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ABSTRACT: Inspired by how certain proteins “sense” knots and
entanglements in DNA molecules, here, we ask if local geometric
features that may be used as a readout of the underlying topology
of generic polymers exist. We perform molecular simulations of
knotted and linked semiflexible polymers and study four geometric
measures to predict topological entanglements: local curvature,
local density, local 1D writhe, and nonlocal 3D writhe. We discover
that local curvature is a poor predictor of entanglements. In
contrast, segments with maximum local density or writhe correlate
as much as 90% of the time with the shortest knotted and linked
arcs. We find that this accuracy is preserved across different knot
types and also under significant spherical confinement, which is
known to delocalize essential crossings in knotted polymers. We
further discover that nonlocal 3D writhe is the best geometric readout of the knot location. Finally, we discuss how these geometric
features may be used to computationally analyze entanglements in generic polymer melts and gels.
KEYWORDS: Polymers, Entanglements, Topology, Knots, Links, Writhe

■ INTRODUCTION
Topological entanglements are ubiquitous and an essential
feature of everyday materials and complex fluids, endowing
them with viscous and elastic properties. Entanglements are
often poorly defined, and their unambiguous identification and
quantification remain elusive.1,2 For example, a knot is a well-
defined mathematical entity when tied on a closed curve, but
there are many examples in physics and biology, e.g., proteins
and chromatin, where knots are tied on open curves, rendering
such “physical” knots much more difficult to define rigorously
and unambiguously.3−6 More broadly, a long-standing goal in
polymer physics and the broader soft matter communities is to
understand and control the topology of certain systems from
the geometry of (often entangled) 1D curves. This goal
encompasses many fields, such as liquid crystals,7 optics,8,9

fluids,10 DNA,5,11−17 proteins,18,19 polymers,3,20−22 soap
films,23,24 and soft matter in general.25,26 At the same time,
the unambiguous characterization of entanglements in these
systems is often elusive, in turn begging for better strategies to
quantify entanglements in generic soft matter systems.
A striking example of the inherent difficulty in defining

entanglements is seen in polymer melts, whereby the close
contact of two chains does not necessarily indicate that chains
are constraining each other’s motion. Instead, so-called
“primitive”27 and “isoconfigurational”28 mean path techniques
are far better placed to separate relevant entanglements from
irrelevant ones. Yet, even these sophisticated techniques often

struggle when polymers display nontrivial topology, e.g.,
rings.29−31 Ring polymers are in fact not amenable for standard
primitive path analysis as they do not entangle in the
traditional sense as linear polymers do;30,32 e.g., no “tube”
can be defined around their contour, and they do not
“reptate”.32 Rings display architecture-specific topological
constraints called threadings,33,34 which display the puzzling
property of reducing self-similarly over time.35,36 The develop-
ment of a method to robustly and unambiguously quantify
entanglements in melts of ring polymers is still an open
challenge in the field of polymer physics.37,38

In parallel to these open questions, it is clear that the
geometric design of systems with specific entanglements in
their microstructure could in principle allow for the control of
mesoscopic material properties.2,39,40 The realization of woven
structures can now be achieved at both micro- and mesoscales
using synthetic chemistry41 or 3D printing.40 To bypass a
virtually endless trial-and-error approach, it is therefore
important to be able to select the entanglement motifs to
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embroider in the structures in such a way that they display the
desired mechanical properties.41 Interestingly, this problem is
not too dissimilar to that of knitting socks: using solely two
types of stitches (“knit” and “purl”), it is possible to create
many distinct motifs and socks with distinctive elastic
properties.42,43

Another example in which topological entanglements are
abundant is in molecular biology and genome organization.
Two meters of genome is packed in a 10 μm nucleus in human
cells. This extreme level of packaging leads to knotting and
entanglement, which are resolved by topoisomerase (Topo2),
a protein that is about 50 nm in size that can identify
topological knots from pure geometric entanglements in DNA
molecules that are more than a thousand times bigger.44 By a
still poorly understood “sensing” mechanism,45,46 Topo2 is
able to reduce the topological complexity of DNA in vivo45,47,48

and in vitro49 without introducing more complex knots.
Inspired by Topo2’s topological sensing, which is necessarily

local and unable to account for the global topology of knotted
DNA, here, we investigate the possibility that there exist some
geometric descriptors that correlate with the underlying
topology of generic closed curves involved, for instance, in
woven structures or polymer melts. To this end, we perform
molecular dynamics (MD) simulations of knotted and linked
semiflexible polymers in equilibrium and study the correlation
between the position of the shortest knotted and linked arcs
with that of four geometric descriptors: (i) regions of
maximum local curvature, (ii) regions of maximum local
density, (iii) regions with maximum local 1D writhe, and (iv)
regions with maximum nonlocal 3D writhe. We note that while
Topo2 works on a very specific polymer, the DNA double
helix, here, we are interested in exploring the relationship
between local geometry and global topology on generic
polymers with the hope that our results may be helpful to
better understand the entanglements in generic entangled
polymer systems.
We discover that regions of maximum local density strongly

correlate with knotted and linked arcs and outperform regions
of maximum curvature. Surprisingly, we also find that this
effect persists under strong confinement, where the knotted
polymer is confined within a sphere smaller than its size in
equilibrium. Finally, we show that 3D writhe is the best
geometrical descriptors to recognize knotted arcs, and it
performs consistently better than other geometric predictors.
We conjecture that these local geometric descriptors could be

employed to compute topological entanglements in more
complex systems such as polymer melts, networks, tangles, and
weavings.

■ METHODS

Simulation Details
We model knotted and linked curves as semiflexible coarse-grained
bead−spring polymers with N = 500 beads of size σ. The beads
interact with each other via a purely repulsive Lennard-Jones potential
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where r denotes the separation between the beads and the cutoff rc =
21/6σ is chosen so that only the repulsive part of the potential is used.
Nearest-neighbor monomers along the contour of the chains are
connected by finitely extensible nonlinear elastic (FENE) springs as
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where k = 30ϵ/σ2 is the spring constant and R0 = 1.5σ is the maximum
extension of the elastic FENE bond. This choice of potentials and
parameters is essential to preclude thermally driven strand crossings
and therefore ensures that the global topology is preserved at all
times.50 Finally, we add bending rigidity via a Kratky−Porod
potential, Ubend(θ) = kθ (1 − cos θ), where θ is the angle formed
between consecutive bonds and kθ = 20kBT is the bending constant.
We choose this value to mimic that of DNA, as for σ = 2.5 nm, the
persistence length would be matched to lp = 50 nm, as known for
DNA.51 Each bead’s motion is then evolved via a Langevin equation,
i.e., by adding to the Newtonian equations of motion a friction and
stochastic term related by the fluctuation−dissipation relation, where
the amplitude of the stochastic delta-correlated force is given by

k T2 /B , and γ is the friction coefficient. The numerical evolution of
the system is conducted using a velocity-verlet scheme with
dt m0.01 0.01 /LJ= = in LAMMPS.52 In order to simulate
knotted chains, we initialize the chain of beads using the well-known
parametrization for torus knots: (x, y, z)(t) = (R(cos qt + r) cos pt,
R(cos qt + r) sin (pt), − R sin (qt)) where p and q are coprime
integers, R and r are two constants, and t ∈ (0, 2π).

In our paper, we want to compute the likelihood that some
geometric features (to be defined below) yield accurate predictions of
where the shortest knotted or linked segments are. To do this, we
typically consider 1000 configurations taken by dumping the
coordinates of the beads every 104 LAMMPS steps (or 102τLJ).

Figure 1. (A) Snapshot of a trefoil knot during a molecular dynamics simulation. (B−E) Illustration of the four geometric descriptors considered in
this work. (B) Local curvature (eq 3), (C) local density (eq 4), (D) 1D writhe (eq 5), and (E) 3D writhe (eq 6).
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From each simulation, we obtain the fraction of instances in which
our predictors (described below) correctly identify the knotted or
linked arc. We then run 64 independent replicas (starting from
different initial conformations) and typically plot the distribution of
this fraction in the form of boxplots (see below for details).

■ RESULTS

Geometric Descriptors
As mentioned above, we consider four geometric descriptors
that allow us to map polymer beads to a scalar quantity (see
Figure 1 for a visual representation). They are (i) local
polymer curvature (see Figure 1B)
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where tj,j+1 ≡ rj+1 − rj is the tangent vector at bead j and n = 20
an averaging window; (ii) local bead density (see Figure 1C)
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where Θ(x) = 1 if x > 0 and 0 otherwise. In this equation, VR =
4πR3/3 and is the volume of a sphere of radius R, and we take
R = 30σ, slightly larger than a persistence length. We have
checked that other sensible choices of R give similar results.
(iii) For the local or 1D (unsigned) writhe (see Figure 1D),
the equation is
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where lw = 50σ is the window length over which the calculation
is performed. Finally, for (iv) nonlocal or 3D (unsigned)
writhe (see Figure 1E), the equation is
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which measures the (unsigned) entanglement of a polymer
length centered at bead i against the rest of the polymer
contour.
Equation 5 is the local generalization of the well-known

“average crossing number”53 and has been previously used to
identify supercoiled plectonemes in simulated DNA,54,55

branches in ring polymers,56 and self-entanglements in
proteins.18 Equation 6 is a generalization of eq 5 where we
do not restrict the calculation of the (unsigned) writhe to
occur between contiguous polymer segments. Intuitively, eqs 5
and 6 effectively compute the average number of times the
contiguous (for 1D) and noncontiguous (for 3D) segments of
the polymer display crossings when observed from many
different directions. Accordingly, we define the beads at which
our descriptors attain their maximum value as iX = arg maxi{X},
where X = {Δ(i), Γ(i), ω1D(i), ω3D(i)}.
Examples of typical curves that we get from the calculation

of these observables on simulated polymers are shown in
Figure 2. The snapshot in Figure 2A has been color coded
from red to blue to identify the bead index. Beads 180 and 380
are colored green and purple to highlight the correspondence
with the curves on the right of Figure 2. One can appreciate
that the local curvature Γ (Figure 2B) is rather noisy and does
not seem to reflect an increase in entanglements around beads
180 and 380. On the contrary, local density Δ (Figure 2C)
displays three local maxima corresponding to increased density
of 3D proximal segments around beads 180 and bead 380.
Strikingly, 1D writhe ω1D and 3D writhe ω1D (Figure 2D,E)
display the most intuitive and marked trends. The 1D writhe
ω1D is best suited to detect self-entanglements over short
distances (around lw), while the 3D writhe ω3D is able to detect
self-entanglements over large distances. Intuitively, the peaks
correspond to the location of the essential crossings of the
trefoil knot.
Knot Localization

To identify knotted arcs in our simulated polymer we use
Kymoknot,57 a free and open-source software to identify the
topology and shortest knotted arcs of closed and open polymer
chains. The algorithm works by using a minimally interfering

Figure 2. (A) Snapshot of a simulated trefoil knot conformation, color coded in terms of the bead index. The window lw = 50σ used for the 1D and
3D writhe and the sphere volume VR of radius R = 30σ used for the local density are also shown. (B−E) Curves obtained via the calculation of the
geometric descriptors defined in the text and computed on the configuration in (A): (B) local curvature (eq 3), (C) local density (eq 4), (D) 1D
writhe (eq 5), and (E) 3D writhe (eq 6). The beads (180 and 380) corresponding to peaks in the local density and 3D writhe are highlighted in
(A−E).
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algorithm that (in either a top-down or a bottom-up direction)
truncates the polymer conformation, computes the convex hull
of the remaining polymer segments, joins the termini outside
the so-formed convex hull, and then calculates the Alexander
determinant of the closed conformation.3 The result of
Kymoknot is the interval within which the shortest knotted
arc is located. For a polymer conformation that evolves over
time, we can visualize the output of Kymoknot in a so-called
kymograph. The blue shaded region in Figure 3A represents
the shortest knotted arc within the simulated polymer as it
fluctuates over time. For clarity, we also show a representative
snapshot of the polymer at a given time frame where we have
color coded the shortest knotted arc in blue. We then directly
use the Kymoknot output to count how frequently the iX’s
computed using the geometric descriptors defined above fall
within the shortest knotted interval. We call this quantity the
“colocalization score”, ρX.
The key point of this work is that Kymoknot recognizes the

shortest knotted arc by computing a global topological
invariant (the Alexander determinant) of a suitably closed
open curve. On the contrary, the quantities defined in eqs 3−6
are purely geometric and have no knowledge of the global
topology of the chain. Additionally, 3 of them, Δ, Γ, and ω1D,
are purely local features that can be extracted from a short
polymer segment, measuring the surrounding segments in
close 1D or 3D proximity.
Localization of Knotted Arcs by Geometric Descriptors

Having described the topological and geometrical observables
used in this work to identify knotted and linked arcs, we now
aim to address how well the geometric descriptors can predict
the location of knots along polymers. To achieve this, we first
visually compare the result from Kymoknot (Figure 3A) to the
ones obtained via the iX’s of the geometric descriptors (Figure
3B−E). We first notice that the maximum of the local
curvature Γ appears to be noisy and randomly scattered along
the contour. This is also the case if we do not perform the
window averaging of the local curvature or if we pick beads
separated by a number of beads. On the contrary, the
maximum of local density, 1D writhe, and 3D writhe appear to
locate near the boundaries of the shortest knotted arc
identified by Kymoknot (Figure 3A). We hypothesize that

this finding may be related to the concept of essential
crossings58,59 and that our geometric predictors may thus be
able to identify some of the essential crossings in the knotted
chain.
To more precisely quantify how well our predictors can

identify the location of the shortest knotted arc, we compute
the “colocalization score”, ρX. [We recall that this was defined
as the number of times that the geometrically predicted iX falls
within the shortest knotted interval detected by Kymoknot.]
Figure 4A shows that for an unconfined, dilute polymer, ρΓ is
similar to one obtained by a random choice of bead, i.e., for a
trefoil ρrand ≃ 50%. Notice that a computed ρrand ≃ 0.5 means
that, for our choice of parameters, the shortest knotted arc
occupies about half of the polymer contour; this is due to the
large polymer stiffness chosen to match that of DNA and the
net effect is that the knot tends to delocalize.3 Interestingly, we
observe a much larger colocalization score for the other
geometric descriptors. More specifically, the local density
descriptor iΔ colocalizes with the knotted arc roughly ρΔ = 70%
of the times for a trefoil and more than 80% for the other knot
types (Figure 4A). Additionally, we find that the 3D writhe is
the most accurate predictor with ρω3D ≃ 80% for the trefoil
and ρω3D > 90% for the more complex knots.
Interestingly, if we account for a “buffer”, i.e., an additional

10 beads on either side of the knot boundaries identified by
Kymoknot, we find a further increase in accuracy (see Figure
4B) with iΔ reaching more than 80% for all knot types and 3D
writhe, more than 90% for all knot types, getting close to 100%
for 51, 71, and 819. While local density improves its predictive
power when including the buffer, the 1D writhe does not.
Perhaps the most interesting observation from Figure 4 is that,
even if more complex knots delocalize and take up a larger
fraction of the polymer contour (see the random value
increasing up to ≃75%), our geometric descriptors are still
significantly more accurate than simply a random choice.
Localization of Knotted Arcs under Spherical Confinement

Arguably, while the semiflexible nature of our chains renders
knots rather delocalized over the contour, the consideration of
chains that are more flexible would induce knot local-
ization,60,61 which is expected to facilitate their recognition
by our geometric methods. Localized knots are defined such

Figure 3. Kymographs (the evolution of geometric and topological observables over time). (A) The range of beads identified by Kymoknot that
form the shortest knotted arc during one simulation of a trefoil knot is shaded in blue. The inset shows a snapshot of the simulation, corresponding
to an instantaneous conformation with the shortest knotted arc color coded in blue. (B−E) The arg max values of (B) local curvature, (C) local
density, (D) 1D writhe, and (E) 3D writhe at each time frame during the molecular dynamics simulation.
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that their subtended arc scales sublinearly with the length of
the polymers, i.e., lk ∼ Nα with α < 1. It was previously shown
that knots in flexible chains display α ≃ 0.75.3 On the other
hand, under spherical confinement, knots are extremely
delocalized and display α ≃ 1.3 Thus, we ask whether our
geometric predictors (and in particular the local density Δ)
remain good predictors of knot location under spherical
confinement. To study this regime, we enclose polymers in
spherical shells with harmonic repulsive interactions with all
the beads. The radius of the shell Rc is slowly reduced until the
desired confinement Rc/Rg (with Rg being the equilibrium
radius of gyration of the polymer in dilute conditions) is
attained. The polymer is then allowed to equilibrate. Finally,
we measure the curves Γ(i), Δ(i), ω1D(i), and ω3D(i) as before
and, in turn, the colocalization score, ρX (Figure 5). The only
change is that we now use R = Rc/8 to compute Δ(i). This is
needed because under confinement the radius of gyration
becomes smaller than the original value R = 30σ we set earlier
for the dilute case. We have repeated this calculation for other
sensible choices of R and they produce qualitatively similar
results. Interestingly, we observe that Δ still outperforms a
random process even at values of confinement strength Rc/Rg
= 0.25 for both the trefoil and pentafoil knots (see Figure 5). It
is rather striking that iΔ colocalizes with the knotted arc more
than ρΔ > 95% of the time, meaning that, even under these
extreme conditions of self-density, the presence of a knot can
be identified via purely geometric features.

Finally, we note that the accuracy trend displays a
nonmonotonic behavior as a function of confinement strength.
In particular, we note a curious dip in accuracy for Rc/Rg = 1. It
would be interesting in the future to explore in detail the
physical origin of this behavior.
Link Localization by Geometric Descriptors
In the last part of this paper, we consider links as prototypical
examples of generic entangled chains. We perform MD
simulations of two N = 500 bead-spring Kremer−Grest
polymer chains tied in a simple Hopf link. We then measure
the shortest linked portion using the method described in refs
62−65 and compare the resulting segment with the ones given
by our geometric descriptors. Briefly, the algorithm works as
follows: from a pair of linked curves with topology τ computed
using the two-variable Alexander polynomial,62 it is possible to
obtain the shortest physical link by looking at all possible pairs
of subchains (γ1, γ2) on the condition that they display the
same topology as the original link. The algorithm employs a
top-down search scheme on the basis of a bisection method
and outputs the index of the beads in chain 1 and chain 2. We
then count how likely it is that the iX’s obtained using the
geometric predictors fall within the shortest linked regions of
the two chains.
We here compare the results from the link localization

algorithm with our two best performing descriptors, i.e., the
local density, Δ, and the 3D writhe, ω3D. Since we now
consider two chains, we can define Δ(i) and ω3D(i) as “self”
(when computing them considering only the chain that hosts
the ith segment) or as “global” (when considering all beads in

Figure 4. (A) Boxplots showing the colocalization score of four
different knot types using the four geometric descriptors (plus a
random control) over 64 replicas. Each point in the boxplot
represents the colocalization score (i.e., how many times the
geometric predictor is contained within the Kymoknot-detected
arc) computed over 1000 conformations in each replica. (B) Same as
in (A) but accounts for a “buffer” of 10 beads on either side of the
boundaries detected by Kymoknot.

Figure 5. (A, B) Boxplots showing the colocalization score for a
trefoil (A) and pentafoil (B) as a function of knot confinement,
measured as Rc/Rg where Rg is the radius of gyration of the polymer in
equilibrium. As before, we compute the score over 1000
conformations and make the boxplot using one value for each of
the 64 independent replicas.
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the system in the calculation). The trend of Xs(i) reflects the
entanglements of the chain with itself while Xg(i) mirrors any
entanglement segment to which i is subjected. In Figure 6A−
C, we show that, for a randomly chosen simulation snapshot,
the global features Xg(i) display several maxima and the higher
ones correspond to the beads forming the link. For the
particular snapshot in Figure 6A, the link localization
algorithm62 detects the shortest linked arc in chain 1 (red in
the figure) to be 421−460 and the shortest linked arc in chain
2 (blue in the figure) to be 461−20 (through periodic
boundary conditions at N = 500). We highlighted the positions
of these beads in Figure 6A−C,E,F, to show the agreement
with Δg and ω3D,g.
The colocalization score calculated on the global geometric

predictors (shown in Figure 6D) suggests that these features
correlate well with the location of the link. As expected, we do
not see any significant difference when comparing the accuracy
of chain 1 and chain 2, and we observe that the colocalization
score for the total link, i.e., the conditional probability that
both linked segments contain iXdg

, appears to be roughly the
product of the two colocalization scores for the single
components. Importantly, Figure 6D shows that the geometric
predictors significantly outperform the random prediction
(even by a factor of 5 or more).
We then noted that the difference of the global and the self-

components of the geometric predictors, defined as dX(i) =
Xg(i) − Xs(i), significantly decrease the fluctuations of the
curves. Intuitively, dX(i) counts the contributions of interchain
segments on the segment i (see Figure 6E,F). Strikingly, we
find that idX, i.e., the bead hosting the maximum value of the
difference dX, yields an even better colocalization score with
values around 90% for the individual link components and 80%
for the total link (Figure 6G). The ratio of the localization
accuracy of the geometric predictors and the random choice is
now 10 or more. Arguably, this means that the interchain
correlations are the most important contribution to the

entanglements. This is also in line with the situation in
entangled polymer melts, where total density fluctuations are
typically small, while interchain density fluctuations are more
informative of the system dynamics.66,67

■ DISCUSSION AND CONCLUSIONS
What makes a curve knotted? Inside our cells, how do certain
proteins recognize complex topologies by scanning the DNA
locally? How can we unambiguously identify relevant
entanglements in polymeric systems? In this work, we started
from the hypothesis that knotted and linked curves in 3D may
harbor some geometric features that correlate with the
underlying topology. To this end, we have performed MD
simulations of knotted and linked curves and have analyzed
four geometric predictors: (i) local curvature, (ii) local density,
(iii) 1D writhe, and (iv) 3D writhe. We used the geometric
predictors to locate the shortest knotted and linked arcs and
compared these predictions to the ones given by state-of-the-
art knot and link localization algorithms (refs 3, 57, and 62).
We discovered that local curvature is equivalent to randomly

choosing a bead within the contour. This is interesting as there
are models arguing that Topoisomerase, a protein involved in
simplifying knots in DNA, may sense curvature to locate a
knotted segment.68 Our work suggests that this would be a
poor search strategy and would yield a rather inefficient
topological simplification pathway. Admittedly, our model
does not capture the torsional rigidity and the double-helical
structure of DNA and we thus refrain from arguing that our
results clarify the search strategy of Topoisomerases on DNA.
At the same time, our results suggest that, in polymer melts
and other generic thermally driven entangled systems, such as
weavings, the points of maximum curvature of the filaments are
not necessarily the most entangled.
On the other hand, we find that local density is a far better

geometric predictor of topologically complex states. In our
simulations, the bead in the polymer with the largest number

Figure 6. (A) Snapshot of a MD simulation of two rings, each N = 500 beads long, tied in a Hopf link. Some beads are highlighted and made larger
for visualization purposes. The algorithm introduced in ref 62 detected the shortest linked segments spanning beads 421 to 460 for chain 1 and 461
to 20 for chain 2 (across the periodic boundary). (B) Local density, Δg, and (C) 3D writhe, ω3D,g, computed considering all the beads in the
system. (D) Colocalization score for the single chain components and the overall link from the “global” predictors, Xg. (E) Local density, dΔ, and
(F) 3D writhe, d ω3D, computed from the difference of global and self-components of the predictors: dX(i) = Xg(i) − Xs(i). (G) Colocalization
score for the single chain components and the overall link from the differential predictors, dX.
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of neighbors (largest local density) is often also part of the
knotted or linked segment (with an accuracy of ≃80% for
simple knots and the Hopf link and up to 90% for more
complex knots or under confinement). This is rather striking in
that the calculation of local density is restricted to beads that
are 3D proximal to bead i and there is no information on the
global topology of the curve. One consequence of our findings
is that sensing the local density of DNA segments could be a
good strategy for Topoisomerase to quickly locate knotted and
entangled arcs. Such a binding strategy may be naturally
realized by a protein design that presents abundant positively
charged amino acids on the surface of the protein in such a way
as to maximize unspecific interactions with negatively charged
DNA. Indeed, Topoisomerases typically present a positively
charged area in the region of DNA binding that is far larger
than the one needed to bind DNA.69,70 Again, we stress that
our polymer model does not fully capture DNA’s complexity.
In the future, we aim to perform a similar analysis on models
that can capture twist71,72 to quantify the impact of torsional
rigidity on these metrics. Furthermore, it has been suggested
that in knotted and closed DNA there may be an interplay of
both knots and plectonemes; in this case, the geometric
descriptors measured here may struggle to identify the essential
crossings of the knot from the writhe of the plectoneme.
Future studies will illuminate this issue. In spite of the
limitations of our present model in modeling DNA, we
conjecture that our results may be used to quantify
entanglement motifs in tangled and weaved structures.40,41

For instance, we expect that the pattern of local density along
the entangled curves will be motif-dependent and that there
may be a relationship between these patterns and the
corresponding mesoscopic elasticity. Again, we hope that
future work will explore this direction further.
Finally, we discover that 3D writhe is our best descriptor

with a consistently high (≳90%) accuracy in identifying the
knotted and linked arcs. This observation is less striking than
the one for the local density as 3D writhe is not (strictly
speaking) a local geometric predictor. In other words, the
calculation of 3D writhe has to scale as N2 while the local
curvature, density, and 1D writhe scale as N. We note that local
density can make use of neighbor lists; hence, why we claim it
could scale faster than N2.
In line with this, we note that state-of-the-art algorithms that

search for knotted and linked segments on polymeric
systems57,62,73 or proteins19,74,75 require a considerable amount
of computational time. For instance, when run on a single
CPU, knot localization on our N = 500 chain in dilute
conditions takes about 2 ms but under confinement takes up to
300 ms per conformation. On the other hand, the calculation
of the local density profile takes on average 0.3 ms. Similarly,
link localization for our two N = 500 chains takes up to a
minute even in dilute conditions on a single conformation. On
the contrary, the calculation of the local density profile for the
same link takes 30 ms per conformation. For this reason, we
argue that adding a preliminary search step using geometric
predictors, before launching a full blown topological search
scheme, could be a way to render search algorithms more
efficient in the future.
It is appropriate here to highlight that entanglements are

among the most elusive and slippery topics in polymer science.
Algorithms such as an isoconfigurational mean path28 and
primitive path analysis27 are the “gold standard” to quantify
relevant entanglements in polymeric systems and yet they fail

in the case of ring polymers.30 We hope that the geometric
descriptors proposed here may be a complement to these tools
and could be used to identify entanglements in complex
polymeric systems. We speculate that (interchain) local density
and 1D and 3D writhe as defined in this work may yield
interesting results not only in melts of ring polymers but also in
molecular (and periodic) weavings.2,39−41 We expect that
different entanglement motifs are associated with distinct
patterns of our geometric observables. In turn, they may be
used to predict the global elastic response of the entangled
network to certain perturbations. To the best of our
knowledge, these metrics have not yet been tried on polymer
melts or molecular weavings.
One intriguing application of our results is on Olympic

gels.15,76−78 Indeed, there is no simple way to compute the
extension of three or more components of the Gauss linking
number, known as the Milnor’s triple linking number,79 on the
systems of ring polymers. This means that it is extremely
challenging to unambiguously discern three physically
inseparable Borromean rings from three unlinked and
physically separable rings. Systems made of interlinked
“Olympic” rings,76 such as the naturally occurring Kinetoplast
DNA15,80 or synthetic equivalents,78 are likely to display
Borromean and higher order Brunnian configurations of
interlinked rings.81 This means that computing the pairwise
(Gauss) linking number between rings is likely not enough to
predict the mesoscopic elasticity of Olympic gels, as this metric
completely neglects contributions from Brunnian links. We
hope that our geometric predictors may be able to offer an
alternative to the lack of (simple) topological invariants to
characterize these elusive conformations. For instance, a step
toward this goal in the near future would be to study the
behavior of our geometric predictors in simple Borromean
rings in dilute conditions.
Finally, we note that the data generated by our geometric

predictors lend themselves fittingly to be used as input features
for machine learning algorithms, e.g., neural networks, to
identify knots and entanglements. This is because our
predictors are invariant under translations and rotations of
the conformation and under relabeling of the beads. In the
future, we thus aim to couple our geometric observables to
Machine Learning, as recently done in ref 82, to identify and
localize knots and entanglements in more complex systems.
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