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Recent Advances in Parameter Inference
for Diffusion MRI Signal Models
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In this paper, fundamentals and recent progress for obtaining biological features quantitatively by using diffusion
MRI are reviewed. First, a brief description of diffusion MRI history, application, and development was
presented. Then, well-known parametric models including diffusion tensor imaging (DTI), diffusional kurtosis
imaging (DKI), and neurite orientation dispersion diffusion imaging (NODDI) are introduced with several
classifications in various viewpoints with other modeling schemes. In addition, this review covers mathematical
generalization and examples of methodologies for the model parameter inference from conventional fitting to
recent machine learning approaches, which is called Q-space learning (QSL). Finally, future perspectives on
diffusion MRI parameter inference are discussed with the aspects of imaging modeling and simulation.
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Introduction

Since the pioneer work by Le Bihan et al.1 on clinical applica-
tion of diffusion weighted imaging (DWI) in 1986, diffusion
MRI (dMRI) remains still as a developing research field. It
covers a wide spectrum of related areas including not onlyMR
physics and medical science but also applied mathematics and
computer science.2–4 In addition, the successful applications
in clinical practice are remarkable, thanks to progress in both
hardware and software aspects. The former can be represented
by hardware-related development for faster imaging such as
echo planar imaging (EPI).5 Also, related imaging sequences
with physical and mathematical models for DWI signal, a
focus of this review, are included in the latter. After a certain
utility of DWI was clinically confirmed for the acute stroke6 in
the 1990s, the dMRI application, mainly in neuro-brain area,
was explosively spread by the diffusion tensor imaging (DTI)7

in the 2000s. The dMRI brought new information on both
structural and functional aspects to the brain science.8 For
example, the fMRI analysis associated with the white matter
fiber tract network opened new horizon of brain function

assessment.9 Also, recent research on dMRI-based fMRI10

may contribute further development of structural and func-
tional analysis of the brain. Clinical applications are also in a
wide range in both diagnostic and therapeutic purposes. For
the diagnostic purpose, the researches on dMRI-based detec-
tion and staging of diseases and disorders cover various tar-
gets, such as stroke,11 infarction,12 tumors,13 multiple
sclerosis,14 Parkinson’s disease,15 Alzheimer disease,16

Creutzfeldt-Jakob disease,17 and so on. To realize minimally
invasive surgery and radiotherapy, information on the white
matter fiber tracts helps planning and navigation. For instance,
the corticospinal tract extracted from dMRI is often utilized as
an object that should not be damaged during therapy.18,19 In
addition, the target organs and tissues of dMRI have been
extended to other areas, not only the spine20 and the prostate21

but also whole-body scan22 for cancer detection.
In another viewpoint, the dMRI also covers a wide range of

spatial scale of anatomy, for example, in neuro-brain area,
from global structure of white matter fiber tracts to microstruc-
ture of axons. For global structure analysis, tractography23–25

is an epoch-making tool to visualize the white mater fiber
tracts, which had been invisible with conventional imaging
modalities. Also, as described later, several parametric dMRI
signal models can quantify the fine structures in micrometer
order such as axon diameter. One of the most significant
features of dMRI can be its quantitativeness to characterize
local properties of organs and tissues. A single DWI can
provide contrast between tissues based on the difference of
water diffusion property. In addition to such visual informa-
tion, a lot of kinds of quantities can be obtained by multiple
acquisition of DWI. The available quantities depend on the
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models used. For example, DTI provides diffusion tensor,
which can be converted to mean diffusivity and diffusion
anisotropy. These quantities are obtained voxel by voxel to
provide dMRI parameter maps, which can play many roles of
new image modalities. Those parameters at arbitrary location
can also provide tract-specific information with the additional
information of tractctography, that is, quantitative evaluation
in tract-by-tract manner is available. The analysis is called
tract-specific analysis, which is used for the evaluation of
Alzheimer disease,26 autism,27 and so on. An essential and
unique feature of dMRI is that it provides not only functional
information related to phenomenon of water diffusion but also
morphological information of biostructure that constrains the
diffusion. Wide varieties of all those features are provided not
only by imaging sequences to acquire DWI but also by addi-
tional analysis models. That is, how the DWI signal is formed
by structures that affect water diffusion.

Recent progress in dMRI can be categorized in the fol-
lowing three aspects: DWI acquisition, analysis model, and
analysis methodologies. One of the major and important
updates in recent DWI acquisition is diffusion encoding
gradients, also called as motion probing gradient (MPG).
In the standard acquisition of DWI by using spin echo, a
single pair of gradient pulses in both sides of the 180
degrees for phase shift and refocusing is employed. This
technique is categorized in pulsed gradient spin echo
(PGSE) by single diffusion encoding (SDE). One of the
drawbacks of this technique is difficulty in shortening dif-
fusion time for measurement, which is necessary to evalu-
ate the compartment sizes of microstructures restricting
water diffusion. In the recent techniques, more complex
MPG is used. First, multi-diffusion encoding (MDE),
including double diffusion encoding (DDE),28 was intro-
duced. Namely, MDE applies MPGs in more than two
directions. It allows quantification of microscopic diffusion
anisotropy.29–31 In addition, non-pulse gradient techniques
called oscillating gradient spin echo (OGSE)32 were also
introduced for shorter diffusion times. These techniques
lead us to more detailed information of microstructures.
According to the rapid development of MRI acquisition
including hardware progress, more detailed dMRI data
have become available. The set of dense samples in Q-
space leads to more detailed analysis by using more com-
plex models. For detailed description of the physical phe-
nomenon, it has the affinity with the field of the applied
mathematics. Such models consider more parameters or
features by embedding anatomical structures in the model.
Typical models are reviewed in this manuscript later. In
addition to the models, analysis methodologies have been
also developing. One of the recent important factors in
dMRI analysis methodologies is machine learning, which
provides empirical solutions for complex problems. For
example, machine learning techniques were proved to be
feasible in various dMRI problems, including inference of
signal model parameters.

Thus, based on the recent progress of dMRI described
above, fundamentals and recent progress for obtaining bio-
logical features quantitatively by using dMRI are reviewed in
this paper. Especially, the important focus is twofold. One is
parametric signal models, in which features are clearly
defined as parameters. Several classifications in a few view-
points are also provided. The other is methodologies for
model parameter inference. To discuss the methodologies,
mathematical generalization of the problem is presented. In
the following section, Models for dMRI Analysis, reviews of
signal models with several classifications are shown. Among
the analysis models, the focus of this review paper is para-
metric models. Next in section, Parameter Inference for
Signal Models, reviews of parameter inference methodolo-
gies for parametric signal models are described with a math-
ematical formulation of the problem. Then, in section,
Q-space Learning (QSL) and Examples, recent approaches
for parameter inference by machine learning, namely, QSL,
are introduced. Especially, details on synthetic approaches
for QSL are provided, which consist of the simulation of
DWI signal formation with noise. Also, the examples on
several signal models are presented by comparing with
conventional methods for parameter inference. Finally, in
section, Perspectives and Discussion, discussion and per-
spectives of dMRI analysis are shown for closing.

Models for dMRI Analysis

In this section, various models for dMRI analysis, especially
for signal modelling, are introduced.

Since Stejskal–Tanner spin echo signal model33 in
MR spectroscopy (MRS) has introduced to DWI, various
signal models have been proposed. Those models could
be categorized in several viewpoints, such as dimension
and diffusion Gaussianity. Among them, one of the
important categorizations is parametric or non-para-
metric. Therefore, the following part of this section is
threefold. One is on parametric models, in which quan-
tities of physical and/or biological features are included
as explicit parameters. Next is non-parametric, in which
diffusion-related functions such as probability density
function (PDF) or orientation distribution function
(ODF) are defined. The last one is based on new con-
cepts including geometric modelling of microstructures
and diffusion simulation.

Parametric signal models
The parametric signal models of dMRI are approximations
on how the DWI signals are formed based on local proper-
ties of tissues as model parameters and image acquisition
setting values. Basically, the models describe a single DWI
value that is determined by local properties at a single
location. There exist really a lot of signal models for
dMRI. For better understanding, those signal models are
classified in several viewpoints. Below, three major
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classifications are described. The simplest classification of
dMRI signal models is dimension, that is, 1D or 3D. The
former is only for a single orientation of diffusion measure-
ment, while the latter is for whole 3D space. In other words,
it is also a dimension of Q-space,34 in which measured
signal values are located. The next is diffusion type, that
is, whether the observed diffusion phenomenon is regarded
as Gaussian or not. More precisely, the Gaussianity is for
the spatial distribution of water molecules, after certain
period of time, which are initially at an identical location.
If the assumption is true, only a single parameter of diffu-
sion coefficient can represent the phenomenon in 1D, or a
single diffusion tensor can in 3D. Moreover, several models
assume a mixture of Gaussian, that is, the observed dMRI
signal consists of several compartments in different diffu-
sion speed. Basically, in biological structures excepting for
limited space, water diffusion is restricted somehow by
those structures. In such environments of non-Gaussian
diffusion, signal models need extra parameters. Also, con-
sideration of such relation between water diffusion and
biostructures made dMRI signal models developed. In the
early phase, the models are purely generic to represent
environments of physical phenomenon of diffusion. In the
next generation, some models consider anatomical struc-
tures explicitly. Such models are dedicated to specific ana-
lysis; parameters related to biostructures such as fiber
geometry are embedded in the model equations. In this
section, typical and well-known dMRI signal models are
introduced with the classification in the viewpoints above
and also summarized in Table 1.

Stejskal–Tanner (ST) model
The first model is the 1D Gaussian diffusion model by
Stejskal and Tanner, which is originally proposed in
MRS.33 This could be the simplest dMRI model without
assumption for any anatomical structures. The DWI signal
S is expressed by a single exponential form:

S ¼ S0 � exp �bDð Þ (1)

where S0 is the baseline signal without MPG, b is the so-called
b-value representing the strength of MPG, and D is the diffu-
sion coefficient as the model parameter. The absolute magni-
tude of S depends on amplitude setting of signal processing in
MR scanners, normalized signal (or signal decay) E is often
used instead as follows:

E ¼ S
S0

¼ exp �bDð Þ (2)

S0 is often replaced by measured signal by b ¼ 0, but the true
value is also a model parameter included in the model.
Hereafter in this article, E is used for the equations of various
signal models. Except for S0, diffusion environment is repre-
sented by a single parameter of D in this model. It is simple
but useful for approximating total estimation of diffusivity at
a voxel.

intra-voxel incoherent motion (IVIM)
The next is the IVIMmodel,35 which is often referred to as bi-
exponential model. It considers that diffusion signal contains
not only diffusion but also perfusion by randomly oriented
micro-circulation of blood flow. The model equation is in a bi-
exponential form.

E ¼ S
S0

¼ fp � exp �b Dþ D�ð Þf g þ 1� fp
� � � exp �bDð Þ (3)

where fp represents the fraction of perfusion, D is the
apparent diffusion coefficient, and D� is the equivalent
diffusion coefficient by regarding random perfusion as dif-
fusion process. As the D� is derived from blood flow, it is
much higher than D. Therefore, the coefficients are often
referred to as Dslow and Dfast. The design of IVIM model
introducing fp and D� is aimed at reproduction of certain
environment of bio-structures. However, it can also be
regarded as just a mixture of two different Gaussian diffu-
sion phenomena, where explicit anatomy is not necessarily
expressed.

Diffusional kurtosis imaging (DKI)
The DKI signal model is proposed by Jensen and
colleagues36 for quantifying non-Gaussianity of 1D diffu-
sion. Originally, diffusional kurtosis is given for the shape
of the PDF of water molecule displacement, which is
obtained by Q-space imaging (QSI).37 The DKI signal
model is designed to obtain the kurtosis parameter directly
from DWI signals without PDF. The model equation is in an
extended form of ST model as follows:

E ¼ S
S0

¼ exp �bDþ 1
6 b

2D2K
� �

(4)

where K represents the diffusional kurtosis of the additional
parameter. The model is intended to evaluate diffusion envir-
onment restricted by biostructures. Similar to IVIM, how-
ever, anatomical consideration is also implicit in the DKI
model.

DTI
The DTI signal model7 also assumes Gaussian diffusion, but
in 3D space, where diffusion anisotropy is allowed.
Basically, the DTI model is similar to the ST model,33 in
which diffusion in 1D is quantified by a single parameter of
diffusion coefficient. To express anisotropy, diffusion tensor
is introduced, and the quadratic form of the tensor and
orientation vectors shows the diffusion coefficient in the
orientation. The diffusion tensor is a second-order tensor in
the form of symmetric and positive definite 3 × 3 matrix with
six independent components. In the DTI model, normalized
signal E in direction d ¼ dx; dy; dz

� �t
is expressed by the

equation including diffusion tensor D:

E dð Þ ¼ S
S0

¼ exp �bdTDd
� �

(5)
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Table 1 dMRI parametric signal models and attributes

Model name Dimension Number of
compartments Parameters Anatomical

Parameters Inference methods

Stejskal and
Tanner

1D 1 D none Closed-form, least
squares

IVIM 1D 2 D; Dp; fp fractions for
compartments

non-linear least squares

DKI 1D 1 D; K none LM32, closed-form only
for three

measurements55, general
closed-form56

DTI 3D 1 D none Multivariate linear
regression by linear

solution6

DKTI 3D 1 D; W none LM32

Ball and Stick 3D 2 (isotropic and
anisotropic)

fi; fað¼ 1� fiÞ; D; θðiÞ; φðiÞ fiber orientation(s),
fractions for
compartments

Bayesian estimation with
shrinkage priors and MH-

MCMC sampling37

CHARMED 3D 2 (hindered and
restricted)

frðiÞ; fhð¼ 1�P frðiÞÞ; R; DkðrÞ;
D?; Dh

radius and orientation
(s) of fiber, fractions for

compartments

LM38,39

AxCalibar 1D 2 (hindered and
restricted)

frðiÞ; fhð¼ 1�P frðiÞÞ; RðiÞ; DkðrÞ;
D?

(fiber orientation and)
radii of fibers, fractions

for compartments

LM40

Active-Ax 3D 4 (hindered,
restricted,

stationary water
and CSF)

fh; fr; fsw ð¼ 1� fh � frÞ; fCSF;
θðiÞ; φðiÞ; Dt

radius and orientation
of fiber, fractions for

compartments

MCMC42, AMICO54

NODDI
(Bingham-
NODDI)

3D 3 (isotropic,
hindered and
restricted)

fi; fr; ; fhð¼ 1� frÞ; μ; ODðp=sÞ fiber orientation
distribution, fractions
for compartments

gradient descent43,
AMICO54, MLP59,64,67

SANDI 1D
(averaged)

3 (extracellular,
intra-neurite,
intra-soma)

fh; fin; fisð¼ 1� finÞ;Dec;Din; Rs Radius of soma,
fractions for
compartments

random forest
regression45

VERDICT 3D 3 (vascular,
hindered and
restricted)

D; Dp; fv, fr; fhð¼ 1� fv � frÞ;
θðiÞ; φðiÞ; R

radius and orientation
of fiber, fractions for

compartments

LM46

Reisert
(3-compartment
model)

1D 3 (intra-axonal,
extra-axonal, and

free water)

fr; fh; fið¼ 1� fr � fhÞ; R; DkðrÞ;
DkðhÞ; D?; Dh (with given fiber

orientation estimated)

(fiber orientation and)
fractions for
compartments

Bayesian polynomial
regression58

μ: mean orientation of fibers in Watson/Bingham distribution. θ ið Þ;φ ið Þ: fiber orientation angle(s). D: diffusion tensor (2nd order) with 6 independent
components. D: apparent diffusion coefficient (or diffusivity). D�: pseudo-diffusion coefficient for perfusion. Dk r=hð Þ: axon-parallel (longitudinal)
diffusivity in restricted/hindered compartment. D?: axon-radial (transverse) diffusivity in restricted compartment. Dec: effective extracellular
diffusion coefficient (isotropic). Dh: hindered diffusion tensor with only 2 eigenvalues. Din: longitudinal apparent diffusion coefficient in neurite.
Dt: tortuous diffusivity for axon-radial orientation. fa: signal volume fraction for anisotropic diffusion (stick). fCSF: diffusivity for CSF. fi: signal volume
fraction for isotropic diffusion (ball). fh: signal volume fraction for hindered diffusion (extra-axonal). fin: signal volume fraction for intra-neurite
compartment. fis: signal volume fraction for intra-soma compartment. fp: signal volume fraction for perfusion. fr ið Þ: signal volume fraction(s) for
restricted diffusion (intra-axonal). fsw: diffusivity for stationary water. fv: signal volume fraction for vascular compartment. K: diffusional kurtosis.
OD p=sð Þ: fiber orientation dispersion (in primary/secondary orientation). R ið Þ: radius/radii of axon. Rs radius of soma.W: diffusion kurtosis tensor (4th
order) with 15 independent components. MCMC, Markov Chain Monte Carlo; MH, Metropolis Hastings.
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That is, diffusion coefficient in an arbitrary direction can be
obtained by the quadratic form: dTDd. Each element in D is
difficult to understand intuitively, but eigenvalues and eigen-
vectors of D obtained by matrix diagonalization represent
features that are easier to recognize. The eigenvalues show
the orientational maxima of diffusion coefficient, and the
eigenvalues indicate their orientations. The well-known
quantities of DTI, mean diffusivity (MD), and fractional
anisotropy (FA), are derived from those eigenvalues. In
application of the DTI model, the eigenvalue for the max-
imum eigenvalue is often approximated as orientation of
fibers as the simple tractgraphy algorithms assume.23–25

This is also an implicit consideration of anatomy. In addition,
similar to IVIM for ST model, the multi-tensor model
(MTM)38 was also introduced for the DTI model. The
MTM is also a mixture of Gaussian diffusion and expressed
in the multi-exponential form:

E dð Þ ¼ S
S0

¼ ∑
N

i¼1
fi � exp �bdTDid

� �
(6)

Its important advantage is expression of complex fiber
structures such as fiber crossings.39,40 This concept is
succeeded to more anatomy-conscious models described
later.

Diffusional kurtosis tensor imaging (DKTI)
Similar to dimension upgrade from ST model to DTI model,
DKTI model was also designed to obtain 3D description of
non-Gaussian diffusion by the fourth-order tensor.36 The
elements of the kurtosis tensor are often expressed as Wijkl

where i, j, k, and l are one of x, y, and z. The kurtosis tensor is
also symmetric and therefore consists of 15 independent
components. As the DTI model provides diffusion coeffi-
cient in an arbitrary direction by the quadratic form, the
DKTI model can give us kurtosis in an arbitrary direction

d ¼ dx; dy; dz
� �t

by the equation:

K dð Þ ¼ �D
D dð Þ ∑

i2x;y;z
∑

j2x;y;z
∑

k2x;y;z
∑

l2x;y;z
didjdkdlWijkl (7)

where �D is the average diffusion coefficient in all orien-
tation, D dð Þ is the diffusion coefficient in the direc-
tion d.

Ball and stick(s) model (BSM)
The BSM is originally designed for the probabilistic
tractography.41 It explicitly assumes free water and
fibers in one orientation or multiple orientations. The
ball means the former, that is, isotropic diffusion tensor
in the shape of sphere, while the latter is expressed as
stick(s), which means diffusion tensor(s) similar to the
DTI model, but of the highest anisotropy, in which two
eigenvalues are equal to zero. In this model, the signal E
in direction d for given number of fiber orientations N is
expressed as:

E ¼ S
S0

¼ 1�∑
N

i¼1
fi

 !
� exp �bDisoð Þ þ∑

N

i¼1
fi � exp �bdTDid

� �
(8)

where Diso is the diffusion coefficient by the isotropic diffu-
sion of free water; fi and Di are the volume fraction and
diffusion tensor of the ith orientation.

Hereafter, several models with anatomical parameters are
introduced. Because the definition of signal model equations
is much more complicated, the detailed definitions of the
formulas are omitted in this review, which can be accessed
in the original literature. Rather, the main structures of com-
partments are emphasized in this article to aim at the general
understanding of the models.

Composite hindered and restricted model of diffusion
(CHARMED) and AxCalibar
Similar to the BSM, the CHARMED was proposed.42,43 It
assumes that the signal consists of two compartments of differ-
ent diffusion nature. One is for a hindered or extra-axonal
compartment, while the other is for a restricted or intra-axonal
one. For the former, diffusion properties are expressed by a
diffusion tensor with certain anisotropy. For the latter, a
restricted diffusion is modelled as water molecules within
cylinders are employed for characterizing diffusion properties.
The equation for the single hindered and restricted compart-
ment model seems very similar to the BSM and is expressed as:

E ¼ S
S0

¼ fh � Eh þ 1� fhð ÞEr (9)

where the pairs of f and E are volume fraction and signal decay
for hindered and restricted diffusion. In CHARMED, the hin-
dered diffusion term can be a summation of anisotropic diffu-
sion tensor unlike the BSM. Some parameters in CHARMED
are common with the BSM, including the fiber orientations,
volume fractions of extra- and intra-axonal compartments, and
principal diffusivities. A new parameter in CHARMED is axon
size for the restricted diffusion, which is defined with multiple
size distribution in the multiple compartment model of
CHARMED. Another unique feature of CHARMED is that it
is assumed that hindered diffusion explains Gaussian signal
attenuation observed at low b-value, while the restricted diffu-
sion describes non-Gaussian at high b-value.

Apparently, the AxCaliber model44 is a derivative of
CHARMED by simplifying it in 1D. The model is designed
only for describing the diffusion perpendicular to the fiber. It
also includes parameters of axon radius with an extension of
population with multiple size. The equation is identical to
that of CHARMED (eq.9), but in a 1D form. As a 1D model
in fiber-radial orientation similar to the AxCaliber model,
Zhou and Laidlaw45 presented a model including axon size
as a parameter with new features of water exchange time
among intra-axon and extra-axon spaces.

Note that those parameters of microstructures are apparently
beyond the image resolution of standard MR imaging, of which
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pixel size is in millimeter order. That is, the parameters such as
axon diameter are averaged ones in a single pixel. Recent
researches46, 47 focusing on such partial volume averaging of
microstructure parameters are expected to resolve the limitation.

ActiveAx
Another fiber size model ActiveAx was proposed by
Alexander et al. for parameterizing microstructure including
axon radius.48 Similar to the CHARMED, it assumes that
DWI signal is intra- and extra-axonal diffusion and cerebrosp-
inal fluid (CSF). In addition, it adopts another assumption of
diffusion environment such as fixed diffusivity and existence of
stationary water.

Neurite orientation dispersion diffusion imaging
(NODDI) and Bingham NODDI
The NODDI model49 was proposed to quantify the fiber
orientations in low coherency. The model equation includes
three compartments: isotropic diffusion such as in CSF, and
intra- and extra-cellular diffusion as follows:

E ¼ S
S0

¼ fiso � Eiso þ 1� fisoð Þ � fic � Eic þ 1� ficð Þ � Eecf g
(10)

where f and E represent the signal fraction and the normalized
signal of the three elements, respectively. The partial signal Eic

consists of the degree of angular variation of neurites approxi-
mated byWatson distribution and its central orientation.While
the Watson distribution assumes isotropic dispersion of orien-
tations, the Bingham distribution assumes anisotropic disper-
sion, which is employed in the Bingham NODDI model.50

Soma and neurite density imaging (SANDI)
As a model similar to NODDI, the SANDI model51 was
proposed for diffusion environment in the grey matter (GM),
where water molecules in the extra-cellular space with those in
soma are combined. The equation consists of weighted signals
of three compartments:

E ¼ S
S0

¼ fic � fin � Ein þ fis � Eisð Þ þ fec � Eec (11)

where fis and Eis are volume fraction for soma and normal-
ized signal, respectively. In the Eis, soma radius is included
as a parameter. Another uniqueness is that it employs MPG
orientation-averaged signals for a practical solution.

Vascular extracellular and restricted diffusion for
cytometry in tumors (VERDICT)
The diffusion MRI-based modeling of microstructure is
describing not only for healthy anatomy but also for patholo-
gical structures. The model: VERDICT considers microstruc-
tures around tumors with blood vessels.52 The VERDICT
parameters include volume fraction of blood vessels and frac-
tions of intra- and extra-cellular axon diffusion. It is unique
that it quantifies blood flow by pseudo-diffusivity.

Non-parametric models
Unlike parametric models in which some parameters repre-
sent diffusion environment, non-parametric model extract
information of diffusion environment in less simplified
form. Several functions such as diffusion PDF and ODF are
used. In this category, the models do not express DWI signals
but rather express analysis manner strongly associated with
imaging technique. For acquisition of diffusion PDF, QSI37

and diffusion spectrum imaging (DSI)53 are well known.
These non-parametric models can provide more detail or
raw information on diffusion environment by function
forms. However, when it is applied to specific purpose,
several quantities are extracted from the function. For exam-
ple, for 1D QSI, maximum probability or full width at half
maximum (FWHM) in PDF is used for characterizing local
diffusion properties. Diffusional kurtosis is also available
from PDF as mentioned above. Generally, PDF is obtained
by the Fourier transform of the Q-space data. Therefore,
certain sample density in the Q-space is needed, which
elongate imaging time.

The ODF represents orientation probabilities for the exis-
tence of fiber structures, of which local maxima is often
regarded as fiber orientations. Unlike discrete models such
as the CHAMED and the BSM, orientational probability of
fiber existence is continuously expressed. Basically, the ODF
is obtained as a radial projection of PDF in Q-space.
However, Q-ball imaging (QBI)54 model simplifies acquisi-
tion of ODF without PDF, in which a single-shell Q-space
data can be converted to ODF by Funk-Radon transform.
The application of ODF is mainly for fiber tracking in both
deterministic and probabilistic manners. For local maxima
detection of ODF, preprocessing in the frequency domain is
often performed by spherical harmonics and constrained
spherical deconvolution (CSD).55

New approaches in modeling
As the last category following the parametric and non-para-
metric models, a new approach in dMRI modeling is intro-
duced. It is initiated by fine geometric modeling of
microstructures to construct a virtual living body, which
constrains water diffusion. In the neuro-brain area, the con-
structed structures are mainly neural cells with axons, soma,
and neurites, in addition to surrounding structures such as
micro-blood vessels. Then, the physical phenomenon of dif-
fusion is simulated by using random walk process within the
virtual environment.56,57 The blood flow can be simulated as
pseudo- (or apparent) diffusion of incoherent motion.
Finally, DWI acquisition is simulated for a certain pulse
sequence considering the fundamental process of phase
shift and refocusing of spins. In this approach, the objective
for modeling is not approximation of signal formation but for
the whole process related to diffusion from microscopic
random-walk to image acquisition. Such simulation-based
modeling may open a new horizon of dMRI leading to new
signal models as discussed in the last section of this article.
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Parameter Inference for Signal Models

Real DWI signals are influenced by many factors includ-
ing biological phenomenon and measurement system of
MR scanner. The dMRI signal models are quite simplified
by neglecting several factors of details. Therefore, even
in an ideal measurement environment, there exists sys-
tematic error due to model simplification. On the other
hand, real measurement system cannot avoid random
noise in imaging, which also yields difference among
values of real signal and model signal. The inference
methods of dMRI signal model parameters premise
those two factors. In this section, the methodologies of
parameter inference in dMRI signal models are described.
For a set of given measured signals and dMRI signal
model, parameter inference is a mathematical problem.
First, mathematical foundation is introduced by general-
izing parameter inference problem. Then, three categories
of methodologies are described.

Generalization as mathematical problem
In dMRI signal models, DWI signal value at location x, S can
be expressed in the following form:

S x; cð Þ ffi Fðp xð Þ; cÞ (12)

where p xð Þ ¼ p1; p2; ::pNð Þ represents model parameters
consisting of N values, i.e. local physical and/or biologi-
cal features at x, and c is the set of acquisition setting
values constants, such as MPG strength and direction.
Often, normalized signal E(x) is also used for expression
as follows:

E x; cð Þ ffi S x;cð Þ
S0

¼ G p xð Þ; cð Þ (13)

In this form, S0 is also a parameter that represents ideal signal
value when MPG is off. In practice, measured S without
MPG is used alternatively. Thus, signal models assume that
DWI signals are determined by two factors: local tissue
properties (model parameters) and image acquisition setting
values. Note that the former is location-variant, while the
latter is location-invariant and common in a single acquisi-
tion. On the other hand, real signal values of DWI measure-
ments are also obtained as: Sm x; ið Þ i ¼ 1; 2; . . .Mð Þ where
the number of measurements is M , and the index i is for the
single acquisition with setting c ið Þ. Note that those measured
signal values are contaminated by noise. Generally, a dMRI
dataset consists of multiple DWI measurements by different
acquisition setting values. For example, at DTI, p(x) consists
of the baseline signal S0 and six independent elements in
diffusion tensor; c is a set of MPG direction vectors and
b-values. In summary, parameter inference is the determina-
tion of p(x) for each location x, with the cue of M sets
of measurement values Sm x; ið Þ with settings c ið Þ
i ¼ 1; 2; . . .Mð Þ and model equation S x; cð Þ.

Mathematically, there are several solution strategies
depending on the state of the problem. When the number
of parameters is unknown, N is equal to the number of
acquisitions; M, the problem is often mathematically
even-determined and the solution could be often expressed
in a closed form. If M > N, it is called over-determined,
while M < N cases are called as under-determined. Here,
please note that not only the number of measurements
matters for M but also the locations at Q-space. For
instance, even if we repeat measurement hundred times at
an identical Q-space location, we cannot obtain diffusion
tensor, which needs six or more non-collinear directions of
MPG. Also, diffusional kurtosis cannot be estimated with
single shell data. Thus, M means the effective number of
measurements that matches the requirement of signal mod-
els, including the numbers of Q-space locations and shells.
Generally, most of the dMRI measurements provide over-
determined situation and are conventionally solved by fit-
ting as described in the next section. Under-determined
situation is rare and not desirable under existence of
noise, but when strong constraints exist, it might become
solvable. In most of the dMRI parameter inference, one of
the important factors is countermeasure for noise, which is
one of the important reasons for making over-determined
situation in dMRI measurements. In real DWI measurement
with limited acquisition time, it is hard to increase the
measurement, that is, increase the number of M. To tackle
with this problem, two approaches are available. One is the
spatial regularization, which is based on the fact that biolo-
gical features are spatially smooth, and parameters in neigh-
borhood are similar. This scheme is easily embedded in
parameter inference by fitting described later. The other is
noise reduction as preprocessing. It is also called as image
filters for denoising, which is often used in general image
processing area. This aspect is also discussed in the last
section of this review. The following three sections intro-
duce the categories of parameter inference, which are fit-
ting, closed-form, and regression.

Fitting
So far, most of the dMRI parameters are inferred by fitting
technique due to their over-determined situation. Fitting is
performed by minimizing value of an error function
between model signal value: S and measured signal
value: Sm by searching the set of parameters: p to mini-
mize the function. That is, inferred parameters are defined
as follows: bp ¼ arg

p
min J S; Smð Þ (14)

where J represents an error function between S and Sm. The
function is basically a summation of errors for each acquisi-
tion setting value c ið Þ. For example, when error is defined as
the square of difference of S and Sm, J is expressed as
follows:
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J ¼ ∑
M

i¼1
S x; ið Þ � Sm x; ið Þj j2 (15)

The fitting by minimizing this is called as least-square
method (LSM).58 The minimization of error function is a
mathematical problem to search optimal parameters, for
which a lot of numerical algorithms exist,59 such as gradient
descent (GD), Gauss–Newton (GN), and Levenberg–
Marquardt (LM). In those methods, initial parameter is set
first, and then parameters are iteratively updated to obtain
less error values. This search process in the parameter space
is repeated until a certain convergence is recognized or by
fixed number of iteration. The solution depends on the com-
plexity of signal models, but local minima could be a pro-
blem, similar to general optimization problems.

As a variation of fitting, an approach combined with diction-
ary-based solution and spatial regularization was proposed. In
this approach, called as accelerated microstructure imaging via
convex optimization (AMICO),60 measurements are approxi-
mated by a linear combination of inferred parameters or their
reformatted values. The optimized parameter is obtained by:

bp ¼ arg
p
min Qp� Smj j þ R pð Þ (16)

whereQ is the linear operator of matrix for p, which is called
dictionary, and R is the spatial regularization term, for which
L1-norm of the parameters is used. The elements of the
dictionary are given based on signal model equation to be
fitted. An important feature of this approach is the use of
convex optimization, which is never bothered by the local
minima problem. Also, thanks to convex optimization with
linear formulation by dictionary, the solution is obtained very
fast with guaranteeing spatial smoothness. Thus, fitting is the
standard technique of dMRI parameter inference though
several optional updates have been proposed.

Closed form
Closed-form solution is available only for special cases of
signal models in simple formulation. It is applicable
when the problem is even-determined. Generally, in this
solution, parameters are explicitly obtained as:

pi ¼ Hi Sm 1ð Þ; . . . ; Sm Mð Þ; c 1ð Þ; . . . ; c Mð Þð Þ (17)

That is, parameters are explicitly expressed by combination
of measured signal values and acquisition setting values. For
example, the diffusion coefficient: D in ST-model can be
simply obtained by two measurements as follows:

D ¼ log S1�log S2ð Þ
b2�b1

(18)

where S1 is the measured signal value with b-value of b1, and
S2 is by b2. In addition to the ST model, the DKI model with
three measurements has closed-form solution61 for the para-
meters as follows:

D ¼ b3þb1ð ÞD 12ð Þ� b2þb1ð ÞD 13ð Þ
b3�b2

;K ¼ 6D
12ð Þ�D 13ð Þ
b3�b2ð ÞD (19)

where D ijð Þ denotes the value ln S bið Þ=S bj
� �� �

= bj � bi
� �

.
The closed-form solutions in dMRI parameter inference are,
however, strongly influenced by noise because it assumes no
noise. Therefore, only when the signal-to-noise ratio (SNR) of
dMRI datasets is quite high, it can be an option. Otherwise, the
obtained map is in very low quality for noise-sensitive para-
meters such as diffusional kurtosis. Also, in a few over-deter-
mined cases, solutions of fitting can be obtained in a closed
form. For instance, DKI parameters can be expressed in closed
forms for more than three measurements.62

Regression
For given signal model function: S, regression provides empiri-
cal determination of pseudo-inverse function: S�1 by combina-
tions of various functions including linear and non-linear ones.
This is realized by machine learning techniques based on
sample (or training) data to approximate mapping from inputs:
Sm to outputs: p. The regression-based parameter inference is
also referred to as QSL due to its input data in Q-space. It is
apparently similar to the closed-form solution in which para-
meters are calculated from the measured values: Sm and acqui-
sition setting values: c. In QSL, inputs of pseudo-inverse
function are often limited to only measured signals or its
converted data as discussed in the next section. While closed-
form solution is applicable only for few simple models, regres-
sion can be performed at any form of signal equations as far as
input and output samples are given. For regression, a lot of
pairs of measured signals and corresponding set of parameters
are required for training. The inferred parameters are from
various models, such as fractional anisotropy for DTI, diffu-
sional kurtosis for DKI, and orientation dispersion for NODDI.
Also, fiber orientations are also determined by machine learn-
ing for the purpose of tractography.63 In the next section,
Q-space learning is described with sample results.

QSL and Examples
Overview
In this section, a recent approach of dMRI parameter infer-
ence categorized in QSL is introduced with sample results.
For dMRI parameter inference by machine learning-based
regression, there have been proposed several ways for con-
struction of the mapping function as a regressor by machine
learning. Reisert and colleagues64 reported regression by
polynomial function with Bayesian inference scheme for a
three-compartment model. Golkov et al.65 employed neural
networks of multi-layer perceptron (MLP) for DTI, DKI, and
NODDI. Nedjati-Gilani et al showed that random forest has
advantages in regression in comparison with other
regressors.66 In addition to those applied parameters, there
exist some variations of QSL for training dataset as described
in the next section.
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QSL variations
Input values for QSL regressor include DWI signal values
similar to the closed-form solution. Those can be raw signal,
normalized signal decay, or logarithm of them. However,
unlike the closed-form solution, the pseudo-inverse function:
S�1 learned from training data is acquisition-specific. In
other words, fixed acquisition setting is assumed. In princi-
ple, it is possible to construct a mapping function including
acquisition setting values as input. However, it requires
further wide range and vast quantity of training samples,
and therefore it is not practical at present. It implies that a
QSL regressor requires the Q-space sample locations iden-
tical to those of training data. It is not convenient in the
viewpoint of compatibility. As alternatives to make QSL
input independent of acquisition setting, there exist two
approaches. One is conversion of Q-space data to frequency
domain data, for which spherical harmonics coefficients67

are often used. The other technique is Q-space resampling62

with interpolation to match sample locations with those of
training data. As the interpolator, the family of radial basis
functions68,69 including thin-plate spline is often employed.

Output values in QSL training data are basically provided
by the conventional inference methods including fitting.
Instead of real data, training data can be synthesized by a
simulation process of dMRI acquisition. That is, a set of
parameters in a dMRI signal model can yield corresponding
DWI signal values by using its model equation. This can be
called as synthetic QSL (synQSL).70,71 To simulate more
realistic signals, Rician noise is often added to signal values.72

A research on the synQSL reported an important relationship
among noise amounts of training data and test data.73 That is,
when the two noise levels are in the similar level, inference
robustness is highest. There are several characteristics of
synQSL in comparison with QSL by real data. Generally,
machine learning methods suffer from shortage of training
data, and data augmentation is often employed. Also, less
variation of training data may cause overtraining and cannot
cope with parameters out of trained range. The synQSL can
solve these two problems, i.e. quantity and parameter range of
training data are fully controllable. On the other hand, it is
often difficult to simulate the noise in real data due to recent
acquisition techniques such as parallel imaging, by which
SNR is not uniform even in a single image. This problem is
discussed in the last section.

synQSL example
In this section, examples of dMRI parameter inference by
synQSL are shown, which include parameter inference for
DTI, DKI, and NODDI models.67 As the regressor, a MLP
with five layers is used, for which the logarithm values of the
normalized signals are input. It assumes 14 diffusion measure-
ments for DTI, 5 for DKI, and 73 for NODDI including the
baseline signal: S0, that is, the numbers ofMLP inputs were 13
for DTI, 4 for DKI (1D), and 72 for NODDI. The hidden
layers were trained without dropout, and the last layer was

designed to output a single parameter in all models. Therefore,
the numbers of units are in 13-256-256-256-1 for DTI, 4-128-
128-128-1 for DKI, and 72-400-400-400-1 for NODDI. For
activation, the rectified linear unit (ReLU) function was used.
The training parameters were Normal for initialization and
Adam for optimization, with 100 epochs, a batch size of
10000, and other default settings of the Keras/Tensorflow
regressor. As training datasets for each signal model,
103~106 samples were prepared for each noise level. To simu-
late the acquisition of dMRI signals, the signal model para-
meters were randomly generated within a predetermined
range. After generating the model parameters, MRI signals
without noise were obtained using the model equations. The
measurement of dMRI signal sets was simulated for each
model. For the DTI model, a single b-value is 1000 s/mm2,
with 13 directions of MPG vectors, and the baseline signal S0
is within the range 500~8000. Similarly, four signals with
b-values of 0, 311, 1244, and 2800 (s/mm2) were generated
for the DKI, and two shell data with b = 700 in 24 MPG
directions and b = 2000 in 48 directions were simulated for
NODDI. These settings were identical to those of the real MRI
for testing. Finally, the generated signals were contaminated
with Rician noise, which is simply given by the equation36:

S0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ η2

p
(20)

where S0 and S represent signal values after and before noise
contamination, while η denotes the zero-mean Gaussian
noise term with standard deviation σ. Four levels of SNR
were configured for training by the noise ratio of σ=S0 = 0.0,
0.005, 0.05, and 0.5.

Figure 1 shows the inference results by the conventional
fitting method68 and by the synQSL for the MD and FAvalues
in DTI model. No significant difference between the two
methods is observed. Moreover, quantitative comparison in
Fig. 2 implies alight but interesting difference in the range of
inferred values in bothMD and FA. That is, the inferred values
by the synQSL remain within reasonable ranges, in which the
MD and FAvalues are positive, and also most of the FAvalues
are lower than 1.0, while the results by fitting are not. This is
due to the range of training data for synQSL, which were
trained in the range of physically possible values.73 The diffu-
sional kurtosis inference results for the DKI model are shown
in Fig. 3. Figure 3a shows the result by a conventional fitting,62

while Fig. 3b-3d is by training with noise levels of σ=S0 =
0.005, 0.05, and 0.5 respectively and with 105 training sam-
ples. The noise level for training was 0.005, as observed in
Fig. 3a; the diffusional kurtosis map contained a large number
of black dots due to errors from negative values, which are also
observed in Fig. 3a. On the contrary, Fig. 3d shows the result
by σ=S0 = 0.5, in which the inferred parameters converged to a
virtually uniform value. This is often observed in synQSL
results when training noise level is excessively high. The
parameters seem robustly inferred in Fig. 3c, in which noise
level is supposed to be matched between training and test
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a b

c d

Fig. 1 DTI parameter estimation results by conventional method (LSF) and synQSL. (a) MD by LSF. (b) Fractional Anisotropy by LSF. (c) MD
by synQSL. (d) FA by synQSL. LSF, least-squares fitting.

(b)

(a)

Fig. 2 Correlation between estimated DTI parameters by conventional method (LSF) and synQSL. (a) MD. (b) FA.
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datasets. The parameter maps of the NODDI model para-
meters inferred by the fitting and the synQSL are shown in
Fig. 4, which are inference results of isotropic and intra-
cellular volume fractions, and fiber orientation dispersion.
The synQSL results were obtained with the noise level of
0.05 and 106 training samples. As seen in the figure, two
methods show similar results visually. Based on synthetic
data experiments as shown in Fig. 5, the importance of the
noise level matching73 was proved for minimizing inference
error. In addition, Fig. 6 shows the quantitative comparison
results in comparison with the results by two fitting methods:
GD-based NODDI in the original paper49 and dictionary-
based AMICO-NODDI,60 which was provided by Fukunaga
et al.75 In addition, the correlation is quite high, while the
processing time is much shorter in synQSL.

Software implementation (diMaRIA)
The author has developed a software tool open to public,
which is based on the synQSL, and was named diffusion
MR image analyzer (diMaRIA).76 The current version of
diMaRIA19b provides dMRI parameter maps of DKI and
NODDI models, that is, radial and axial components of
diffusion coefficient and diffusional kurtosis, and isotro-
pic and intra-cellular volume fractions, and fiber orienta-
tion dispersion. Though the training was performed
intensively on a GPU workstation for several hours per
parameter, it can perform parameter inference very fast

thanks to parallel processing based on multi-thread com-
putation with the operations by single instruction, multi-
data (SIMD) at multi-core CPU. Also, the software suc-
ceeded to the former software dTV,74 in which main
functions are tractography, tract-specific analysis, and
DTI parameter maps. An important feature of the
diMaRIA software is that it allows arbitrary Q-space
sampling locations, i.e. combinations of b-values and
MPG directions. In the case of Q-space sampling loca-
tions different from those of training, Q-space interpola-
tion and resampling are automatically performed.68 Note
that the examples of synQSL result shown in the last
section were obtained by a prototype of the diMaRIA
software.

Perspectives and Discussion

In this section, future perspectives of dMRI parametric mod-
els in three aspects are described and discussed, which are
imaging, modeling, and inference methodology.

Regarding acquisition of dMRI data, two major streams
can be expected. One is the direct imaging for specific
features. Unlike post-processing-based acquisition as dMRI
model parameters, some feature maps would be obtained by
complex combination of diffusion encoding. Westin et al.77

proposed a new framework of dMRI: Q-space trajectory
imaging (QTI). It is based on an extended concept of
OGSE, to obtain information of microstructures by diffusion
tensor distribution within tissue. The QTI provides new
features such as microscopic orientation coherence measure
in addition to some features equivalent to those by the con-
ventional approach such as FA. A unique characteristic of
these approaches is that simultaneous development of signal
model and acquisition sequence are performed, which will
bring potential advantage in clinical application. On the other
hand, naturally, such direct approaches of specific parameter
acquisition may be lack of generalization. In that sense, the
other major streams of dMRI data acquisition could be for
more generic DWI scheme so that arbitrary model can be
applied, in addition to the prediction ability of a particular
model for unseen data.78 The second stream includes new
sampling scheme, reconstruction from less sample data, and
optimization of sample locations in Q-space. Those
approaches are focused on faster and high-quality imaging.

Another new aspect of future dMRI development is
modeling with simulation. As introduced in the previous
section the recent dMRI models are more conscious of
specific structures of micro anatomy. Such anatomy-
oriented modeling will lead to more precise representa-
tion of micro-environment for water diffusion. Recent
modeling tries to consider more factors of water displa-
cement. The key factors might include the intra- and
extra-cellular exchange,79 the micro-blood flow,80

and the glymphatic system.81 Simultaneously, it is
needed to consider yet diversity of microstructures as

a b

c d

Fig. 3 Diffusional kurtosis estimation results, (a) by LSF, (b) by
synQSL (trained with lower noise level), (c) by synQSL (trained
with optimal noise level), and (d) by synQSL (trained with higher
noise level).
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the dominant factor of dMRI. For example, NODDI
considers finer orientation dispersion, and QTI also
assumes diffusion tensor distribution. Unlike simple
models assume uniform or coherent microstructure
within a voxel, new models will introduce such diver-
sity. To realize it more precise, it is necessary to model
shape and structures of micro-anatomy, that is, fine
geometric modeling of microstructures. Such researches
cover generating realistic axon geometries82,83 and dif-
fusion simulation-based on geometric axon models.84–86

For example, Palombo and colleagues modeled neural
cells including tree structures with variations.86 Of
course, it seems virtually impossible to infer all the
precise structure within voxel beyond image resolution.
But their work contributes to prove the evidence for that
small structural change could cause DWI signal differ-
ence. Also, Rensonnet et al. proposed a new approach of
microstructure fingerprinting, that is, local tissue prop-
erty inference based on dictionary constructed based on
diffusion simulation.87 Generally, more complicated
modeling makes its validation more difficult. In that
sense, simulation of diffusion phenomenon and DWI
acquisition88 will get more important.

As far as various dMRI signal models are effective on
specific diagnostic purposes and no better alternative is
given, their parameter inference is still an important pro-
blem. Instead of the fitting approaches, the QSL by
machine learning would play more important roles in
dMRI parameter inference. As introduced in the previous
sections, the regression including the QSL can be under-
stood as the empirical formation of pseudo-inverse func-
tion of signal model equation. The complexity of the
function apparently depends on the signal model. As

well as other machine learning problems, the optimal
types and sizes of regressors for dMRI parameter infer-
ence have been determined experimentally. The expres-
sive power,89 that is, how well regressors can express (or
approximate) the pseudo-inverse function of signal
model, is an important key for parameter inference by
machine learning. Each regressor is based on different
types of function elements and structures. For example,
neural networks are based on linear combinations of non-
linear activation function. Ideally, sufficient flexibility to
express the function should be expected. However, for
training with noisy and limited amount of data, too flex-
ible power may cause over-fitting. This is a kind of trade-
off issues depending on the signal model equations.
Therefore, in addition to experimental works, theoretical
and mathematical aspects should be considered to estab-
lish the criteria to choose the best type or setting of
regressor for each signal model. Another important issue
at dMRI parameter inference is image noise, which
causes inference errors and biases. Especially, the spa-
tially variant noise amount due to parallel imaging90

seems hard to be solved with simple countermeasures.
Currently, we can consider two options: noise reduction
in DWI before inference and regressors trained with
noise. Furthermore, the former can be performed in
two phases: during image reconstruction91 and post-
reconstruction.92 Unlike other images for visual diagno-
sis, however, quantitative images including dMRI might
require high standard of noise reduction not to give new
biases on the inferred parameter values. For that purpose,
simulation studies might get more important including
signal collection and reconstruction. Also for the regres-
sor training with noise, two ways for noise level

a b c

d e f

Fig. 4 NODDI parameter estima-
tion results by conventional method
(GD) and synQSL. (a) fiso by GD. (b)
fic by GD. (c) OD by GD. (d) fiso by
synQSL. (e) fic by synQSL. (f) OD by
synQSL. fic, volume fraction for
intracellular diffusion; fiso, volume
fraction for isotropic diffusion; OD,
orientation dispersion.

Diffusion MRI Parametric Signal Models

Vol. 21, No. 1 143



matching during training can be considered: local/voxel-
wise64 approach and global one.70,73 For both approaches,
noise level estimation in DWIs plays a key role.

By putting them all together, dMRI elements of ima-
ging, modeling, simulation, and parameter inference will
be fused in a denser relationship. With certain accumu-
lation of experimental facts with insights and assump-
tions on biological structures, construction of new
models is expected, which include certain parameters
that contribute as new diagnostic biomarkers.
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Fig. 5 Effect of noise level match-
ing between training data and test
data in synthetic data experiments:
RMS errors in various combina-
tions of noise levels for OD estima-
tion. RMS, root mean square.

Fig. 6 Comparison of OD estima-
tion results by original NODDI
toolbox (GD), AMICO, and
synQSL: dots represent average
value in various ROIs included in
atlas.
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