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Brain extraction is a critical pre-processing step in brain magnetic resonance imaging
(MRI) analytical pipelines. In rodents, this is often achieved by manually editing
brain masks slice-by-slice, a time-consuming task where workloads increase with
higher spatial resolution datasets. We recently demonstrated successful automatic
brain extraction via a deep-learning-based framework, U-Net, using 2D convolutions.
However, such an approach cannot make use of the rich 3D spatial-context information
from volumetric MRI data. In this study, we advanced our previously proposed U-Net
architecture by replacing all 2D operations with their 3D counterparts and created a 3D
U-Net framework. We trained and validated our model using a recently released CAMRI
rat brain database acquired at isotropic spatial resolution, including T2-weighted turbo-
spin-echo structural MRI and T2∗-weighted echo-planar-imaging functional MRI. The
performance of our 3D U-Net model was compared with existing rodent brain extraction
tools, including Rapid Automatic Tissue Segmentation, Pulse-Coupled Neural Network,
SHape descriptor selected External Regions after Morphologically filtering, and our
previously proposed 2D U-Net model. 3D U-Net demonstrated superior performance in
Dice, Jaccard, center-of-mass distance, Hausdorff distance, and sensitivity. Additionally,
we demonstrated the reliability of 3D U-Net under various noise levels, evaluated the
optimal training sample sizes, and disseminated all source codes publicly, with a hope
that this approach will benefit rodent MRI research community.

Significant Methodological Contribution: We proposed a deep-learning-based
framework to automatically identify the rodent brain boundaries in MRI. With a fully 3D
convolutional network model, 3D U-Net, our proposed method demonstrated improved
performance compared to current automatic brain extraction methods, as shown in
several qualitative metrics (Dice, Jaccard, PPV, SEN, and Hausdorff). We trust that this
tool will avoid human bias and streamline pre-processing steps during 3D high resolution
rodent brain MRI data analysis. The software developed herein has been disseminated
freely to the community.
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INTRODUCTION

Magnetic resonance imaging (MRI) is a commonly utilized
technique to noninvasively study the anatomy and function of
rodent brains (Mandino et al., 2019). Among the data pre-
processing procedures, brain extraction is an important step that
ensures the success of subsequent registration processes (Uhlich
et al., 2018). Automating brain extraction (a.k.a. skull stripping)
is particularly challenging for rodent brains as compared to
humans because of differences in brain/scalp tissue geometry,
image resolution with respect to brain-scalp distance, tissue
contrast around the skull, and sometimes signal artifacts from
surgical manipulations (Hsu et al., 2020). Additionally, rodent
brain MRI data is typically acquired at higher magnetic fields
(mostly > 7T), where stronger susceptibility artifacts and field
biases represent challenges to the rodent brain extraction process.
Further, most rodent MRI studies do not utilize a volume
receiver and therefore exhibit higher radiofrequency (RF) coil
inhomogeneity. For these reasons, the extraction tools that
work with human brains (Kleesiek et al., 2016; Fatima et al.,
2020; Wang et al., 2021) cannot be directly adopted for rodent
brain applications. In practice, rodent brain extraction is often
achieved by manually drawing brain masks for every slice,
making it a time-consuming and operator-dependent process.
Datasets with high through-plane resolution make manual brain
extraction a particularly daunting task. Therefore, a robust and
reliable automatic brain extraction tool would streamline the
pre-processing pipeline, avoid personnel bias, and significantly
improve research efficiency (Babalola et al., 2009; Lu et al., 2010;
Gaser et al., 2012; Feo and Giove, 2019; Hsu et al., 2020).

To date, the most prominent tools to address rodent
MRI brain extraction include Pulse-Coupled Neural Network
(PCNN)-based brain extraction proposed by Chou et al. (2011),
Rapid Automatic Tissue Segmentation (RATS) proposed by
Oguz et al. (2014), and SHape descriptor selected External
Regions after Morphologically filtering (SHERM) proposed by
Liu et al. (2020), as well as a convolutional deep-learning
based algorithm, 2D U-Net, proposed by Hsu et al. (2020).
While PCNN, RATS, and SHERM have demonstrated remarkable
success [detailed introduction and comparisons discussed in Hsu
et al. (2020)], their performance is subject to brain size, shape,
texture, and contrast; hence, their settings often need to be
adjusted per MRI-protocol for optimal results. In contrast, the
U-Net algorithm explores and learns the hierarchical features
from the training dataset, and provides a user-friendly and
more universally applicable platform (Ronneberger et al., 2015;
Yogananda et al., 2019).

As a specific type of convolutional neural network (CNN)
architecture (Krizhevsky et al., 2012), U-Net has proven
valuable in biomedical image segmentation (Ronneberger
et al., 2015; Yogananda et al., 2019). U-Net utilizes the
encoder/decoder structure that easily integrates multi-
scale information and has better gradient propagation
during training. Our previous 2D U-Net approach uses
2D convolutional kernels to predict brain boundaries on a
single slice basis. However, since the 2D framework only
takes a single slice as input and does not utilize information

across slice direction, it inherently fails to leverage context
from adjacent slices in a volumetric MRI dataset. To
improve upon and possibly outperform 2D U-Net, a 3D
U-Net framework using 3D convolutional kernels to predict
segmentation predictions on volumetric patches must be
explored (Çiçek et al., 2016).

In this work, we demonstrated the use of 3D U-Net
for brain extraction in high resolution 3D rat brain MRI
data. The whole network is implemented based on Keras
(Chollet, 2015) with TensorFlow (Martín et al., 2016) as the
backend. We trained and tested the 3D U-Net model for
brain extraction performance using a recently released CAMRI
rat brain database (Lee et al., 2021), including T2-weighted
(T2w) rapid acquisition with relaxation enhancement (RARE)
structural MRI (0.2 mm isotropic resolution) and T2∗-weighted
(T2∗w) echo-planar-imaging (EPI) functional MRI (0.4 mm
isotropic resolution). The 3D U-Net model was compared
with existing rodent brain extraction tools, including RATS,
PCNN, SHERM, and 2D U-Net. To benchmark the utility
of this approach to rodent MRI data of various quality, we
assessed 3D U-Net performance under various noise levels
and evaluated the optimal training sample sizes. It is our
hope that the information provided herein, together with
dissemination of source codes, will benefit the rodent MRI
research community.

MATERIALS AND METHODS

Dataset Descriptions
This study utilizes a recently disseminated CAMRI dataset (Lee
et al., 2021), available at https://doi.org/10.18112/openneuro.
ds003646.v1.0.0. The CAMRI dataset consisted of rats aged P80–
210 weighing 300–450 g across cohorts of three different rat
strains: Sprague-Dawley (n = 41), Long-Evans (n = 13), and
Wistar (n = 33); and both sexes: male (n = 65) and female
(n = 22). Detailed information about each cohort can be found
in Lee et al. (2021). Each subject contains a T2w RARE and
an T2∗w EPI, and resolutions were 0.2 mm isotropic and
0.4 mm isotropic, respectively. To train our U-Net model, we
first established a training dataset by randomly selecting 80%
of the T2w RARE and T2∗w EPI images in the CAMRI rat
database (69 subjects), leaving the remaining 20% of the data as
final performance testing dataset (18 subjects). In the training
process, we further randomly selected 80% of the data from the
training dataset (55 subjects). The remaining 20% of the data
from the training dataset was used to validate the training of
U-Net model (14 subjects). We repeated the training-validation
process five times to avoid potential bias in data splitting. For each
U-Net algorithm, the U-Net model with the highest averaged
validation accuracy was then used as the final model for testing
(Supplementary Figure 2).

U-Net
The 3D U-Net framework is shown in Figure 1. The contracting
path includes 32 feature maps in the first convolutional block,
64 in the second, then 96, 128, and 256 in the third, fourth,
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and fifth, respectively. Compared to the configuration described
by Ronneberger et al. (2015), we replaced the cross-entropy loss
function with the Dice coefficient loss (Wang et al., 2020) to
free the optimization process from a class-imbalance problem
(Milletari et al., 2016). Since we evaluated T2w RARE and
T2∗w EPI data, we performed spatial normalization for distinct
resolutions. For spatial normalization, we resampled all images
into the same spatial resolution at 0.2 mm × 0.2 mm × 0.2 mm
using nearest-neighbor (NN) interpolation. The NN was chosen
because it is most suitable for binary images (brain mask).
In U-Net training, the voxels belonging to the rat brain were
labeled as 1 and other voxels (background) were labeled as 0.
Our network was implemented using Keras (Chollet, 2015) with
TensorFlow (Martín et al., 2016) as the backend. The initial
learning rate and batch size were 1e−3 and 16, respectively.
We used Adam (Kingma and Ba, 2015) as the optimizer and
clipped all parameter gradients to a maximum norm of 1. During
the training process, we randomly cropped 64 × 64 × 64
sized patches from all directions as the input. Patches were
chosen to be 64 × 64 × 64 to maintain maximum patch size
and cover as much of the rat brain as possible (∼2,000 mm3)
without requiring excessive computational demand. During the
inference process, the extracted and overlapped patches were
input into the trained model with a 16 × 16 × 16 stride. The
overlapped predictions were averaged and then resampled back
to the original resolution using nearest-neighbor interpolation
to generate final output. We also trained (1) 2D U-Net with
patch size of 64 × 64 (2D U-Net64) and a 16 × 16 stride
(Hsu et al., 2020) and (2) 3D U-Net with patch size of
16 × 16 × 16 and a 4 × 4 × 4 stride (3D U-Net16) to compare
the segmentation performance with the proposed 3D U-Net of
patch size 64 × 64 × 64 and a 16 × 16 × 16 stride (3D
U-Net64).

Reproducibility of 3D U-Net Performance
To evaluate the 3D U-Net64 performance reproducibility, we
reexamined its accuracy under two conditions: (1) Adding
different Gaussian noise in the testing images, and (2) using a
different number of rats from the original cohort in the training
process. Specifically, as for the first validation analysis, we added
Gaussian white noise in the normalized testing images with
variance from 5 × 10−4 to 5 × 10−5 with step 5 × 10−5

to investigate the segmentation performance. For each testing
image, the signal-to-noise ratio (SNR) was estimated to represent
the image noise levels by calculating the ratio of signal intensities
in the area of interest and the background (Supplementary
Figure 1). We estimated the average signal by using two
spherical volumes of interest (VOI) with diameter = 1 mm
in bilateral striatum. We also put two VOIs at background to
extract noise in standard deviation of signal. To evaluate the
optimal subject number in 3D U-Net64 training process, we
randomly selected 5–55 training subjects in increments of 5
subjects from the total 55 training datasets, and 2, 8, and 14
validation subjects from the total 14 validation datasets. This
random selection was repeated 5 times to avoid bias. We then
calculated accuracy of the derived brain masks across each
testing dataset.

Evaluation Methods
To demonstrate the reliability of our proposed method, we
compared our 3D U-Net method with the most prominently used
methods for rat brain segmentation: RATS (Oguz et al., 2014),
PCNN (Chou et al., 2011), SHERM (Liu et al., 2020), and 2D
U-Net (Hsu et al., 2020). All images were bias-corrected for field
inhomogeneities using Advanced Normalization Tools (N4ITK)
(Avants et al., 2009; Tustison et al., 2010). The parameters in each
method were chosen according to the best parameters suggested
in the literature. For the RATS algorithm, the intensity threshold
(T) was set to the average intensity in the entire image and
the brain size value (Vt) was set to 1,650 mm3 (Oguz et al.,
2014). For the PCNN algorithm, the brain size range was set to
1,000–3,000 mm3 (Chou et al., 2011). For SHERM, the brain size
range was set to 500–1,900 mm3 (Liu et al., 2020). The convexity
threshold in SHERM, defined as the ratio between the volume of
a region and that of its convex hull, was set to 0.5.

To quantitatively evaluate the segmentation performance
of 3D U-Net64, 2D U-Net64, 3D U-Net16, RATS, PCNN,
and SHERM, we estimated the similarity of the generated
brain segmentation results compared to manual brain masks
(ground truth) drawn by an anatomical expert according
to the Paxinos and Watson (2007) rat atlas. The manual
segmentation was performed at the original MRI resolution
before data resampling to 0.2 mm × 0.2 mm × 0.2 mm for
U-Net training. Evaluations included: (1) volumetric overlap
assessments via Dice, the similarity of two samples; (2) Jaccard,
the similarity of two samples where Dice doesn’t satisfy the
triangle inequality; (3) positive predictive value (PPV), the rate
of true positives in prediction results; (4) sensitivity (SEN),
the rate of true positives in manual delineation; (5) center-of-
mass distance (CMD), the Euclidean distance to the center of
mass of two samples; and (6) a surface distance assessment by
Hausdorff distance, the distance of two samples. The following
definitions were used for each: Dice = 2(|A∩ B|)

/
(|A| + |B|),

Jaccard = (|A∩ B|)
/

(|A∪ B|), PPV = (|A∩ B|)
/

B, SEN =
(|A∩ B|)

/
A, and Hausdorff = max

{
h (A, B) , h(B, A)

}
and

h(A, B) =
max

{
min d(a, b)

}
a ∈ A b ∈ B

where A denotes the voxel set

of the manually delineated volume, B denotes the voxel set
of the predicted volume, and d(a, b) is the Euclidian distance
between a and b. The Hausdorff distance was only estimated
in-plane to avoid confounds from non-uniformly sampled
data. The maximal Hausdorff distance (i.e., worst matching)
across slices for each subject was then used for comparison.
Superior performance was indicated by higher Dice, Jaccard,
PPV, and SEN, and lower Hausdorff values. We also reported
the computation time on a Linux-based [Red Hat Enterprise
Linux Server release 7.4 (Maipo)] computing system (Intel E5-
2680 v3 processor, 2.50 GHz, 256-GB RAM) for each method.
The computation times reported do not include pre-processing
steps (i.e., signal normalization, image resampling, and bias
correction). Paired t-tests were used for statistical comparisons
between different algorithms, and two-sample t-tests were used
to compare T2w RARE and T2∗w EPI images in each algorithm.
The threshold for significance was set to the alpha level (p < 0.05).
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FIGURE 1 | 3D U-Net architecture. Boxes represent cross-sections of square feature maps. Individual map dimensions are indicated on lower left, and number of
channels are indicated below the dimensions. The leftmost map is a 64 × 64 × 64 normalized MRI image patched from the original MRI map, and the rightmost
represents binary ring mask prediction. Red arrows represent operations specified by the colored box, while black arrows represent copying skip connections. Conv,
convolution; BN, batch normalization; ReLU, rectified linear unit.

RESULTS

Figure 2 illustrates the performance of our trained 3D U-Net64
algorithm compared to 2D U-Net64, 3D U-Net16, RATS, PCNN,
and SHERM for rat brain segmentation in the CAMRI dataset.
Across all measures except PPV (which had no significant
differences), 3D U-Net64 showed superior T2w RARE brain
segmentation performance over other existing methods (RATS,
PCNN, and SHERM). Notably, although all the U-Net-based
approaches produced ideal results with Dice > 0.90, the 3D
U-Net64 showed significantly higher accuracy (p < 0.05) versus
the remaining U-Net approaches (2D U-Net64 and 3D U-Net16).
The high PPV (>0.90) and low SEN (<0.90) from other
existing methods (RATS, PCNN, and SHERM) indicate that brain
segmentation was underestimated. In contrast, the low PPV (0.91
on anisotropic T2w RARE and 0.87 on anisotropic T2∗w EPI) and
high SEN (>0.95) from 2D U-Net16 suggest an overestimation.
The significantly lower Hausdorff distance (4.29 on T2w RARE
and 4.71 on T2∗w EPI) and CMD (0.24 on T2w RARE and 0.25
on T2∗w EPI) in 3D U-Net64 further supports its superior ability
to match the ground-truth. Notably, all U-Net methods provide
excellent (Dice > 0.95) or high (Dice > 0.90) accuracy on T2w
RARE and T2∗w EPI images. All methods showed significant
lower Dice in T2∗w EPI images as compared to T2w RARE
images (p < 0.05). Specifically, the 3D U-Net64 still reached
outstanding T2∗w EPI brain segmentation performance metrics
(Dice, Jaccard, PPV, and SEN > 0.95), whereas RATS, PCNN,
and SHERM had lower T2∗w EPI brain segmentation metrics
(Dice, Jaccard, and SEN < 0.90). The compromised performance
in the T2∗w EPI image compared with T2w RARE indicates
that these methods are less effective at handling data with lower
spatial resolution. Further, 3D U-Net64 showed high accuracy
(Dice > 0.95) in a validation study (Supplementary Figure 2).
Together, these results suggest that 3D U-Net64 is a reliable and
reproducible approach for rat brain segmentation.

Figures 3, 4 illustrate the best and worst Dice score cases
on T2w RARE images from the CAMRI dataset using all
six methods. In the best case, both 2D U-Net64 and 3D
U-Net16 provided nearly perfect segmentation (Dice > 0.98), and
although the RATS, PCNN, and SHERM algorithms also showed
high performance (Dice = 0.95), the inferior brain boundaries
were less accurate. In the worst case, all U-Net methods still
achieved a satisfactory segmentation with Dice > 0.90, but the
RATS, PCNN, and SHERM algorithms failed to identify the
brainstem, olfactory bulb, and inferior brain regions where the
MRI signal was weaker.

Figure 5 illustrates the best and worst Dice score cases on
T2∗w EPI from the CAMRI dataset using all six methods. In the
best case, all U-Net methods provide nearly perfect segmentation
(Dice > 0.98). The RATS (Dice = 0.89), PCNN (Dice = 0.93),
and SHERM (Dice = 0.83) algorithms showed acceptable
segmentation performance but underestimated inferior brain
regions. In the worst case, all U-Net methods still achieve a
satisfactory segmentation with Dice > 0.90, but the RATS,
PCNN, and SHERM algorithms failed to accurately identify
the inferior brain boundaries and incorporated excessive tissue
outside the brain (Dice < 0.85).

We performed two validation analyses to evaluate the
reliability of 3D U-Net segmentation performance. First, we
added Gaussian noise to each testing image to evaluate 3D
U-Net64 brain segmentation under different noisy environments.
Figure 6 shows that the SNR and 3D U-Net64 segmentation
performance decrease with increasing Gaussian white noise
variance. The original mean SNR is about 26 for both T2w
RARE and T2∗w EPI data. When the SNR > 10 (i.e., reduced
to 38% of original SNR) in T2w RARE images and SNR > 14
(i.e., reduced to 54% of original SNR) in T2∗w EPI images, the
segmentation accuracy could still reach an excellent Dice > 0.95.
Supplementary Figures 3, 4 illustrate the best and worst
examples on original T2w RARE and T2∗w EPI images.
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FIGURE 2 | Brain segmentation performance metrics for 3D U-Net64, 2D U-Net64, 3D U-Net16, RATS, PCNN, and SHERM on the CAMRI T2w RARE (upper row)
and T2*w EPI (lower row) data. Average value is shown above each bar. Two-tailed paired t-tests were used for statistical comparison between 3D U-Net64 with
other methods (*p < 0.05, **p < 0.01, and *** p < 0.001).

FIGURE 3 | Best (upper panel) and worst (lower panel) segmentation comparisons for T2w RARE images. Selection was based on the highest and lowest mean
Dice score (listed below the brain map) averaged over the six methods (3D U-Net64, 2D U-Net64, 3D U-Net16, RATS, PCNN, and SHERM). Anterior and inferior
slices are more susceptible to error in RATS, PCNN, and SHERM, whereas all U-Net algorithms yield high similarly to the ground truth (all Dice > 0.90).

Next, we evaluated the performance of 3D U-Net64 with
regards to the model-training and model-validating sample sizes
used during the model training process. We re-trained the
3D U-Net64 model with randomly selected training subgroups.
Compared to the “standard model” trained on 55 subjects and
validated on 14 subjects, the model with training rats < 25

showed significantly decreased accuracy for T2w RARE images,
and the model with training rats < 50 showed significantly
decreased accuracy for T2∗w EPI images (Figure 7). However,
it is worth noting that the model still reached excellent and
stable segmentation performance (Dice > 0.95) with training
subjects ≥ 10 for both T2w RARE and T2∗w EPI MRI data.
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FIGURE 4 | 3D rendering of identified brain masks on the best and worst-case subjects for the T2w RARE rat dataset. Selection was based on the highest and
lowest mean Dice score. Specifically, in the worst-case subject, 2D U-Net64, 3D U-Net16, and RATS missed the olfactory bulb, whereas PCNN and SHERM
overestimated the olfactory bulb and incorporated surrounding frontal regions. Additionally, RATS, PCNN, and SHERM are missing significant portions of the
cerebellum and brainstem (gray arrows). 3D U-Net64 and 3D U-Net32 produces excellent brain segmentation on both best and worst-case subjects.

There were no significant differences in each training sample
selection across varied validation sample sizes in T2w RARE and
T2∗w EPI image segmentation, suggesting that a large number of
model-validation subjects is perhaps unnecessary.

DISCUSSION

U-Net is a neural network that is mainly used for classification
and localization (Ronneberger et al., 2015; Çiçek et al., 2016). In
this study, we proposed a 3D U-Net architecture for automatic
rat brain segmentation. Our results indicate that our proposed
brain extraction framework based on 3D U-Net64 represents a
robust method for the accurate and automatic extraction of rat
brain tissue from MR images.

In this study where isotropic T2w RARE and T2∗ EPI data
were segmented, RATS, PCNN, and SHERM still performed
quickly and accurately (Dice > 0.8). 3D U-Net64 showed superior
performance (average Dice = 0.99) over these methods and
also outperformed our previously proposed 2D U-Net64 [Hsu
et al., 2020; please also refer to Hsu et al. (2020) for detailed
discussion about RATS, PCNN, and SHERM]. The 3D U-Net

algorithm remains “parameter free” in the segmentation process,
as all parameters are automatically learned from the data itself.
It should be noted that the U-Net architecture generally requires
longer processing times and needs a higher level of computational
power for model-training. For single patch inference, 2D U-Net
takes less time than 3D U-Net. However, the patch size of 3D
U-Net64 is one more dimension than that of 2D U-Net64, so
to obtain the whole volume prediction, 3D U-Net needs less
inference time and less time overall.

3D U-Net is a variant of 2D U-Net where the inputs are
3D volume (Çiçek et al., 2016). It has the same encoder and
decoder structure as in 2D U-Net. However, the encoder uses 3D
convolution followed by 3D max-pooling to extract the features
and the decoder uses 3D upsampling to reconstruct the annotated
images (Çiçek et al., 2016). The key advantage of 3D U-Net is
its ability to utilize interslice contextual information. The 3D
U-Net16 model tends to have higher SEN but lower PPV than
the 2D U-Net64 model, as it misclassifies more background
areas as brain (i.e., has more false positives). In other words,
2D U-Net64 may achieve higher precision because it makes
fewer false positive errors. Although 3D U-Net16 can extract 3D
context from the additional dimension that 2D U-Net64 lacks, its
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FIGURE 5 | Best and worst segmentation comparisons for T2*w EPI images. Selection was based on the highest and lowest mean Dice score (listed above the
brain map) averaged over the six methods (3D U-Net64, 2D U-Net64, 3D U-Net16, RATS, PCNN, and SHERM). Posterior and inferior slices are more susceptible to
error in RATS, PCNN, and SHERM, whereas all U-Net algorithms are more similar to the ground truth (all Dice > 0.90).

original 2D dimension resolution is also lost which means that
the receptive field is decreased. Therefore, 2D U-Net64 achieves
better performance than 3D U-Net16.

To illustrate the reliability of our proposed 3D U-Net64
architecture, we examined its accuracy under two conditions:
conducting different Gaussian noise in the testing images and
using a different number of rats from the original cohort in the
training process. The results highlight the stability and robustness
of 3D U-Net64 in segmenting the rat brain in both isotropic T2w
RARE and T2∗w EPI data. It is encouraging to observe excellent
3D U-Net64 performance (Dice > 0.95), even when the original
image SNR is halved. Such performance is comparably higher
than the conventional non-UNet-based methods using original
SNR (RATS, PCNN, and SHERM). This demonstrates the noise-
resistant capacity of 3D U-Net64 and suggests this approach may

handle MRI data over a wide range of SNR quality. In addition,
we also retrained the 3D U-Net64 model using a different number
of subjects from the original cohort in the training process. This
information is useful since the number of samples in a dataset
are usually limited in rodent MRI studies. The Dice coefficient
increases and stabilizes rapidly with >10 training subjects for
both T2w RARE and T2∗w EPI. This finding demonstrates the
utility of 3D U-Net64 with a limited number of training datasets.

There are several limitations of the 3D U-Net architecture.
First, deep learning is a data driven classification, so segmentation
accuracy highly relies on the training dataset. Because we trained
our 3D U-Net algorithm by using only T2w RARE and T2∗w
EPI images in rats, additional training and optimization will be
needed to segment brain images with different contrast (e.g.,
T1-weighted images). Second, patch-based training could lose
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FIGURE 6 | Segmentation performance of 3D U-Net64 with different image SNR. For each T2w (left) and T2*w image (right), we added noise with random Gaussian
distribution in the normalized testing images with variance from 5 × 10–5 to 5 × 10–4 and increments of 5 × 10–5 to investigate the segmentation performance of
3D U-Net64. Black dots indicate the averaged SNR and Dice from the original images without adding noise. The horizontal dot line in left panel indicates a Dice of
0.95. Error bar represents the standard error of Dice and SNR.

FIGURE 7 | Segmentation performance of 3D U-Net64 across different model-training and model-validating sample sizes. The 3D U-Net64 was trained from
randomly selected subgroups. In the training process, we randomly selected 5–55 training subjects in increments of 5 subjects from the total 55 training dataset,
and 2, 8, and 14 validation subjects from the total 14 validation dataset. The random selection was repeated 5 times to avoid bias. Statistical analyses compared
Dice values under various conditions against the Dice values obtained from 55 training rats and 14 validation rats (one tailed paired t-test, *p < 0.05,
+0.05 < p < 0.1). No significant differences were found between various model-validation sample selections within each model-training data selection for both T2w
RARE and T2*w EPI data (repeated measurement ANOVA).

information/segmentation consistency or overfit the data if the
patch size and number of training samples are imbalanced.
The training sample imbalance may be alleviated by using
randomly cropped patches to enhance sample diversity and
prevent overfitting. Loss of information could be addressed by
using a larger patch size. In this study, the image size of our
whole rat brain T2w RARE data is 144 × 144 × 64 with
resolution of 0.2 mm. Accordingly, we chose the patch size
to be 64 × 64 × 64 (∼2,097 mm3), which could cover a
significant portion of the rat brain (∼2,000 mm3). This patch
size was limited by the slice dimension of the imaging matrix.
Considering computation efficiency, we chose this patch size to
also balance GPU demands for the users of this tool. By extracting

overlapped patches with a 16 × 16 × 16 stride and using the
averaged predictions for the final segmentation, we reduced
segmentation inconsistency between neighboring patches and
mitigated information loss. Our results support the use of a
large patch size as we demonstrated superior segmentation
performance at 64 × 64 × 64 patch in 3D U-Net than the
16 × 16 × 16 patch. Third, deep learning methods require
substantial amounts of manually labeled data (Verbraeken et al.,
2020), and their performance can be affected by similarities
between the training dataset and the data entering the U-Net
brain segmentation process. While more training datasets of
varying quality may further improve our current 3D U-Net
model, our validation analysis suggested reliable segmentation
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performance can be reached with ≥10 training subjects. This
indicates that the model can be established on a laboratory-
or scanner-level basis. Next, our current 3D U-Net architecture
uses a patch size of 64 × 64 × 64. As discussed above, this
limits the testing image to an image matrix size of at least
64 × 64 × 64. Image resampling to a finer resolution is required
if the image matrix size is smaller than 64 × 64 × 64. For a
dataset at lower spatial resolution, a patch size of 16 × 16 × 16
as shown in this manuscript could be considered, although
inferior performance may be expected. Alternatively, the source
codes provided herein can be modified to adapt other patch
sizes (such as 32 × 32 × 32) per the user’s discretion. For
datasets with highly anisotropic resolution (e.g., high in-plane
resolution with very few slices), because our results show the
2D U-Net (64 × 64) significantly outperformed than the 3D
U-Net (16 × 16 × 16), we suggest that the users consider 2D
U-Net as described in Hsu et al. (2020). Finally, it should be
noted that several advances in U-Net have been proposed, and
thus the approach described herein may be improved further
(e.g., nnU-Net, cascaded U-Net, U-Net++, double U-Net, and
recurrent residual U-Net [R2U-Net]) (Alom et al., 2018; Zhou
et al., 2018; Liu et al., 2019; Jha et al., 2020; Isensee et al., 2021).
Additionally, several other deep learning-based methods, such
as deep attention fully convolutional neural network (FCN) and
Mask region-based convolutional neural network (R-CNN), have
shown great promises for human medical image segmentation
(Liu et al., 2018; Mishra et al., 2018; Chiao et al., 2019; Lei
et al., 2020). Although one could fine-tune parameters and apply
domain adaption strategies (Ghafoorian et al., 2017; Gholami
et al., 2018) to attempt the use of human brain segmentation
tools in rodents, no literature has documented success with
this approach to the best of our knowledge, likely due to the
differences in tissue geometry and MRI contrast features between
human and rodent brains (Van Essen et al., 2013; Ma et al., 2018;
Grandjean et al., 2020; Lee et al., 2021). Our study describes
a step-by-step pipeline for extracting rat brain from isotropic
MRI data. We focused primarily on 3D vs. 2D U-Net (Hsu
et al., 2020) as well as comparisons against other established
techniques developed specifically for rodent brain MRI (Chou
et al., 2011; Oguz et al., 2014; Liu et al., 2020). Although additional
comparisons with recently developed deep learning-based brain
segmentation tools are beyond the scope of the present study,
adapting those tools for rodent applications and establishing
comprehensive evaluations should bring significant impact to the
field. It is our hope that the work presented herein will facilitate
such studies in the future.

CONCLUSION

We proposed a 3D U-Net model, an end-to-end deep learning-
based segmentation algorithm for brain extraction of 3D high
resolution volumetric brain MRI data. The method is fully
automated and demonstrates accurate brain mask delineations
for isotropic structural (T2w RARE) and functional (T2∗w EPI)
MRI data of the rat brain. The method was compared against
other techniques commonly used for rodent brain extraction

as well as 2D U-Net. 3D U-Net shows superior performance
in qualitative metrics including Dice, Jaccard, PPV, SEN, CMD,
and Hausdorff distance. We believe this tool will be useful to
avoid parameter-selection bias and streamline pre-processing
steps when analyzing high resolution 3D rat brain MRI data. The
3D U-Net brain extraction tool can be found at https://camri.org/
dissemination/software/.
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