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Abstract. Hepatocellular carcinoma (HCC) is the most
common malignancy of hepatocytes accounting for 75-85% of
primary hepatic carcinoma cases. Small extracellular vesicles
(sEVs), previously known as exosomes with a diameter of
30-200 nm, can transport a variety of biological molecules
between cells, and have been proposed to function in
physiological and pathological processes. Recent studies have
indicated that the cargos of sEVs are implicated in intercellular
crosstalk among HCC cells, paratumor cells and the tumor
microenvironment. sEV-encapsulated substances (including
DNA, RNA, proteins and lipids) regulate signal transduction
pathways in recipient cells and contribute to cancer initiation
and progression in HCC. In addition, the differential expression
of SEV cargos between patients facilitates the potential utility
of sEVs in the diagnosis and prognosis of patients with HCC.
Furthermore, the intrinsic properties of low immunogenicity
and high stability render sEVs ideal vehicles for targeted drug
delivery in the treatment of HCC. The present review article
summarizes the carcinogenic and anti-neoplastic capacities of
sEVs and discusses the potential and prospective diagnostic
and therapeutic applications of sEVs in HCC.
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1. Introduction

Liver cancer is ranked as the sixth most prevalent malignancy
worldwide, and was the third highest cause of cancer-associ-
ated mortality worldwide in 2020 with ~905,677 new cases
and 830,180 cancer-associated mortalities annually (1).
Hepatocellular carcinoma (HCC) is the predominant subtype
of hepatic carcinoma, and accounts for 75-85% of all primary
liver cancer cases (2). Infection with hepatitis B or C viruses
(HBV or HCV, respectively) causes chronic liver injury and
has recently been reported to play a pivotal place in the carci-
nogenesis and development of HCC (3). Due to the vaccination
against HBV, the prevalence of HBV and the incidence rate of
HCC have markedly decreased in numerous high-risk regions,
such as China (4). However, the current situation is far from
satisfactory in numerous low- and middle-income countries,
due to the shortage of HBV vaccines, and the lack of improved
sanitation and regular screening (5). Thus, the 5-year overall
survival rate of patients with HCC remains low (<25%), and
large-scale efforts are urgently required to elucidate the
mechanisms underlying the development of neoplasia and to
improve the preliminary diagnostic rate of HCC (6,7).

Small extracellular vesicles (SEVs), which were previously
known as exosomes, have a diameter of 30-200 nm and are a
subset of EVs that were first described by Johnstone et al (8)
in the 1980s. Following several decades of research, it was
observed that sEVs not only function in cellular waste
disposal, but also serve as an excellent vehicle for cell-cell
communications. SEVs contain complex and diverse materials,
including DNAs, RNAs, proteins, lipids and metabolites, and
they shuttle these bioactive molecules between cells (9). The
cargos of sEVs can be internalized by recipient cells, thus
mediating the metabolic activities of recipient cells and conse-
quently participating in both normal physiology and acquired
abnormalities, such as immune responses, mammalian
reproduction and development, central nervous system-related
diseases and cancers (10). In HCC, accumulated evidence has
indicated that sEVs play an essential role in carcinogenesis
and in the remodeling of the tumor microenvironment (TME),
as well as in proliferation, metastasis, angiogenesis and drug



2 YANG et al: sEVs and HCC

resistance (11). The profiles of SEV cargos are origin-specific,
and the distinct expression of sEV cargos between patients
with HCC and healthy subjects renders sEVs a potential
diagnostic biomarker for HCC (12). Furthermore, certain sEV
RNAs may serve as molecular markers for the early detec-
tion, TNM staging, prognostic evaluation and recurrence
monitoring in HCC, which may contribute more effective to
diagnosis and treatment options (13). Considering the intrinsic
property of SEVs of transferring information and altering
the biological response of recipient cells, recent studies have
highlighted their potential utility values in the therapeutic
fields of several diseases, including cardiovascular diseases
and cancers (14,15).

The present review article summarizes the biogenesis of
sEVs, as well as the role of sEVs in the tumorigenesis and
progression of HCC. In addition, the potential and emerging
clinical applications of sSEVs in the diagnosis and treatment of
HCC are discussed (Fig. 1).

2. Biology of sEVs

‘EV’ is a heterogeneous collective term for phospholipid
bilayer membrane-encapsulated nano or microvesicles.
Traditionally, EVs were broadly categorized into cytoplasmic
membrane-derived ectosomes and exosomes of endo-
some-origin (16). However, without optimal isolation methods
and real-time imaging technologies to visualize the process
of release or specific markers of different subtypes of EVs,
the differentiation between exosomes and small ectosomes
is unlikely due to their analogous intrinsic properties and
the overlapping size. Thus, the latest guideline of Minimal
Information for Studies of Extracellular Vesicles 2018
(MISEV2018) proposed the use of standard terminologies for
EV subtypes followed by physical characteristics, biochemical
composition and the condition of progenitor cells (17). In the
present review article, the term ‘EV’ encompasses a heteroge-
neous population of both exosomes and nano-scaled ectosomes
with a diameter <200 nm.

Ectosomes, which are microvesicles and microparticles
with a diameter ranging from 50 to 1,000 nm, are vesicles
produced directly by the outward budding of the plasma
membrane (18). By contrast, the process of the synthesis
and release of exosomes is a more complicated and intricate
sequence of multiple fusion events, budding of the plasma
membrane and releasing of specific payloads (Fig. 2). The
first inward invagination of a lipid bilayers contributes to
the generation of early-sorting endosomes (ESEs) (19).
ESEs can mature towards late-sorting endosomes (LSEs),
which is followed by the formation of multivesicular bodies
(MVBs) through the second intraluminal budding of the
endosomal membrane, during which, specific bioactive
compounds such as nucleic acids, proteins, and lipids are
gradually enriched in intraluminal vesicles (ILVs) (20).
Although the mechanisms underlying the formation of
ILVs and specific bioactive compound sorting system have
not yet been well elucidated, the majority of oncologists
hypothesize that endosomal sorting complex required for
transport (ESCRT) facilitates exosome budding. Of note,
an ESCRT-independent mechanism may play a role in the
biogenesis of exosomes, since no notable decrease in the

release of exosomes was observed following the inhibition
of ESCRT family activity (21). These two pathways may not
be completely separated, although they function synergisti-
cally in the synthesis of exosomes (22). MVBs mainly have
two endings: i) These mature MVBs may be incorporated
into autophagosomes or lysosomes for hydrolysis of vesicular
contents; or ii) they can be incorporated into the cellular
plasma membrane and be subsequently expelled into the
extracellular space as exosomes (23). When arriving to their
recipient cells, sEVs are recognized and assimilated into cells
via the following mechanisms: donor-acceptor interaction,
membrane fusion, phagocytosis, and clathrin-independent
and clathrin-dependent endocytosis, depending on their
physical and biological properties (24,25). For example,
angiopoietin-2 (ANGPT?2)-bearing sEVs derived from HCC
cells are transferred into human umbilical vein endothelial
cells (HUVECSs) via endocytosis (26). The processes of
formation, secretion and uptake of exosomes are depicted in
Fig. 2, as reported in a previous study by the authors (27).

sEVs can be excreted by almost all cells types and are
abundant in the human body, existing in biological fluids,
such as plasma, urine, tears, plasma and breast milk (28).
sEVs can be isolated from cell culture conditioned media,
multiple biofluids, or tissue using several methods. The sepa-
ration of sEVs principally involves five approaches, including
differential ultracentrifugation, sucrose and iodixanol
density ultracentrifugation, polyethylene glycol precipitation,
size exclusion chromatography (SEC) and immunoaffinity
capture (29). However, it is extremely difficult to identify a
single separation strategy with both a high recovery rate and
high specificity. The present study aimed to systematically
review the recent, cutting-edge research on sEVs and HCC,
focusing on high-quality studies using differential ultracentri-
fugation or density gradient centrifugation as the separation
methods of sEVs, with an intermediate recovery rate and
purity according to MISEV2018 (17). Notably, all these
aforementioned approaches have their own advantages and
disadvantages; thus, a combined method, such as differential
ultracentrifugation followed by SEC is scalable for future
sEVs-based studies (30). Other articles (31-68) discussing
methods of isolation of SEVs involving only ultracentrifugation
or commercial kits are cited Table SI. Further investigations
on a more effective and reproducible approach for separating
sEVs are urgently required.

3. Roles of sEVs in HCC tumor formation and progression

As aforementioned, sEVs encapsulate a series of cargos,
including nucleic acids, proteins and lipids, and sEV-related
research has mainly focused on the ability of sEVs to
exchange of these cargos between cells (69,70). Previous
studies on the roles of sEV cargos in cancer have demon-
strated that sEVs are involved in almost all hallmarks of
cancers, including tumor initiation and formation (71-75), in
the remodeling of the TME (76,77), apoptosis (50), angio-
genesis (78,79), metastasis (80-83), immune escape (52), and
drug resistance (84). The present review article summarizes
the literature that highlights the significance of sEV cargos
in the carcinogenesis and development of HCC (Fig. 3), as
presented in Table I.
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Figure 1. The fundamental purpose of the present review was to introduce the biogenesis of sEVs, generalize the role of sEVs payloads in the initiation and
development of HCC, and dialectically discuss the clinical applications of sEVs in the diagnosis and possible treatment applications of HCC. sEVs, small

extracellular vesicles; HCC, hepatocellular carcinoma.
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Figure 2. Schematic diagram illustrating the process of formation, secretion and uptake of sEVs. Inward budding of the cellular plasma membrane forms
the early-sorting endosomes. Subsequently, intraluminal budding of endosomes generates MVBs encapsulating intraluminal vesicles. SEVs are ultimately
liberated by incorporating of MVBs to plasma membrane and the exocytosis of intraluminal vesicles. The mechanism of SEV uptake includes donor-acceptor
interaction, membrane fusion, phagocytosis, and clathrin-independent and -dependent endocytosis. SEVs, small extracellular vesicles; MVBs, multivesicular

bodies; ECM, extracellular matrix.
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Figure 3. Biological function of sSEV cargos in development of HCC. sEVs cargos are involved in numerous hallmarks of HCC, including proliferation,
angiogenesis, epithelial-mesenchymal transition, metastasis, immune escape, drug resistance as well as remolding of the tumor microenvironment. The figure
was created using Biorender (https://biorender.com/). sEVs, small extracellular vesicles; HCC, hepatocellular carcinoma.

TME .Tumorigenesisisnotasingle-stepevent,butaconsequence
of long-term alteration of mutations of genes and functional
changes in the TME (85). Emerging evidence suggests that
sEVs participate in the initiation, formation and remodeling
of the TME in HCC (11). Chronic hepatitis B (CHB) remains
a main factor responsible for HCC development, and sEVs
are implicated in the spread, immune regulation and antiviral
response of HBV infections (86). For example, exosomes from
macrophages can deliver IFN-a-related microRNAs (miRNAs
or miRs) to HBV-infected hepatocytes, and activate the anti-
viral response to suppress HBV replication and expression (87).
The exosomal long non-coding RNA (IncRNA) HOTTIP has
been shown to play a role in mediating the antiviral effect of
tenofovir alafenamide following HBV infection (88). It has
been demonstrated that sEVs from CD4* T-cells can enhance
B cell responses and potentiate the efficacy of the hepatitis
B surface antigen vaccine (89). These studies indicate that
sEVs can mediate immune regulation and antiviral response
in HBV infection. A previous study also indicated that sEVs
may exert negative immune regulatory effects, and that they
are indispensable in the transformation from liver cirrhosis
(LC) to liver cancer (90). The interplay between cancer cells
and the TME is an essential activity that supports or prevents
tumor development and progression. In HCC, tumor cells
co-exist with other non-cancerous cells that constitute the

TME and enhance tumor growth via various mechanisms.
sEVs can exert an effect on the information and remodeling of
the TME. For instance, exosomal miR-21 derived from HCC
has been found to promote the conversion of hepatic stellate
cells into cancer-associated fibroblasts (CAFs), and to facili-
tate the formation of the TME (91). Exosomal-miR-1247-3p
from HCC cells has been shown to reduce the expression of
B4GALTS3 in CAFs and stabilize Bl-integrin, leading to the
activation of fibroblasts via the NF-«xB signaling pathway (92).
To summarize, SEVs play an essential role in the pathogenesis
of HBV-related hepatic diseases, transformation from precan-
cerous diseases to HCC and in the formation of the TME to
confer tumorigenesis in HCC.

Proliferation and apoptosis. The development of HCC can be
partly attributed to the rapid proliferation and uncontrolled
expansion of tumor cells, which also accounts for tumor
progression and resistance to therapy. sEVs mediate tumor
growth and expansion by affecting the cell cycle, proliferation
rate and apoptosis of HCC cells (93-95). Cao et al (71) suggested
that exosomal miR-21 can influence HCC by altering the
expression of the tumor suppressor genes, PTEN and PTEN
pseudogene 1. Sun et al (96) indicated that exosome-specific
miR-155 targeted PTEN and consequently stimulated
the proliferation of HCC cells. On the contrary, certain
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(Refs.)
(107)
(113)

(84)

Year of publication
2021
2018
2019

Signaling/target

MMP9
TLR 2/4, MAPK

Function

Induces acquired resistance to AATs

Promotes metastasis
Promotes immune evasion

Molecule

aM) B(2)
Integrint
HMGBI1

VEGF?
factor-f3; JINK, c-Jun N-terminal kinase; ENOI1, alpha-enolase; FAK, focal adhesion kinase; LOXLA4, lysyl oxidase-like 4; MAPK, mitogen-activated protein kinase; MMP9, matrix metallopeptidase 9;

SMAD4, mothers against decapentaplegic homolog 4; STAT, signal transducer and activator of transcription; AR, androgen receptor; PHLPP, PH domain leucine-rich repeat protein phosphatase; SALLA4,
transcription factor Sal-like protein-4; SNAP23, synaptosome-associated protein 23; LRRC7, leucine-rich repeat-containing 7; Vps4A, vacuolar protein sorting 4 homolog A; ETS1, E26 transformation
specific-1; PAX2, paired box gene 2; VEGF, vascular endothelial growth factor; ICAM1, intercellular adhesion molecule 1; FAM138B, family with sequence similarity 138 member B; SNHG16, small
nucleolar RNA host gene 16; PI3K, phosphatidylin-ositol-3-kinase; mTOR, mechanistic target of rapamycin; IL-1f, interleukin-1f; TNF-a, tumor necrosis factor-a; HuR, human antigen; circFBLIM1,
circRNA filamin binding LIM protein 1; LRP6, lipoprotein receptor-related protein 6; AXL, activity of the receptor tyrosine kinase; NSMase1, neutral sphingomyelinase 1; TGF-f, transforming growth
HMGB1, high mobility group box 1; TLR, Toll like receptor.

Upward arrows (1) indicate upregulation and downward arrows (]) indicate downregulation. EMT, epithelial-mesenchymal transition; TME, tumor microenvironment; TILs, tumor-infiltrating

T-lymphocytes; AATs, anti-angiogenic therapies; PTEN, phosphatase and tensin homolog; VHL-HIF-1a, von Hippel-Lindau/hypoxia-inducible factor; SALLA4, spalt-like transcription factor 4; ADAMI0,
a disintegrin and metalloprotease 10; MEK1/2, mitogen-activated proteinkinase kinase 1/2; ERK1/2, extracellular regulated protein kinases 1/2; GADD45A, growth arrest and DNA damage 45-alpha;

Table I. Continued.

Type
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sEV-encapsulated cargos, such as miR-338-3p can inhibit cell
proliferation, induce cell apoptosis and consequently repress
the progression of HCC (97). In addition, another study
demonstrated that the proliferative and migratory abilities of
HCC cell lines were potentiated, while their apoptosis was
counteracted via the enforced expression of the exosomal
IncRNA H19 (98). Furthermore, sEV constituents may inter-
vene in the cell cycle to regulate the progression of HCC. It has
been corroborated that circ_0061395 silencing can trigger cell
cycle arrest and apoptosis, and suppress the proliferation of
HCC in vitro, as well as inhibit tumor growth (56). Similarly,
miR-4454 inhibitor-mediated exosomes can substantially
exacerbate cycle arrest, apoptosis and the formation of reactive
oxygen species in HCC (95). Of note, the progression of HCC
is a result of the accumulation of several time-intersecting
steps, including invasion, migration, angiogenesis, immune
escape and metastasis, and sEV cargos may also function
via several mechanisms. Huang et al (62) suggested that the
silencing of circANTXRI1 can suppress HCC progression, not
only by inhibiting the proliferative ability of HCC, but also
by hampering the migration, invasion and metastasis of tumor
cells. The roles of sEVs in other hallmarks of tumor progres-
sion will be further discussed in the following section.

Angiogenesis. Angiogenesis refers to the formation of new
blood vessels from pre-existing ones. It is a complex, multistep
process involving extracellular matrix remodeling, endothe-
lial cell migration and ultimately generation of microvessels.
Angiogenesis not only provides sufficient oxygen and nutrition
for cancer cells, but is also essential for HCC proliferation,
local invasion and distant metastasis. The significance of sEVs
in cancer angiogenesis has been widely explored and docu-
mented recently (98). In HCC, exosomal SNHGI16 can sponge
miR-4500 and activate angiogenesis in HUVECs by regu-
lating polypeptide N-acetylgalactosaminyltransferase 1 via the
PI3K/Akt/mTOR pathway (99). Lin et al (100) reported that
tumor-derived exosomes (TDEs) containing miR-210 could
target SMAD4 and STATG6 in endothelial cells, and thereby
promote the angiogenesis of HCC. The functions of these sEV
cargos are multifaceted, and they alter the gene expression of
the recipient cells, which become more aggressive and exhibit
malignant characteristics. Apart from regulating angiogen-
esis, they may also control phenotypic changes, such as the
proliferative or migratory abilities of cancer cells. A previous
study demonstrated that circCMTM3-bearing sEVs can drive
the angiogenesis of HUVECS, as well as their viability, migra-
tion and invasion (58). Certain studies have found that serval
sEV cargos may play the opposite role and suppress angio-
genesis in HCC (34,101). For instance, HCC-derived exosomes
containing miR-3682-3p have been shown to attenuate angio-
genesis via targeting ANGPT1, which is dependent on the
RAS-MEK1/2-ERK1/2 pathway (101). Taken together, these
results indicate that angiogenesis is a complex process that is
orchestrated by multiple biological factors, and the treatment
of angiogenesis may provide a novel prospective therapeutic
approach for HCC.

Epithelial-mesenchymal transition (EMT) and metastasis.
Widespread metastasis in patients with HCC remains a major
challenge for treatment, and a main reason for treatment failure,
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as well as one of the leading-causes of cancer-associated
mortality (102). Metastasis is a multistep process involving EMT,
invasion into vessels, intravascular transport and organ-specific
seeding. The most common mode of metastasis in HCC is intra-
hepatic metastasis, followed by lymphatic metastasis and distant
metastasis to the lungs. sEVs are involved in multiple steps of
HCC metastasis, and the importance of sEVs in HCC metas-
tasis has recently been widely reported. Firstly, sEVs contribute
to the EMT of HCC cells. Yang ef al (103) demonstrated that
exosomal miR-92a-3p from high-metastatic HCC cell lines
can potentiate EMT and metastasis by inactivating PTEN
and activating Akt/Snail signaling. Similarly, Chen et al (104)
suggested that TDEs from HCC cells can accelerate EMT,
and induce HCC progression and recurrence by activating the
MAPK/ERK signaling pathway; however, those studies did
not clarify the specific sEVs-carrying cargo that is involved
in this process. sEVs exacerbate the migratory and invasive
abilities of HCC, which may promote the metastasis of HCC.
It has been observed that miR-374a-5p in exosomes potentiates
the migration and invasion of HCC by regulating growth arrest
and DNA damage inducible alpha (105). In addition, sEVs can
orchestrate the organotropic metastasis of HCC by converting
the pre-metastatic microenvironment into a tumor cell-friendly
site. A previous study demonstrated that Exo-miR-1247-3p
derived from HCC can trigger 1-integrin-NF-xB signaling
in fibroblasts in the lungs, and is positively associated with
several pro-inflammatory cytokines, such as IL-8 and IL-6,
which promote the lung metastasis of HCC (92). Recent studies
have identified numerous SEV cargos that are involved in the
metastasis of HCC, including FAM138B (106), a(M) B(2) inte-
grin (107), hsa_circ_0074854 (108) and IncRNA TUC339 (109).
It should be noted that the aforementioned sEV cargos may not
only participate in one step of metastasis, but may play multi-
faceted roles in the whole process of metastasis. For example,
Fang et al (42) indicated that, apart from promoting EMT
and enhancing tumor motility in vitro, HCC cells can secrete
sEV-encapsulated miR-103, which also potentiates vascular
permeability and lung metastasis in mouse models.

Immune response and therapeutic resistance. The immune
system plays a paramount role in recognizing and eliminating
malignant cells and foreign invaders. In the processes of tumor
initiation and progression, aberrant proliferation and gene
alteration in cancer cells can generate abnormally expressed
antigens, which should be adequately presented, recognized
and eliminated by the immune system (110). During their
fight against the immune system, cancer cells also evolve,
and may acquire the ability to evade immunosurveillance via
various mechanisms. Among the immune escape effects, that
contribute to cancer progression and drug resistance, engage-
ment of the attenuation or abrogation of immunocytes is worth
mentioning, and sEVs play a pivotal role in this process (111).
Recent studies have suggested that HCC-derived sEVs can
impair the function of natural killer (NK) and T-cells, as well
as activate immuno-suppressive cells such as M2 macrophages.
For instance, exosomal circUHRF1 from HCC triggers the
exhaustion of NK cells and subsequently induces resistance
to therapy (52). Exo-IncRNA TUC339 has also been shown
to be internalized by macrophages, and to modulate M1/M2
polarization and suppress the antitumor immune response

in HCC (109). Apart from diminishing the activity of the
innate immune system, previous studies have indicated that
TDEs from HCC can also impede the activation and function
of specific immunocytes such as T- and B-cells (32,46,52).
Wang et al (112) found that exosomal 14-3-3C released by
HCC cells suppressed the antineoplastic characteristics of
tumor-infiltrating T-lymphocytes. Tumor-derived exosomal
HMGBI can enhance the expansion the T-cell Ig and mucin
domain (TIM)-1 (+) regulatory B-cells and facilitate HCC
immune evasion (113). Collectively, sEVs play multiple roles in
the communication of HCC and immune cells, and are critical
for the immune escape of HCC cells and tumor progression.
Thus, sEVs may serve as ideal therapeutic targets for HCC,
although further investigations into this matter are warranted.

HCC is one of the most aggressive cancer types, and
hepatic resection remains the gold standard of treatment
for HCC if the patients can withstand surgery. For patients
who experience HCC recurrence or cannot tolerate surgery,
targeted therapies involving the use of sorafenib, a multi-kinase
inhibitor compound, and chemotherapy including paclitaxel
and 5-fluorouracil (5-FU) are first-line treatments. Resistance
to drugs remains a main obstacle to the effective treatment
of these patients. The mechanisms underlying drug resistance
remain complex and elusive; however, but the roles of sEVs
in this process is emerging and have captured the interest
of researchers. For instance, a previous study found that
transfection with GRP78 small interfering RNA into bone
marrow-derived mesenchymal stem cells could yield SEVs
containing siGRP78, thus mediating targeted RNA silencing,
which increased the sensitivity of drug-resistant cancer cells
to sorafenib and improved the drug resistance reversion (114).
Furthermore, as previously demonstrated, sEV-encapsulated
miR-23a/b derived from adipocytes was transferred to neigh-
boring HCC cells, which enhanced their chemoresistance to
5-FU by targeting the VHL/HIF axis (115). The upregulation
of miR-32-5p-bearing sEVs has been shown to induce multi-
drug resistance by potentiating EMT and angiogenesis via
targeting the PI3K/PTEN/Akt signaling pathway (34). Another
study demonstrated that SEVs secreted from cancer stem cells
induced regorafenib insensitivity by upregulating Nanog
expression (116). These findings highlight the significance of
sEVs in the drug resistance of HCC, which results from sEVs
directly suppressing drug efficacy against tumor cells, or from
sEVs regulating the gene expression of recipient cells to facili-
tate cancer survival. Since sEVs can alter the drug sensitivity of
HCC cells, it is tempting to engineer a sEV-derived vehicle to
deliver specific agents for HCC treatment (117). Studies on this
topic are currently underway, and the preliminary results are
promising. Wang et al (118) indicated that the downregulation
of miR-744 in HCC tissue and cell lines was implicated in the
chemoresistance to sorafenib, and HCC cell lines treated with
miR-744-upregulating SEVs were more sensitive to sorafenib,
which provides a potential approach to reduce the occurrence
of drug resistance.

4. Clinical applications of sEVs in HCC
sEVs as diagnostic and prognostic biomarkers in HCC.

Despite the advances in the diagnosis of HCC, the number of
new cases and cancer mortalities associated with HCC remain
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high (1). The diagnosis of HCC relies heavily on imaging
analyses, such as magnetic resonance imaging or computed
tomography; however, the diagnosis of the majority of patients
is confirmed at an advanced stage, and thus these patients miss
the optimal treatment period (119). Immense efforts have been
made as regards the early diagnosis of HCC, although success
has been limited. Alpha-fetoprotein (AFP) is a traditional
HCC marker with a low specificity, which has a limited value
in the differential diagnosis between HCC and other liver
diseases (120,121). As regards other biomarkers, such as golgi
glycoprotein 73, AFP-L3, phosphatidylinositol proteoglycan
3 and decarboxylated prothrombin, they do not provide any
obvious advantage in the early diagnosis of HCC compared
with AFP (122,123). Therefore, a non-invasive method with a
high diagnostic sensitivity and specificity is urgently required.
Recently, liquid biopsies and particularly circulating tumor
cells, have attracted extensive interest for the diagnosis and
monitoring of HCC (124). Studies on other tumor-derived
components, such as circulating tumor DNA, sEVs and serum
miRNAs are also increasing (125-127).

sEVs have the following advantages: i) Due to being
protected by the sEV membrane, sEV cargos have a high
stability and cannot easily degraded by lysosomes; ii) since
the secretion of sEVs is a normal physiological event for
tumor cells, sEVs can be detected in the majority of fluids,
and their extraction is relatively non-invasive; iii) compared
with plasma biomarkers, bioactive molecules from sEVs
contain less interference of plasma; and iv) markedly, cargos
of sEVs have extensive homology with recipient cells, which
can confer sEVs superior sensitivity and specificity than
traditional methods (128-130). Differential ultracentrifugation
is the most common method used to separate sEVs from the
cell culture medium. However, each biological fluid presents
specific biophysical and chemical characteristics that render
it different from culture conditioned medium. Despite current
mainstream commercial kits are based on precipitation, which
may result in EV populations bound to or mixed with intro-
duced components, such as antibodies, beads or polymers;
the majority of studies on the potential clinical applications
of sEVs use this method as it is user-friendly, cost-effective
and has potential for scale-up production (17). Furthermore,
the efficiency and repeatability of sEVs separated using the
ExoQuick™ kit have been demonstrated to be comparable with
those of differential ultracentrifugation (131). Therefore, the
articles cited in the current section include those that using
commercial kits to isolate SEVs.

Numerous studies on the role of sEVs as HCC promising
biomarkers have been conducted (132-136). The importance
of sEVs as HCC biomarkers is reflected in numerous aspects,
including the fact that SEV cargos may serve as biomarkers
for the early detection of HCC; among these sEV cargos,
miRNAs are the most extensively investigated ones. For
instance, the expression of miR-21 and miR-10b in sEVs is
markedly increased in patients with HCC compared with that
of healthy individuals and patients with CHB, indicating that
sEVs-carrying miR-21 and miR-10b may be used as early
diagnostic biomarkers for HCC (80). Similarly, by comparison
with that of patients with LC, the expression of miR-221,
miR-192 and miR-146a in exosomes was increased in patients
with HCC, and Friindt et al (137) indicated that sEVs carrying

miR-146a could distinguish patients with HCC from patients
with LC with an area under the curve value of 0.80+0.14 in
a logistic regression model, and miR-96, miR-122, miR-200a
had similar effect (138-140). Other SEV cargos, such as proteins
and other non-coding RNAs (ncRNAs), including IncRNAs
and circRNAs, may also play a role in the preliminary diag-
nosis of HCC, and it has been observed that LINC00161,
circRNA 0006602, LDHC, sphingosines, dilysocardiolipins,
lysophosphatidylserines, and (O-acyl)-1-hydroxy fatty acids
are early diagnostic biomarker candidates (48,121,141-143).
Apart from their early diagnostic value, sEV cargos may
be involved in the prediction of tumor staging and metas-
tasis (144-147). Exo-miR-1307-5p expression in plasma has
been found to be positively associated with tumor stage and
progression, while sEVs carrying miR-125b have been shown
to possess anti-metastatic features and are indicators of early
metastasis in HCC (148-150). Other sEV cargos can play a
similar role in tumor staging or metastasis prediction, and the
function of IncRNA ATB, hnRNPH1 and ASMTL-ASI in this
regard has been reported (151-153). In addition, certain sEV
cargos may serve as prognostic indicators and may predict the
prognosis of patients with HCC. It has been corroborated that
miR-638, miR-150-3p, IncRNA CRNDE and circAKT3 in the
SEVs of patients with HCC are implicated in overall survival
and disease-free survival and may serve as independent indi-
cators of a poor prognosis (31,154-157). It should be noted
that the abnormal expression of certain sEV cargos, such as
miR-718, miR-125b and miR-92b is not only an effective tool
to evaluate survival, but is also a potential marker to predict
the recurrence of HCC (32,149,158). Notably, sEVs-carrying
miR-122, hsa-circRNA-G004213 and DANCR are also
potential markers to evaluate the efficacy of HCC surgical
and interventional treatment (153,159-161). In addition to the
above, a panel of tumor specific biochemical indicators has
been proposed for a higher sensitivity and specificity compared
with single one (162-166). For example, Sorop et al (167) estab-
lished exosomal miR HCC Score including serum AFP and
the level of plasma sEVs-carrying miR-21-5p and miR-92a-3p
with a great diagnostic ability of HCC (AUC=0.85). Taken
together, previous studies have demonstrated that certain sEV
cargos, including ncRNAs, mRNAs, lipids and proteins, may
serve as potential HCC diagnostic and prognostic biomarkers.
The potential HCC biomarkers are summarized in Table IT and
the efficacy of these candidates warrants further validation.

Therapeutic potential of sEVs in the treatment of HCC. Liver
cancer is ranked as the third leading cause of cancer-associated
mortality worldwide due to resistance to traditional drugs, as
well as diagnosis in the late stage (1,168). The identification of
novel drugs for targeted therapy is imperative for patients with
HCC (169). As aforementioned, the distinctive property of SEVs
in delivering functional molecules and altering the biological
behavior of recipient cells highlights their potential applica-
tion as ideal therapeutic vehicles in cancer therapy, both at the
theoretical and practical level. The development of engineered
sEVs, with a purpose of acting as alternatives to chemothera-
peutic and targeted agents, is currently ongoing. sEVs have
several advantages compared with previous drug carriers,
such as liposomes: First, sSEVs achieve highly efficient drug
delivery due to their facility of penetrating biological barriers.
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Table II. Continued.

(Refs.)

Year of publication

Potential functions

Origin

Molecules

Type of sEVs contents

(146)

2018

Predicts TNM stage, lymph node metastasis, and OS. Together with AFP,

differentiates HCC patients from non-HCC

Serum

ENSG00000258332.1
LINCO00635

(147)

Predict vascular invasion, TNM stage, survival. Together with AFP, 2021
differentiates HCC patients from non-HCC

Serum

Cofilin-1 and CCT8
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HCC, hepatocellular carcinoma; E-HCC, early-stage hepatocellular carcinoma; HCV, hepatitis C viruses; CHB, chronic hepatitis B; TACE, transarterial chemoembolization; LDLT, living donor liver

transplantation; DAA, direct-acting antiviral therapy; SVR, sustained viral response; DFS, disease-free survival; DSS, disease-specific survival; OS, overall survival; AFP, alpha-fetoprotein; TNM, tumor,

node, metastasis.

In addition, the cellular origin of SEVs makes them well toler-
ated, and they can easily escape immune clearance, which also
reduces drug dose and toxicity (111,170,171); Furthermore, the
heterogeneity of proteins on the SEVs membrane facilitates
the targeting abilities of SEVs. In addition, sEVs are more
biocompatible, safe and stable than liposomes (172,173). Taken
together, SEVs have a great potential to serve as nano-carriers
in the treatment field. The present section mainly focuses
on the advancements made in SEV research as regards their
application in therapy.

To achieve a better understanding of sSEVs as vehicles
for therapeutic agents, methods of sEV preparation, the
engineering of sEVs and the selection of cargos are under
investigation, and the preliminary results are promising.
Multiple therapeutic agents, including chemotherapeutic
drugs and nucleic acids or their inhibitors, can be loaded. For
example, in a previous study, the subcutaneous injection of
sEVs containing miR-let-7a into a breast cancer mouse model
exhibited an antitumor ability by targeting EGFR (174). In
HCC, recent research has validated the importance of sEVs
in the delivery of EV-packaged drugs (175). A previous study
provided a prospective approach for generating sEV-associ-
ated adeno-associated virus containing inducible caspase 9
(iCasp9) suicide gene (Vexo-AAV6-iCasp9). The engineered
sEVs possessed a low immunogenicity and toxicity, and were
readily absorbed by HCC cells, consequently increasing
HCC regression in an in vivo xenograft model (176). Another
study encapsulated erastin (a typical ferroptosis inducer) and
rose bengal (RB, a well-known photosensitizer) into SEVs
and engineered CD47 on the surface of SEVs to protect the
designed sEVs from phagocytosis by macrophages. The
sEVs induced obvious ferroptosis in HCC, with minimized
toxicity in the liver and kidneys (177). Apart from packing
antitumor payloads into SEVs, previous studies have devel-
oped nanoparticles targeting specific adhesion or receptor
proteins on the surface of sEVs membranes for targeted
delivery. Tian et al (80) designed a nano-drug based on
the PDCM system by targeting sEVs shuttling miR-21 and
miR-10b, which markedly decreased HCC growth and the
numbers of metastatic lung nodules. TDEs not only assist in
exacerbating tumor progression, but also increase the resis-
tance of cancer cells to antitumor treatments (178). Sorafenib
and transarterial chemoembolization have been considered
optional treatments for terminal-stage HCC for numerous
years. Due to acquired drug resistance to commonly used
chemotherapeutic agents, the clinical outcome and overall
survival of patients with HCC remain unsatisfactory (179).
The expression of programmed cell death protein 1 (PD-1)
in HCC tissues from patients with HCC who accepted
sorafenib treatment was upregulated and induced T-cell
apoptosis (180). Therefore, immune checkpoint inhibitors,
such as commonly used PD-1 antibodies and PD-L1 anti-
bodies have been introduced into medical practice as part
of the HCC regimen; however, the efficacy of the combina-
tion of sorafenib and immunotherapy has not yet been fully
elucidated. Shi et al (180) treated mouse models of HCC
with the triple treatment of sorafenib, PD-1 antibodies and
DC-derived exosomes (DEXs), which markedly prolonged
the survival time mice with HCC by comparison with the
mice treated with sorafenib alone, DEXs alone, or the
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combination of DEXs and sorafenib. Taken together, these
preclinical studies offer encouragement for the application of
sEVs as vehicles for HCC treatment.

Despite the rapid development of advanced techniques,
major limitations remain in the current understanding of
SEVs vs. ideal treatment scenarios: i) For SEV technology
to play a role as a drug delivery vector, it is necessary to
ensure high purity and adequate production. There are
still several obstacles which hamper the efficacy of current
methods, such as being time consuming, having a high cost
and generating polluting by-products. Oncologists increase
the total yield of sEVs by intracellular calcium production,
external stress, cytoskeletal blocking, drug stimulation and
the induction of gene expression factors. Furthermore, SEVs
usually represent heterogeneous populations from different
cell sources, and no standard separation process has been
established to date to achieve product consistency (181);
ii) the efficient incorporation of external antitumor agents
and molecules is another demanding challenge that needs
to be optimized. The high drug-loading content in sEVs
must be sufficient to obtain a therapeutic response. Several
approaches, including transfection, electroporation and
sonication (182,183), can be applied to upload the desired
biomolecules into sEVs. However, it is difficult to ensure
the integrity and biostability of the plasma membrane and
the function of sEVs; iii) the current evidence for the ability
of sEVs to deliver specific messages derives from cell
culture studies. The biodistribution and tissue or cellular
tropism in vivo will determine the application of therapeutic
sEVs in clinical practice. At present, there is insufficient
evidence for in vivo and clinical applications, which is a
critical topic for future research in this area. Due to being
subjected to elimination by the mononuclear phagocyte
system, the half-life of SEVs in the systemic circulation is
relatively short (184). Thus, further studies on the balance
between prolonged circulation time and increased risk of
toxicity on major organs are warranted; and iv) currently,
sEVs need to be stored under-20 and -80°C in phosphate
buffer saline (185). Therefore, identifying a suitable storage
method is one of the barriers to be overcome.

In summary, while the application of sEVs as a therapeutic
drug delivery system remains in its infancy, the deeper under-
standing of the aforementioned obstacles will provide a new
orientation for cancer nanomedicine and immunotherapy.

5. Conclusions and future perspectives

sEVs can trigger the alteration of gene expression and induce
aggressive behaviors in HCC cells; however, whether such
observations can be replicated in vivo needs to be further
investigated, since the precise isolation and high concen-
tration of cell culture-derived sEVs could not be achieved
in the majority of in vivo studies published thus far.
Paradigm-shifting findings in the field of HCC diagnosis have
resulted in new avenues for research on HCC biomarkers.
Their easy availability, vesicle-tethering stability and high
donor-homology confer sEVs an unparalleled advantage as
HCC biomarkers compared with traditional biomarkers.
However, the clinical value of SEVs as HCC biomarkers is
still limited due to the absence of clinical research with large

sample sizes. Extensive efforts are currently being made to
identify sEVs biomarkers with high specificity and sensi-
tivity, and apply them to clinical practice. The role of sEVs in
cancer therapy has been studied extensively in recent years;
however, research on sEVs for HCC remains limited. Before
applying them in clinical practice, it is important to validate
the purity, safety and effectiveness of sEVs-encapsulated
agents. Further research is warranted to guarantee the
homogeneity of sEVs, improve the efficiency of their isola-
tion methods and reduce the associated side-effects. The
targeting of sEVs is another issue that needs to be resolved.
Surface modification is a typical approach to harvest targeted
sEVs by modifying the proteins or peptides that specifically
expressed on the cell membrane through gene transfection.
Engineered sEVs can be selectively delivered to target cells
and reach the standard in terms of yield and targeted therapy.
However, the safety, mutagenesis and time-consuming
limit their clinical applications. Currently, aptamers, also
known as chemical antibodies, have attracted the attention
of oncologists. The majority of aptamers have been utilized
to guide nanoparticles, therapeutic and imaging agents to
target locations in several promising anticancer preclinical
studies, whereby they are able to modulate tumor retention
and biodistribution. However, all these issues cannot be
solved in a short period of time, and as the number of clinical
studies increases, more patients will gain clinical benefit
from research in sEVs.
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