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Abstract
Trait-based approaches have been widely applied to investigate how community dynamics

respond to environmental gradients. In this study, we applied a series of maximum entropy

(maxent) models incorporating functional traits to unravel the processes governing macro-

phyte community structure along water depth gradient in a freshwater lake. We sampled 42

plots and 1513 individual plants, and measured 16 functional traits and abundance of 17

macrophyte species. Study results showed that maxent model can be highly robust (99.8%)

in predicting the species relative abundance of macrophytes with observed community-

weighted mean (CWM) traits as the constraints, while relative low (about 30%) with CWM

traits fitted from water depth gradient as the constraints. The measured traits showed nota-

bly distinct importance in predicting species abundances, with lowest for perennial growth

form and highest for leaf dry mass content. For tuber and leaf nitrogen content, there were

significant shifts in their effects on species relative abundance from positive in shallow

water to negative in deep water. This result suggests that macrophyte species with tuber

organ and greater leaf nitrogen content would become more abundant in shallow water, but

would become less abundant in deep water. Our study highlights how functional traits dis-

tributed across gradients provide a robust path towards predictive community ecology.

Introduction
Trait-based approaches have been widely applied to investigate how community dynamics
respond to environmental gradients [1–4]. The trait-based community assembly processes
(i.e., habitat filtering and niche differentiation) may predict successively the species’ presence
or absence in a local community [5,6], whereas will not well explain its dominance or rarity
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(i.e., relative abundance). However, a trait-based approach assumes that individuals with traits
that confer high performance in a given environment will be able to sequester a greater propor-
tion of limited resources for growth and reproduction, resulting in greater relative abundance
within community [4,5]. According to this assumption, Cornwell and Ackerly [7] reported
that there were significant links between plant traits and abundance, implying a potential trait-
based processes affecting species relative abundance. Shipley et al. [8] proposed a maximum
entropy (maxent) model that can potentially link traits to community composition at the spe-
cies level by predicting relative abundances of each species in a community using community-
weighted mean (CWM) traits as constraints. The maxent model is suggested as a mathematical
translation of the notion of trait-based environmental filtering; it is a mathematical conse-
quence of non-random processes (i.e., natural selection) acting on all individuals in a local
community [9]. The maxent model provided a quantitative framework: if the individuals of
species with favorable traits in a specific habitat become more abundant, species sorting pro-
cesses will constrain CWM traits values in a local community and such CWM traits will then
possess information that is translated into the maximum entropy probabilities [8–11]. CWM
traits can vary predictably along environmental gradients, allowing us to predict how the rela-
tive abundances of species possessing these traits will vary along this gradient [12]. Despite the
remarkably strong predictive ability (> 90%) of maxent model on the variance in relative abun-
dance given the observed CWMs [8,12,13], the robust nature of maxent model in predicting
changes in community structure along environmental gradients remained to be tested in vari-
ous types of plant communities based on predicted CWM traits.

In freshwater habitats, macrophyte communities are strongly influenced by water depth
[6,11,14–17]. Recently, Fu et al. [18] found that macrophyte community biomass showed a
hump-shaped pattern along water depth gradient, while biomass of most macrophyte species
in the community displayed linear pattern along the gradient. Remarkably, CWM traits were
the most important predictors affecting macrophyte community biomass, although the
strength and direction of those effects depended on selected trait [18]. CWM traits differed
largely in their responses to water depth gradient, which may mirror the relative changes of
abundance of particular species possessing dominant traits along the gradient. Using a trait-
based approach, Fu et al. [6] demonstrated that the significant non-random processes (i.e., hab-
itat filtering and niche differentiation) shape the functional trait distribution (e.g., CWM traits)
within communities along environmental gradients. Both processes of habitat filtering and
niche differentiation affected the functional responses of macrophyte communities associated
with different sets of traits in significant different patterns along water depth gradient. The
deterministic assembly processes acting on functional composition of macrophyte community
in a local scale would largely inspire us to incorporate maxent models to predict species relative
abundance. Our recent works have indicated the variations of CWM traits reflect the signifi-
cant trends in the effects of the deterministic assembly processes on species’ presence and thus
community abundance along the water depth gradient [6]. However, what are the degrees of
different functional traits in determining macrophyte species abundance and how does the
importance of different traits vary along the gradient have yet to be studied [19,20].

In this study, we applied a series of maxent models to unravel the processes governing mac-
rophyte community structure along water depth gradient in a freshwater lake. We examine the
robustness of maxent model in predicting species relative abundance with observed or fitted
(as predicted by water depth gradient) CWM trait values as constraints. Based on the intrinsic
concept of maxent model, that natural selection occurring between individuals of different spe-
cies, we hypothesized that: (1) the changes in macrophyte community structures can be pre-
dicted by maxent model with CWM traits fitted from water depth gradient as constraints,
because there were significant effects of non-random processes on CWM traits and thus
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community abundance [6,18,21]; (2) functional traits differ in their importance in determining
species relative abundance, because macrophyte species exhibit significant different perfor-
mance along different functional niches [6]; and (3) the relative importance of different func-
tional traits in determining species relative abundance will vary along water depth gradient,
because the strength and direction of non-random effects on different traits vary significant
along the gradient [6].

Materials and Methods
Our study complies with the current laws of China and with international rules. No specific
permissions were required for the described field studies; all samples were obtained from pub-
licly accessible waters and the studied species are not endengered or protected.

Field sampling designs and data collecting
The study was carried out in Erhai Lake (25°52'N, 100°06'E) in Yunnan Province, China and
the details of sampling designs were described in our previous studies [6,18]. The study loca-
tion and sampling scheme were showed in Fig 1. The original abundance and trait datasets
were described in details in Fu et al. [18] and Fu et al. [6]. The abundance of macrophyte com-
munity was estimated in forty-two 25 m2 plots at seven sites. At each site, six 5 × 5 m plots
were located along the water depth gradient at 0.5 m intervals from 0 m to 3.0 m depth. Within
each 25 m2 plot, we used three 0.2 m2 quadrats for this analysis and we sampled a total of 126
quadrats. The mean abundances of each species across water depth gradient were showed in
Table 1, and the mean trait values of each species were presented in our previous studies (see
S1 Table listed in the Supporting Information of ref. [18]). We measured (or collected date

Fig 1. The study location and scheme of the sampling design. (a) The study was carried out in Erhai Lake
(25°52'N, 100°06'E) in Yunnan Province, China. We sampled macrophyte communities in forty-two 25 m2

plots at seven sites. At each site, six 5 × 5 m plots were located along the water depth gradient at 0.5 m
intervals from 0 m to 3.0 m depth (b, c). Within each 25 m2 plot, we used three 0.2 m2 quadrats for this
analysis (b).

doi:10.1371/journal.pone.0131630.g001
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from literature) 16 key functional traits (Table 2) on all 17 macrophyte species following stan-
dardized protocols [21]. The 16 functional traits are: mean Julian flowering dates, flowering
duration, floating leaf, perennial growth form, tuber, specific leaf area, leaf dry mass content,
lamina thickness, leaf carbon [C] content, leaf nitrogen [N] content, leaf carbon/nitrogen
[C/N] ratio, ramet size, shoot height, stem dry matter content, stem diameter and rooting
depth. We sampled a total of 1513 individuals for the measurements on functional traits.

Statistical analysis
We used CWM trait values as the constraint in the maxent model to predict the species relative
abundance. CWM trait values were used to describe the functional composition of each plot

[22] and was calculated as
PS

i ¼ 1

PiTi, where Pi is the proportional biomass of ith species in the

community, Ti is the trait values of species i, and S is the number of species.
The general description of the maxent model has been characterized by Shipley et al [8,12].

The maximum entropy (maxent) predicted values of relative abundance of 17 species in each
of 42 plots were obtained using the “maxent” and “maxent.test” function of FD package for R.
Macroscopic constraints were based on the CWM trait values (observed or fitted from the gen-
eral linear models based on water depth gradient) of each plot. Uniform prior distributions
were used in all instances. Convergence occurred when the largest change in any single pre-
dicted relative abundance between two iteration was< 1×107. Significance tests were per-
formed using permutation test of Shipley [23], also found in FD package for R.

We used two different methods to obtain maxent models containing fewer traits as sug-
gested by Shipley et al. [12]. We used a backwards stepwise procedure to calculate the mean
absolute lambda coefficients over the 42 plots, sequentially remove the trait having the lowest
absolute lambda, and then refit the model with all traits except for this one for models based on
observed CWMs (model 1). We fitted linear mixed models relating the observed CWM traits

Table 1. The mean abundance (kg dry weight m-2) of 17 macrophyte species across the water depth gradient.

Species Water depth (m)

0.5 1.0 1.5 2.0 2.5 3.0

Potamogeton praelongus Wulf 0.011 0.000 0.000 0.000 0.000 0.000

Potamogeton pectinatus 0.022 0.002 0.014 0.019 0.000 0.001

Potamogeton perfoliatus 0.052 0.058 0.023 0.036 0.052 0.000

Najas marina 0.003 0.000 0.001 0.000 0.000 0.000

Potamogeton lucens 0.051 0.220 0.072 0.171 0.090 0.074

Hydrilla verticillata 0.197 0.071 0.089 0.070 0.065 0.038

Myriophyllum spicatum 0.093 0.094 0.038 0.025 0.011 0.024

Potamogeton maackianus 0.039 0.039 0.176 0.279 0.273 0.301

Ceratophyllum demersum 0.020 0.017 0.023 0.050 0.055 0.010

Vallisneria natans 0.116 0.075 0.199 0.182 0.259 0.403

Polygonum amphibium L. 0.020 0.083 0.005 0.000 0.000 0.000

Trapa natans L. 0.096 0.084 0.188 0.061 0.046 0.020

Potamogeton malaianus 0.148 0.145 0.134 0.092 0.076 0.101

Potamogeton intortifolius 0.026 0.053 0.018 0.008 0.071 0.027

Hydrocharis dubia (Bl.) Backer 0.000 0.016 0.000 0.000 0.000 0.000

Potamogeton distinctus A.Bennett 0.066 0.024 0.000 0.000 0.000 0.000

Nymphoides peltatum(Gmel.)O.Kuntze 0.041 0.019 0.020 0.007 0.000 0.000

doi:10.1371/journal.pone.0131630.t001
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to the water depth gradient and used these to obtain the fitted CWM traits for each plot based
only on its environmental conditions. Then, we inputted sequentially traits having the highest
R2 explained by water depth gradient for models based on fitted CWMs (model 2), and the
order is: stem dry mass content (R2 = 0.47), leaf carbon content (R2 = 0.42), leaf nitrogen con-
tent (R2 = 0.26), flowering duration (R2 = 0.16), floating leaf (R2 = 0.13), leaf dry mass content
(R2 = 0.12), lamina thickness (R2 = 0.1), leaf carbon/nitrogen ratio (R2 < 0.1), perennial growth
form (R2 < 0.05), stem diameter (R2 < 0.05), mean Julian flowering dates (R2 < 0.05). tuber
(R2 < 0.05), specific leaf area (R2 < 0.05), rooting depth (R2 < 0.01), ramet size (R2< 0.01),
shoot height (R2 < 0.01). A general linear mixed model was applied to assess the variations of
species relative abundance along the water depth gradient, with sites as random effects.

The λ-values for each trait that are estimated by the maxent model measure the importance
of the trait in determining the predicted relative abundance, holding other traits constant
[8,12]. For a given trait, species possessing higher trait values would be more abundant than
expected when λ-value> 0, and vice versa when λ-value< 0; this trait has no effects on species
relative abundance when λ-value = 0 [8,20]. Therefore, we can use the λ-values, derived from
the maxent models, to inspect the strength and direction of filtering processes on individuals
with a specific trait along water depth gradient during community assembly. To assess the rela-
tive importance of a specific trait in determining abundance across the water depth gradient, a
general linear mixed model was applied to assess the variations of the λ-values (without stan-
dardizing) along the water depth gradient, with sites as random effects.

Table 2. List of 16 plant functional traits studied for 17 macrophyte species. The mean lambda values derived from the maxent models in which traits
are standardised to unit variance.

Functional traits Unit Characteristic Function Mean lambda
values

Floating leaf Ordinal:(1 = no,
2 = yes)

Phenology Canopy architecture, Space niche in canopy, Light
interception.

10.94

Perennial growth form Ordinal:(1 = no,
2 = yes)

Phenology Growth time strategy -1.93

Tuber Ordinal:(1 = no,
2 = yes)

Phenology Organ turnover, Growth strategy -2.23

Mean Julian Flowering
Date

Continuous (day) Phenology Growth time strategy 27.74

Flowering duration Continuous (Julian
day)

Phenology Growth time strategy 30.50

Ramet size Continuous (mg) Morphology Growth strategy, Space niche in habitats 7.12

Shoot height Continuous (cm) Morphology Light capture, Competition, Canopy architecture, 22.87

Stem diameter Continuous (mm) Morphology Stem architecture, water uptake strategy 6.76

Specific leaf area Continuous (m2 kg-1) Morphology Assimilate utilization, Light interception, space niche in
canopy

23.81

Leaf dry mass content Continuous (g g-1) Morphology Assimilate utilization, Palatability, Decomposability 32.57

Lamina thickness Continuous (mm) Morphology Resources acquisition strategy 6.16

Rooting depth Continuous (cm) Morphology Space niche in soil, Nutrient acquisition strategy -7.53

Stem dry mass content Continuous (g g-1) Morphology Assimilate utilization, Water transport 11.81

Leaf nitrogen content Continuous (mg g-1) Chemical
composition

Photosynthetic capacity, Palatability 29.15

Leaf carbon content Continuous (mg g-1) Chemical
composition

Palatability, Decomposability -13.37

Leaf carbon/nitrogen
ratio

Continuous (g g-1) Chemical
composition

Photosynthetic capacity, Palatability 18.95

doi:10.1371/journal.pone.0131630.t002
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Furthermore, when traits are standardised to unit variance, we can use the mean λ-value for
each trait to identify what extent of different traits in determining species relative abundance.
In present study, the λ-values for each trait were either positive or negative across the 42 plots,
and thus we only showed the mean λ-value for each trait in Table 2. The greater mean |λ|-
values of a given traits across 42 plots indicates a stronger effects of this trait on species relative
abundance. Prior to analysis, Mean Julian flowering dates, flowering duration, ramet size,
shoot height, specific leaf area, leaf dry mass content, stem dry mass content, leaf [C], leaf [N]
and leaf [C/N] were log-transformed to reduce the influence of species with large trait values
and all traits were then standardised to unit variance. When negative trait values were obtained
from the log-transformation, we added |xmin| to all values for that trait, where xmin is the mini-
mum trait value. This translation was necessary for the Improved Iterative Scaling algorithm,
which cannot accept negative values [7].

Results
Using the observed CWM for all 16 traits, the maxent model estimates predicted 99.8% of the
observed variation in the actual relative abundance of these 17 species in this lake (Fig 2a). The
maxent predictions of relative abundances in the validation data set were significant with only
two traits (i.e., lamina thickness and floating leaf), and predictive ability increased asymptoti-
cally with the number of traits used in the model (Fig 2b).

A maxent model using the fitted CWM traits as constraints gave the predicted relative abun-
dances of the 17 species in each plot. When the two traits of best predicted from the depth gra-
dient were included, the models explained 22.1% of the variation in relative abundances that
was potentially explicable from water depth gradient (Fig 2b). The predicted relative abun-
dance from these species-specific linear mixed models and maxent models using the best eight
CWM traits were similar (Fig 2c and 2d). For example, the relative biomass increased for Pota-
mogeton malaianus, Potamogeton maackianus and Vallisneria natans, but decreased for Pota-
mogeton intortifolius, Potamogeton perfoliatus, Hydrilla verticillata and Trapa natans.

Strongly difference in the relative importance of different functional traits in determining
species relative abundance were found, with the mean λ-values (with standardizing) across the
42 plots ranged from -1.93 for mean perennial growth form to 32.6 for leaf dry mass content
(Table 2). Significant trends of λ-values (without standardizing) along water depth gradient
were detected for tuber (Fig 3e) and leaf nitrogen content (Fig 3g), while marginally significant
effects of water depth on λ-values were detected for rooting depth (Fig 3d), stem diameter
(Fig 3h), leaf dry mass content (Fig 3j) and shoot height (Fig 3o).

Discussion
We found highly significant associations between observed relative abundance and plant traits
using as few as two traits,> 60% of the variation in relative abundances could be predicted
with as few as six traits, and essentially all of the observed variation in relative abundances was
captured using all 16 traits. When using CWM traits values fitted from water depth gradients,
the maxent model explained no more than 32% of the variations of relative abundances, which
supports partially the first hypothesis. This relative lower explanatory power might be attrib-
uted to the following reasons. On the one hand, some important functional traits (i.e., branch-
ing patterns, root/shoot ratio and internode length) related to water depth were not included
into this model [16,17,24]. On the other hand, only one environmental variable might provide
not enough information for this predictive model, because macrophyte communities struc-
tured in freshwater habitats associating multiple environmental factors [25–28]. Although
many other potential important environmental factors (i.e., nutrients and sediment) were not
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included in this analysis, which may largely promote the predictive ability of fitted CWM, our
results demonstrated that water depth played an important structuring role in macrophyte
community compositions. The dominant macrophyte species showed a predictable change
along water depth gradient, which acts as a filter sorting community average trait values and
thus functional strategies within communities. For this point, we can obtain some useful infor-
mation about the variations in macrophyte community structure from the maxent models
based on fitted CWM along environmental gradients, which would have important inspira-
tions for the conservation and management of freshwater ecosystems especially under condi-
tions of water level fluctuation.

In supporting our second hypothesis, the measured traits showed notably distinct impor-
tance in predicting species abundances. In present study, leaf dry mass content was the most
important trait determining species abundance when the other traits were held constant. Spe-
cies possessing higher leaf dry mass content usually showed more conserved strategies associ-
ated with lower growth rate, greater leaf life-span through extra structural strength, and
therefore long-lived leaves can accumulate a greater leaf mass and capture a lot of light in that

Fig 2. Results of a backward stepwise analysis of maximum entropy (maxent) model using
community-weighted mean trait (CWM) constraints. (a) Observed vs. predicted relative abundances of 17
macrophyte species over 42 plots using observed sixteen CWM traits. (b) Relationship between the amount
of explained variance of maxent model and the number of traits used in the model. Open circles represent
models that used observed CWM traits as constraints, while filled circles represent models that used fitted
CWM traits as constraints. Filled circles represent models in which traits were entered into the model in the
order at which they are listed from left to right, based on how well they could be predicted from water depth
gradient. The numeral codes showed in this chart indicates: 1-lamina thickness, 2-floating leaf, 3-perennial
growth form, 4-rooting depth, 5-stem diameter, 6-tuber, 7-leaf nitrogen content, 8-stem dry mass content,
9-leaf dry mass content, 10-ramet size, 11-leaf carbon/nitrogen ratio, 12-leaf carbon content, 13-specific leaf
area, 14-shoot height, 15-flowering duration, 16-mean Julian flowering dates. General linear models of
observed (c) and predicted (d) relative abundances of seven commonmacrophyte species presented in
Erhai Lake along water depth gradient. The predicted relative abundances used here were generated with
the maxent model using the seven community-weighted mean trait constraints that were best predicted from
water depth gradient.

doi:10.1371/journal.pone.0131630.g002
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way. This result suggested that macrophyte species with conservative strategies (e.g., greater
positive λ-values for high leaf dry mass content) become more abundant in freshwater environ-
ment. In support of this point, our recent studies indicated that macrophyte species favored
conservative strategies involved in carbohydrate metabolism in responses to eutrophication in
this studied lake [29]. Furthermore, mean Julian flower data and flowering duration were also
important in predicting species abundance. This result suggests that species flowering later and
then lasting longer time would become more abundant. For most marophyte species, clonal
growth is a favorable way of expansion and biomass accumulation in freshwater habitats [30],
while the processes of expansion and biomass accumulation would be slown down during flow-
ering. Macrophyte species flowering later can have longer clonal growth time for accumulating
abundance, and longer flowering duration can produce more seeds for the regenerations, both
of which make these species more abundant. However, whether species are perennials or annu-
als was least important trait determining species abundance. This result may largely attribute
to our sampling schemes, and we sampled only once during growth season of most macrophyte

Fig 3. Boxplots showing the differences in λ-values derived the maxent models along water depth gradient for the 16measured traits of
macrophyte species. The F and P values from linear regression analyses are shown. LT: lamina thickness; RD: rooting depth; Leaf [N]: leaf nitrogen
content; D: stem diameter; SDMC: stem dry mass content; LDMC: leaf dry mass content; FD: flowering duration; MJFD: mean Julian flowering date; SLA:
specific leaf area; Leaf [C]: leaf carbon content; SH: shoot height; Leaf [C/N]: leaf carbon/nitrogen ratio.

doi:10.1371/journal.pone.0131630.g003
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species (August to September in 2011). The relative importance of life history traits in deter-
mining local species abundance might be increase at larger spatial and temporal scales [30–32].

The relative importance of measured traits (e.g., tuber and leaf nitrogen content, Fig 2e and
2g) in determining species relative abundance varied significantly along water depth gradient,
partially supporting our third hypothesis. For these two traits, there were significant shifts in
the λ-values from positive in shallow water to negative in deep water. This result suggests that
macrophyte species with tuber organ and greater leaf nitrogen content would become more
abundant in shallow water, but would become less abundant in deep water. The presence of
tuber organ may enhance the regeneration of macrophyte species in shallow water, while not
necessarily be useful in deep water due to the limitation of low light conditions. Species with
high leaf nitrogen content usually show a high photosynthetic rate and fast growth and thus
lead to great abundance [33,34]. However, the ecological effects of high leaf nitrogen content
on macrophytes may be largely dependent on the water depths or basically light environment
in freshwater habitats [11,25,35]. Thus, species possessing favorable traits may become more
abundant in benign conditions while less abundant in harsh conditions.

In conclusion, maxent model can be highly robust (99.8%) in predicting the species relative
abundance of macrophyte with observed CWM traits as the constraints, while relative low with
CWM traits fitted from water depth gradient as the constraints. The measured traits showed
notably distinct importance in predicting species abundances, with lowest for perennial growth
form and highest for leaf dry mass content. For tuber and leaf nitrogen content, there were sig-
nificant shifts in the λ-values from positive in shallow water to negative in deep water. This
result suggests that macrophyte species with tuber organ and greater leaf nitrogen content
would become more abundant in shallow water, but would become less abundant in deep
water. Our study highlights how functional traits are distributed across gradients provide a
robust path towards to predictive community ecology.

Supporting Information
S1 Table. The mean values of 16 traits for the 17 occurred macrophyte species in the stud-
ied areas. Leaf [C] indicates leaf carbon content; Leaf [N] indicates leaf nitrogen content; Leaf
[C/N] indicates leaf carbon/nitrogen ratio. The types and units of traits were shown in Table 2.
The values of three ordinal traits (i. e, floating leaf, perennial growth form and tuber) were 1
(no) and 2 (yes).
(DOCX)
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