplementary data Table S1). The visual representation of DNase-seq and ChIP-seq
(ENCODE Project, 2012) freely available at Genome Browser (University of California, Santa Cruz,
CA, USA; http://genome.ucsc.edu/encode/) was used to evaluate DNase I-hypersensitive sites in the
PTBP3 locus and the flanking region upstream and downstream. Multiple forward primers at−79.7 kb,
−63.2 kb, −30.7 kb, −6.8 kb, +48.4 kb, +71.3 kb and +119.3 kb in reference to the PTBP3 transcriptional
start site were designed. To analyze ligation products across the 3C templates, 200 ng of a 3C template
was used per 20 µL of Taqman qPCR reaction. To account for differences in independently prepared
3C samples, the qPCR data for each sample were normalized to the results obtained for primers
designed for the housekeeping gene ERCC3 (ERCC Excision Repair 3), located in an area with the
same chromatin structure in all types of cells. Each qPCR reaction was performed in triplicate, and the
data presented were the average of two to four independent experimental results for all PCR reactions.

4.7. Chromatin Immunoprecipitation (ChIP)

ChIP assays were performed using Magna ChIP™ G (Millipore, Burlington, MA, USA) protocol
with minor modifications. Approximately 4–5 × 106 cells (on a 100 mm culture dish) were cross-linked
with 1% formaldehyde for 10 min at room temperature. The reaction was stopped with glycine at
0.125 M. The cells were washed with cold Phosphate buffered saline (PBS), scraped and collected by
centrifugation. Nuclei preparation and chromatin digestion was carried out using SimpleChIP®Cell
Lysis Buffers A & B and MNase from Cell Signaling Technology (2316 WZ Leiden, The Netherlands).
Chromatin was digested with 1000 units of MNase at 37 ◦C for 30 min, followed by sonication to
an average size of 150 bp to 500 bp. Chromatin equivalents of ~1 × 106 cells were suspended in
Dilution Buffer with 1 × protease inhibitor cocktail (Millipore, Burlington, MA, USA) and precleared
by incubation with 5 µL of protein G magnetic beads for 1 h at 4 ◦C. An aliquot of chromatin was
removed and saved as “Input”. The reminder of supernatant containing precleared chromatin was
immunoprecipitated using antibodies: 2 µL of H3K27Ac or 1 µL of normal mouse IgG (17-683,
Millipore, Burlington, MA, USA), 20 µL of protein G magnetic beads blocked with bovine serum
albumin (BSA) (washed 2× with 100 µL of BSA 0.5%, 400 µL of Dilution Buffer, 20 µL of 25× protease
inhibitor cocktail (PIC) and 50 µL of BSA 0.5%. Immunoprecipitations were performed overnight
at 4 ◦C. Protein G bead–antibody/chromatin complexes were washed as described in the Magna
ChIP™ G (Millipore, Burlington, MA, USA) protocol. Protein/DNA complexes were eluted, and
cross-links were reversed by incubation with proteinase K (10 µg/mL) and Elution Buffer (Millipore,
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Burlington, MA, USA) for 2 h at 62 ◦C and 10 min at 95 ◦C. DNA was purified using spin columns
as described in the Magna ChIP™ G (Millipore, Burlington, MA, USA) protocol. Enrichment was
analyzed using SYBR Green qPCR. qPCR primers (Supplementary data Table S2) were located at the
selected positions: −63 kb and +48 kb in the PTBP3 gene.

5. Conclusions

Our study revealed two elements (−63 kb and +48 kb) in a 200-kb region across the locus that
looped specifically to the PTBP3 promoter exclusively in PTBP3-expressing prostate cancer cell lines.
The model of three dimensional chromatin conformation in the PTBP3 locus obtained for prostate
cancer cell lines with high PTBP3 expression suggests, that the variable chromatin conformation is a
mechanism that regulates its expression.

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/20/2/
242/s1.
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