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Abstract

Our work focuses on the stability, resilience, and response to perturbation of the bacterial

communities in the human gut. Informative flash flood-like disturbances that eliminate

most gastrointestinal biomass can be induced using a clinically-relevant iso-osmotic agent.

We designed and executed such a disturbance in human volunteers using a dense longitudi-

nal sampling scheme extending before and after induced diarrhea. This experiment has

enabled a careful multidomain analysis of a controlled perturbation of the human gut micro-

biota with a new level of resolution. These new longitudinal multidomain data were analyzed

using recently developed statistical methods that demonstrate improvements over current

practices. By imposing sparsity constraints we have enhanced the interpretability of the

analyses and by employing a new adaptive generalized principal components analysis,

incorporated modulated phylogenetic information and enhanced interpretation through

scoring of the portions of the tree most influenced by the perturbation. Our analyses lever-

age the taxa-sample duality in the data to show how the gut microbiota recovers following

this perturbation. Through a holistic approach that integrates phylogenetic, metagenomic

and abundance information, we elucidate patterns of taxonomic and functional change that

characterize the community recovery process across individuals. We provide complete

code and illustrations of new sparse statistical methods for high-dimensional, longitudinal

multidomain data that provide greater interpretability than existing methods.

Author summary

Complex dynamics of microbial communities underlie their essential roles in health and

disease. To maintain or restore healthy states, we must better understand the nature and

basis of stability in the gut microbiota, under normal and perturbed conditions. Stability,
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resilience, and response to perturbation are central topics in community ecology. Extreme

perturbations such as near-complete loss of biomass from a system can reveal factors that

influence community structure. Recognizing the return to baseline diversity and abun-

dances of biomarkers in community-wide recovery after a disturbance enables us to

understand the basic pillars of resilience that contribute to human health. We have

designed a densely sampled longitudinal experiment in human volunteers using transient

non-inflammatory diarrhea as the perturbation. In order to uncover the essential players

in the recovery process, we have tailored new advances in ribosomal sequence variant

detection and sparse multidomain analytics that incorporate phylogenetic structure. We

show sparse meaningful multidimensional projections that exhibit the essential features in

resilient recovery. This work shows how a carefully designed longitudinal study combin-

ing denoised ribosomal RNA sequence variants and metagenomic data can inform the

taxa and processes involved in the recovery from loss of large proportions of intestinal

biomass.

Introduction

The complex, dynamic microbial communities of the human body play essential roles in health

and disease. For example, the human gut microbiota contributes to digestion, defense against

pathogens, biosynthesis of essential molecules, metabolic homeostasis, and regulation of the

immune system [1–3], but has also been implicated in malnutrition, obesity, diabetes, heart

disease, cancer, and autoimmune diseases [4–10]. To maintain or restore healthy states, we

must better understand the nature and basis of stability in the gut microbiota, under normal

and perturbed conditions.

Stability, resilience, and response to perturbation are central topics in community ecology

[11]. Extreme perturbations of a system, such as near-complete loss of biomass, are studied

both to reveal factors that influence community structure, and as important phenomena in

their own right. For example, Fisher et al. (1982) [12] examined the response of a desert creek

ecosystem to flash flooding, with results that matched some but not all of Odum’s theoretical

expectations about ecological succession [13]. Particular findings included a return to baseline

values of community-wide measures such as diversity indices even while individual taxa

were continuing to recover from the disturbance. They also found that the specific characteris-

tics of organisms (e.g., the rapid post-flood emergence of motile diatoms buried in sediment,

the existence of a nonaquatic adult dipteran stage that was not vulnerable to washout) influ-

enced community composition during recovery in ways that were not evident from the study

of unperturbed intervals [12].

As part of an ongoing study of human microbiota stability and resilience, we created a flash

flood-like disturbance in the human gut by inducing acute, transient non-inflammatory diar-

rhea using a common clinically-relevant iso-osmotic agent, thereby eliminating the vast major-

ity of gastrointestinal biomass. Induced, iso-osmotic diarrhea (IIOD) differs qualitatively from

the less extreme and more selective, inhibitory and stimulatory action of antibiotics [14] and

of diet supplementation [15, 16] that have more frequently been investigated as disturbances

of the gut microbiota. Comparison of different types of perturbation is necessary to under-

stand whether the traits of organisms or communities that affect resilience are specific to

each type of perturbation, or act more generally. In addition, understanding the effects of

IIOD on the gut microbiota has practical importance because it is a common clinical proce-

dure (approximately 14 million persons in the United States were subjected to this disturbance
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in 2013 as preparation for colonoscopy [17]). Furthermore, studying the effects of diarrhea per
se on the gut microbiota is relevant for our understanding of infectious diarrheal disease,

which remains a major cause of mortality worldwide [18].

Several previous studies have investigated the effects of induced diarrhea on the human gut

microbiota using 16S rRNA gene surveys that provide a more complete representation of the

community than the older culture-based techniques [19]. Most studies recruited participants

who experienced both induced diarrhea and colonoscopy for screening or diagnostic purposes

[20–22], one study examined induced diarrhea without colonoscopy in healthy subjects [23]

and one study induced less extreme diarrhea over several days intended to represent the physi-

cal effects of infectious diarrhea in the absence of an infectious agent [24]. Sampling strategies

varied considerably between these studies, but none collected samples with sufficient fre-

quency before or after the induced diarrhea to assess what day-to-day changes might be

expected in the absence of deliberate perturbation. Furthermore, samples representing the per-

turbed state were separated by at least one week from any follow-up samples, so a detailed time

course of gut microbiota recovery could not be investigated in these studies. We designed our

sampling regime both to compare the effect of IIOD to the routine temporal variability of the

gut microbiota in the same subject and to assess the timecourse of community recovery after

IIOD.

Some recent studies of the human gut microbiota have continued to rely on 16S rRNA gene

surveys alone [25, 26], but it is increasingly common to combine such surveys with additional

high throughput, culture independent methods, such as metagenomic ‘shotgun’ sequencing

[27, 28], or metabolomics [29, 30]. While all these methods provide a tremendous amount of

information about microbial communities in their natural state, they present new and differ-

ent challenges for data analysis and interpretation. We take the opportunity of analyzing our

new human gut microbiota dataset to highlight useful recent advances in statistical methods

which have yet to become widely adopted in microbiome studies.

Two related challenges recognized soon after the application of next-generation sequencing

to 16S rRNA gene surveys are the high dimensionality of the data (hundreds or thousands 16S

rRNA sequence variants identified per sample) and the need to distinguish sequencing errors

from genuine biological variation. A common response to both issues has been the application

of ad hoc clustering methods that sweep both biological variants and error-containing

sequences into bins defined by a fixed similarity threshold (known as Operational Taxonomic

Units or OTUs); such an approach loses information by obscuring the existence of sequence

variants that may represent ecologically distinct microbial strains [31]. In contrast, an explicit

data-derived error model of Illumina amplicon sequencing allows likely ribosomal sequence

variants (RSVs) to be distinguished both from each other and from errors, with a resolution as

fine as single nucleotide differences, as demonstrated by the recent DADA2 package [32].

Once the sequence data are represented as an abundance matrix, with samples as rows and

RSVs as columns, they become amenable to statistical scrutiny. However, these data present a

unique set of methodological challenges; in response we present solutions based on adapta-

tions of existing techniques or the introduction of new techniques. The first central challenge

is high-dimensionality. After preliminary preprocessing, we have 419 samples and have mea-

sured 2611 RSVs and 2798 genes across these samples. Traditional methods can become

unreliable and uninterpretable in this regime, where there are more measured features than

samples. A second difficulty is interpretation in terms of phylogenetic units during analysis.

There are few options for ordination that account for the known evolutionary relatedness

between RSVs, and these methods are generally inflexible. However, incorporation of this

structure leads to more informative results. Finally, standard techniques are not well-suited to

simultaneous study of multiple data sources. Experiments that collect multidomain data on
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the same samples provide more interesting views of samples, by describing them from several

angles. When such complementary data are available, it becomes interesting to characterize

covariation across sources [33]. At present, there are relatively few methods designed for this

purpose.

To address these challenges, we repeatedly invoke a few key statistical principles. The first is

that statistical methods can be improved by explicitly encoding known structure, for example,

through informative priors or clever featurization. This principle motivates two methods that

we introduce in this work—adaptive generalized principal components analysis (agPCA) [34,

35] and tree-based sparse linear discriminant analysis (LDA). By guiding statistical methods

with domain knowledge—for example, about the phylogenetic relatedness of RSVs—we can

typically obtain more useful results. A second principle is that ℓ1-regularization can address

high-dimensionality in a way that facilitates interpretation. Indeed, regularization is founda-

tional in modern high-dimensional statistics, and among regularization methods, ℓ1 con-

straints allow for the most convenient descriptions, because they induce sparsity [36].

“Sparsity” in this context means that a limited number of features, for us, either RSVs or gene

ontology (GO) terms, are picked out as important for explaining the structure in the data. This

form of regularization is used in both our tree-regularized supervised LDA and unsupervised

sparse canonical correlation analysis (sCCA).

By implementing an intensive longitudinal sampling scheme that extended well before and

after IIOD, we sought to place this perturbation to the human gut microbiota in the context of

routine temporal variability. We characterized both the composition and functional potential

of the gut community in eight individuals, analyzing the data with these new statistical meth-

ods and demonstrated improvements over current practice. Specifically, we pursued the fol-

lowing study aims: 1) determine whether and how quickly the gut microbiota demonstrates

resilience after an IIOD perturbation, 2) elucidate patterns of taxonomic and functional

change that characterize the community recovery process across individuals, and 3) innovate

and apply statistical methods for high-dimensional, longitudinal multidomain data that pro-

vide greater interpretability than existing methods.

Materials and methods

Ethics statement

The research was approved by an Administrative Panel for the Protection of Human Subjects

(Institutional Review Board) of Stanford University (protocol 25268). All subjects were prop-

erly informed of the risks and benefits of this study, and then signed an approved, written con-

sent form.

Experimental design

An unequally spaced time point design for longitudinal data with perturbations was created

according to recommendations in the statistical design literature [37, 38].

Demographic and life history factors such as gender, race and BMI, often used to stratify

human populations in epidemiological studies generally have only small effects on the gut

microbiota [39]. Note that a within-subject comparison of perturbed and unperturbed samples

was possible because our longitudinal sampling design establishes the baseline temporal vari-

ability; insufficient sampling would increase the risk of mistaking routine temporal variability

for a treatment effect. We show simulations that prove that crossover longitudinal sampling

with baseline computations are more powerful than parallel designs in the supporting infor-

mation (S5 and S6 Figs).
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The response of the human gut microbiota to IIOD was evaluated by collecting fecal sam-

ples from eight healthy participants for approximately ten weeks before and ten weeks after a

one-day IIOD event. IIOD is commonly used to clear the bowel prior to colonoscopy; the per-

turbation in this study exactly reflects a commonly-used clinical protocol for bowel prepara-

tion. On the morning of the perturbation, participants were instructed to drink *300 mL of a

solution (GoLytely) containing polyethylene glycol (PEG) and electrolytes every 10 minutes

(up to 4L total) until their diarrhea was clear and watery. Samples were requested once per

week every week, except during the week before and the week after IIOD when daily samples

were requested. Five consecutive daily samples were also collected at least 6 weeks prior to

IIOD. DNA was extracted from the stool samples and used for amplicon sequencing of the V4

region of the 16S rRNA gene as well as ‘shotgun’ metagenomic sequencing. The data were ana-

lyzed to reveal community composition and functional profiles, in an attempt to characterize

the immediate response to IIOD, and to assess long-term effects of the perturbation.

Participants and sampling protocol

Healthy nonpregnant adults were recruited from the Stanford community, excluding individ-

uals with chronic disease, hospitalization or antibiotic use in the previous 6 months, immuni-

zations or international travel in the previous 4 weeks, or routine use of any prescription

medication except birth control or hormone replacement therapy. Characteristics of the eight

participants who completed the sampling protocol are summarized in Table 1. Participants

collected *2g stool samples at home, which were frozen immediately without preservative in

home freezers. Samples were transferred without thawing to −80˚C storage in the laboratory

approximately every 3 weeks.

A total of 419 fecal samples were collected; the timing of samples relative to IIOD for each

participant is shown in Fig 1. Post-disturbance sampling began with the first bowel movement

after IIOD in all subjects, which ranged from 1–3 days after IIOD. Some intended daily sam-

ples were not collected because participants did not produce stool that day.

Sample processing and DNA extraction

Samples were thawed at 4˚C to a semi-solid state and *250mg aliquots were transferred to

wells of the PowerSoil -htp 96 Well Soil DNA Isolation Kit (MoBio). Extraction followed the

manufacturer’s centrifugation protocol, with the following modifications: stool tubes were

thawed in small batches to minimize time unfrozen, the deepwell extraction plate was cooled

on dry ice during sample loading, and extraction plates were returned to −80˚C for at least 1

hour after loading to ensure consistent freeze-thaw cycles across all samples. Bead solution and

C1 solution were added upon removal from the freezer to begin extraction with a 10 min

Table 1. Characteristics of study participants.

ID Code Sex Age Racial Identification BMI

AAA Female 31 Caucasian 20.0

AAB Male 52 Caucasian 25.8

AAD Female 20 Caucasian 19.6

AAF Male 27 Caucasian 20.8

AAG Male 27 Caucasian 23.1

AAI Female 31 Caucasian and Asian 21.3

AAN Female 21 Caucasian 23.5

AAP Female 21 Caucasian 20.0

https://doi.org/10.1371/journal.pcbi.1005706.t001
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incubation at 65˚C, followed by 20 min beadbeating with the recommended MM 400 device

(Retsch). 6–12 extraction control blanks were included per extraction plate, as well as 52 repli-

cate stool aliquots derived from 17 distinct samples.

16S rRNA gene sequencing

The V4 region of the 16S rRNA gene was amplified for sequencing using 515F and barcoded

806R primers as described by Caporaso et al. [40]. Triplicate 25 μL PCR reactions using Hot

MasterMix (5 Prime) with 3 μL extracted DNA as template and 10μg/μL BSA were cycled as

follows: denaturation at 94˚C for 3 min, 25 cycles of 94˚C/45s, 52˚C/60s, 72˚C/120s, final

extension at 72˚C for 10 min. PCR amplicon libraries were purified using the UltraClean-

htp 96 Well PCR Cleanup Kit (MoBio). Amplicon libraries were quantified by fluorometry

(Quant-iT dsDNA High Sensitivity Kit, Invitrogen) on a SynergyHT plate reader (BioTek) and

combined in equimolar ratios into two pools. Pooled libraries were concentrated by ethanol

precipitation and gel purified (QIAquick Gel Extraction Kit, Qiagen).

Each pool of V4 16S rRNA amplicons was sequenced (2x150 paired end) on one lane of a

HiSeq2500 sequencer (Illumina) at the Carver Biotechnology Center of the University of Illi-

nois, producing an average of 237,800 reads per sample, with sample depths varying from

42,200 to a maximum of 1,530,000, with a total of 365,093,804 reads produced for this study.

The DADA2 sequence processing pipeline (version 1.1) as described in [32] was used to infer

the set of ribosomal sequence variants (RSVs) present and their relative abundances across the

samples. Rather than clustering amplicon sequencing reads into Operational Taxonomic Units

Fig 1. The sampling times for each participant in the study, relative to the time of the IIOD event. ImmPost samples are those taken

within 3 days of IIOD. Note the denser sampling in the period immediately preceding and following this event.

https://doi.org/10.1371/journal.pcbi.1005706.g001
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(OTUs) at a fixed similarity threshold, DADA2 derives an abundance distribution of distinct

Ribosomal Sequence Variants (RSVs), which may differ by only a single nucleotide, consistent

with the observed sequence reads, based on data-derived rates of Illumina sequencing errors.

Using read quality scores for the dataset, forward and reverse reads were truncated at 150bp

and 130bp, respectively; other quality filtration parameters used DADA2 default values. Taxo-

nomic assignment was performed on RSVs using the RDP classifier and reference dataset [41]

following the workflow outlined in [42].

Metagenomics. Metagenomic sequencing libraries were prepared from DNA extracts at

the Carver Biotechnology Center of the University of Illinois using HyperPlus kits (Kapa Bio-

systems). Beadbeating during DNA extraction resulted in many samples with median frag-

ment size < 500 bp; in these cases size fractionation focused on removing fragments < 200 bp

prior to library construction. For samples with substantial amounts of larger DNA fragments,

size fractionation enriched for fragments 200–800bp. For 7 of the 8 subjects all samples of

the subject were multiplexed sequencing (2 × 160 or 2 × 250 paired-end) on one lane of a

HiSeq2500 sequencer (Illumina). The larger number of samples from subject AAB were

sequenced on two lanes to retain approximate parity in sequence depth per sample.

Because most paired-end reads in a majority of samples overlapped, pairs were joined using

the Usearch v8.1 fastq_mergepairs command [43], discarding merged sequences with

length< 72, containing any ambiguous base calls, or with > 1 expected error based on cor-

rected Illumina quality scores for the merged sequence. Unmerged reads were quality filtered

using the Usearch fastq_filter command, truncating at quality score 12 and discarding

reads of length < 72, containing any ambiguous base calls or > 1 expected error. The sensitive

setting of bowtie v2.2.4 [44] was used to remove metagenomic reads mapping to the human

genome (GRCh.38, [45]).

Filtered, human-screened, merged and unmerged reads were assembled jointly for all sam-

ples from a given subject using Megahit v1.0.1 [46] with parameters k-min = 19, k-max = 119,

k-step = 20 and a minimum contig length of 300. Putative genes were predicted on contigs

derived from each subject using MetaGeneMark with default parameters (gmhmmp v3.26

with MetaGeneMark_v1.mod [47]). Predicted amino acid sequences were compared to Uni-

Ref100 v2015_12 [48] using sensitive mode of Diamond blastp v0.8.1 [49] with the BLO-

SUM80 matrix [50], accepting the hit with highest bit score as the identity of a query if it had

an e-value no greater than 10−6 and at least 50% sequence identity over at least 70% of the

query length.

The concatenated set of merged and unmerged reads for each sample were mapped individ-

ually to the contigs assembled from that subject using the sensitive-local setting of bowtie2

with minimum mapping quality of 20. A custom Perl script cross-tabulated read counts

(counting merged reads as 2) per contig per sample with predicted gene hits vs. UniRef100 to

obtain counts per sample per UniRef gene ID. These counts were normalized per kb of contig

length and for sample variability in both sequencing depth and average genome size as esti-

mated by MicrobeCensus v1.0.7 [51].

Incorporating phylogenetic information

To improve power to detect subtle effects and to increase interpretability, it is often useful to

include information about the phylogenetic relationships between RSVs. We use phylogeny

both in the supervised context, to find groups of RSVs which distinguish samples immediately

after the cleanout from the rest, as well as in the unsupervised context, to obtain a low-dimen-

sional representation of the samples where the axes are interpretable in terms of over- or

under-representation of groups of related RSVs.
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Unsupervised analysis. There are several methods available for dimensionality reduction

of microbiome data that incorporate phylogenetic structure of the RSVs. Weighted and

unweighted Unifrac [52, 53] are phylogenetic distances that are used in combination with

multi-dimensional scaling (MDS) to obtain a low-dimensional representation of microbial

communities. Although these distances account for phylogeny, they do not ensure that RSVs

load smoothly on the MDS axes, so it is difficult to interpret MDS directions in terms of phylo-

genetically-related groups of RSVs.

Both Pardom [54] and more recently Washburne et al [55] propose multivariate methods

that integrate the phylogenetic distance into a multivariate generalized PCA or factor analysis.

Purdom [54] proposed using double principal coordinates analysis (DPCoA) [56] as a

dimensionality reduction method for general distances between RSV features whose phyloge-

netic relationships are known. DPCoA has the advantage over Unifrac of producing interpret-

able axes, while the distances implied by DPCoA remain very similar to those given by

weighted Unifrac [57]. However, the axes given by DPCoA are usually smooth at the phylum

level, and so the interpretation of the relative sample positions is in terms of the relative abun-

dances of various phyla. This is not always desirable, as it might be the case that smaller groups

of RSVs, say at the genus level, are the relevant units of analysis.

To deal with some of these issues, we have developed a new method which we call adaptive

generalized PCA (gPCA). The mathematical details and justification are given in a separate

paper and R package available on CRAN [35, 58]. The method was developed in the context of

analyzing the data in the present study. We wanted to obtain a low-dimensional representation

of the samples in which the axes were interpretable at a finer phylogenetic scale than what is

available to us in DPCoA. Adaptive gPCA defines a family of projections of the data which

interpolate between DPCoA (which emphasizes structure at a coarse phylogenetic level) and

PCA (which does not take into account the phylogeny), which is equivalent to considering all

phylogenetic information to be contained at the finest taxonomic scale. This family of projec-

tions corresponds to putting tree-structured priors of different strengths on the data, and the

strength of this prior can be estimated from the data. In practice, this leads to low-dimensional

representations of the data which are interpretable at a finer phylogenetic scale than those

resulting from DPCoA.

Supervised analysis. It is also informative to perform a supervised analysis that includes

phylogenetic information. Two examples of this are constrained DPCoA [59], which general-

izes DPCoA to the problem of discriminating between classes, and kernel-penalized regression

[60]. However, while they incorporate phylogeny, these methods do not induce sparsity in

scores, which would facilitate identification of a small subset of related RSVs that discriminate

between classes.

Therefore, in this work, we perform a modified version of sparse discriminant analysis that

gives both sparsity and phylogenetic structure. First we created the phylogenetic tree following

the standard workflow for RSVs as documented in [42], fitting a maximum likelihood tree

with a generalized reversible Markovian model with Gamma rates.

We create two sets of features, one corresponding to leaves on the phylogenetic tree, and

the other corresponding to nodes. For each leaf on the tree, the corresponding feature value is

the variance-stabilized RSV abundance. For each node on the tree, the corresponding feature

value is the sum of the variance-stabilized RSV abundances for all RSV leaves descending from

that node. These are then centered and used as input to sparse discriminant analysis. We used

the sparse discriminant analysis implementation in the R package sparseLDA [61]. The spar-

sity parameter was set by cross-validation, holding out one subject at a time.

Note that the use of a sparse supervised method (in our case sparse instead of standard

LDA) is important when using both node features and leaf features at the same time. Because
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node features are exactly linear combinations of leaf features and of each other, a model with-

out a sparsity penalty would be unidentifiable—there would be an infinite number of solu-

tions, all equally good, but with different coefficient values. The sparsity constraint by an ℓ1-

penalty resolves this unidentifiability and allows use of both node and leaf features at the same

time.

This method is inspired in part by the idea of evolutionary units, which were shown to pro-

vide a unifying framework for several measures of phylogenetic diversity and dissimilarity

[62]. In this framework, an evolutionary unit is a branch on the phylogenetic tree (or a stan-

dardized portion thereof), and the abundance of each evolutionary unit is the sum of the abun-

dances of the species that descend from it. As an example, the unweighted Unifrac distance is

the proportion of evolutionary units which are not shared between two samples. We use evolu-

tionary units as input to sparse discriminant analysis, but in contrast to the evolutionary units

described in [62], we ignore branch lengths.

In the supplementary material, we compare this approach to the LEfSe method developed

by [63] to integrate taxonomic and metabolic information through successive filtering. How-

ever, just using relative proportions of RSVs do not provide any significant differences. By

multiplying the proportions by a million, a number of RSVs become significant (see the results

as displayed in S9 Fig). The choice to filter and loosen stringency by multiplying by a large fac-

tor inflates significance, however statistical guarantees no longer hold. Integrating taxonomic

information into LEfSe while accounting for taxonomic levels could be done using [64], we

have not done this here as the goal of this supplement is to compare with standard procedures

that are already being used by practionners.

Results

Between-subject variation

Bray-Curtis dissimilarity was computed between all possible sample pairs and MDS was used

to obtain a low-dimensional representation of these dissimilarities. The results are shown in

Fig 2A, where the main effect is the difference across subjects. In other words, between-subject

distances tend to be larger than within-subject distances. With the Bray-Curtis ordination, the

pre-cleanout and post-cleanout samples do not show any systematic differences, as can be seen

in S3 Fig.

Community compositions in the days immediately surrounding the perturbation are dis-

played in supplementary S1 Fig. The analogous figure at the weekly level, is given in S2 Fig.

The differences in composition across subjects is clearly evident, reinforcing the result of

Fig 2. Further, subjects AAD, AAF, AAG, and, to some extent, AAI exhibit decreases in

Ruminococceae and Lachnospiraceae, though to differing degrees. These subjects also see an

increase in the proportions of either Bacteroidaceae or Prevotellaceae in the days following the

perturbation.

The between-subject variation strongly justifies the decision to use a design in which each

subject is their own control.

IIOD effect highlighted by adaptive gPCA

Since we were interested in understanding the major portions of the between-sample variabil-

ity which could be explained in terms of phylogenetically related groups of RSVs, we per-

formed a phylogenetically-informed ordination of the RSV data using adaptive gPCA. The

results of this ordination are shown in Figs 2B and 3A. We still see a subject effect: different

subjects are localized to different regions of the principal plane and within-subject distances

are generally greater than between-subject differences. However, we now also see an effect of
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the cleanout in that the samples immediately after the cleanout generally have more positive

loadings along the first adaptive gPCA axis than other samples from the same subject. This is

shown in more detail in Fig 3B, where we have plotted the scores of each sample along the first

axis across time. The magnitude of the effect varies by individual, but points immediately after

the cleanout tend to have the most extreme values along the first axis of any of the samples in

the corresponding subject.

Fig 2. The first two axes of the multidimensional scaling (MDS) projection using Bray-Curtis distances shown in the top figure (A)

and the agPCA projection in (B). Both methods demonstrate clear intersubject differences.

https://doi.org/10.1371/journal.pcbi.1005706.g002
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Fig 3. Several views of results from adaptive gPCA reveal a brief but definitive IIOD effect. (A) shows the sample scores from agPCA

plotted on the first two axes. In (B), the sample scores have been centered by subject so as to better show the within-subject variation, and

the centered scores along the first axis are displayed over time. In (C) we show the RSV scores on the principal axes. Compositional

inferences in the agPCA method can be made in comparison to the taxon component of the biplot; the main compositional gradient is from

abundant Firmicutes (subject AAA, center left) to abundant Bacteroidetes (subject AAG, lower right), while AAB is unique in having high

relative abundance of Actinobacteria.

https://doi.org/10.1371/journal.pcbi.1005706.g003
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Finally, we show the RSV loadings along the principal axes in Fig 3C. Since positive scores

along the first axis seem to be associated with the samples immediately after the cleanout, we

are particularly interested in RSVs which have strong loadings on this first axis. By examining

Fig 3C, we see that a subset of the Bacteroidetes phylum has a strong positive loading on the

first axis, and is therefore positively associated with the cleanout. This group corresponds

exactly to the Bacteroides genus (see S1 Fig). Since this genus seems to be associated with the

cleanout, it is analyzed further below.

Covariation between RSV and metagenomic measurements. Previous studies have suc-

cessfully used regularized canonical correlation analyses to connect metagenomic data to met-

abolic pathways [65]. In our study we have also chosen to characterize the covariation between

microbial and metagenomic measurements using a similar approach. We identify measure-

ments that contribute most to this covariation using sparse CCA (sCCA), with results dis-

played in Figs 4 and 5, S4 Fig. This analysis ensures different data sources are not studied in

isolation from one another.

We first describe preprocessing of the data and comment on the sCCA results, then we eval-

uate the associated biological significance.

As preprocessing, we filtered and transformed both the bacterial abundance and metage-

nomic data. This focuses sCCA on more substantial sources of variation and ensures that the

input distributions are not too skewed. For the bacterial abundance data, we retained only

RSVs assigned to the Bacteroides genus because these RSVs were the most strongly associated

with a cleanout effect. Because genomic count data tend to be heavy tailed, we log(1 + x) and

asinh transformed the bacterial abundance and metagenomic data respectively to further

reduce skewness.

The RSV scores associated with the top two directions are given in Fig 4. The peaks around

the cleanout, clearly present in the adaptive gPCA, appear as small drops in both axes of the

sCCA, though the effect seems attenuated. The main sources of covariation do not seem as

Fig 4. The top two sCCA directions with respect to the bacterial abundance table are generally stable over time, though several

subjects show a decrease near the cleanout date. Further, the scale of the scores continues to discriminate between subjects.

https://doi.org/10.1371/journal.pcbi.1005706.g004
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strongly related to the cleanout date, so the metagenomic data likely only exhibit a weak rela-

tionship with the latent phenomena that are the main sources of variation in the bacterial

abundance data.

In Fig 6, we compare the top scores across the two tables. The sCCA objective attempts to

maximize the correlation in this display. There is reasonably high correlation between these

scores, suggesting that the two tables do reflect some shared latent phenomena, at a global

level. In Fig 5 and supporting information S3 Fig, we study the top sCCA directions associated

Fig 5. No GO terms are nonzero in both sCCA metagenomic directions. We have only labeled those whose loadings on one of the two

axes are large. We abbreviate metabolic and catabolic processes as m.p. and c.p., respectively.

https://doi.org/10.1371/journal.pcbi.1005706.g005
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with the bacterial abundance and metagenomic tables, respectively. For the metagenomic

directions, note that no terms are nonzero in both coordinates—the sparsity penalty here is

relatively aggressive. We have labeled those directions that lie far from zero; these tend to be

related to different metabolic and catabolic processes.

Sparse LDA identifies clades associated with IIOD. Although we saw a distinct compo-

sitional change in the samples in the period immediately after the cleanout from the unsuper-

vised analysis, we were also interested in whether a supervised approach would give us

additional insight into RSVs which separate the samples in this period from the others. Both

because we expected similar RSVs to respond in a similar way to IIOD and because groups of

phylogenetically related RSVs are more interpretable biologically than lists of unrelated RSVs,

we used the tree-based version of sparse LDA described above to discriminate between pre-

cleanout samples and the samples in the period immediately after the cleanout (the method is

implemented in the treeDAR package see [66]). We filtered the RSVs to those which were

present at an abundance of at least 5 in at least 10 of the samples, which led to a set of 1207

RSVs. We used log-transformed RSV abundances and used the tree-based sparse LDA to dis-

criminate between the pre-cleanout samples and the samples taken in the three days after the

cleanout. The optimal number of predictors was determined by cross-validation to be 25,

which corresponds to 80 RSVs with non-zero coefficients since many of the predictors corre-

sponded to nodes in the tree. A plot of the sample scores along the discriminating axis is

shown in Fig 7A, and we see that this set of predictors clearly separates the two classes quite

well, and in particular more strongly than with the unsupervised analysis. Fig 7B plots RSV

coefficients against the tree, revealing a mixture of small clades and singleton RSVs which

were chosen by the method as discriminatory.

To gain insight into the method and the selected RSVs, we examined the largest clade

selected by sparse LDA. This is a group of 16 RSVs, all in the genus Ruminococcus. The filtered

Fig 6. The top scores for the two tables are plotted against each other here, and they have a correlation of 0.663, reflecting the

sCCA objective for the fixed regularization parameters.

https://doi.org/10.1371/journal.pcbi.1005706.g006
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dataset had a total of 27 RSVs assigned to the Ruminococcus genus, and 3 of the other Rumino-
coccus RSVs were selected separately by sparse LDA, suggesting that this genus is substantially

associated with the cleanout. The log-transformed abundances of the 16 Ruminococcus RSVs

selected by sparse LDA are plotted in Fig 7C. In this figure, each line represents one subject,

and each facet represents one RSV. From the plots, we see that although the signal is not very

strong, there is a tendency for the RSVs in this group to decline in the first few days after the

Fig 7. Results from tree-based sparse discriminant analysis. In (A), we see the sample scores on the discriminating axis. (B) shows the

RSV loadings on the discriminating axis colored by genus and plotted along the phylogenetic tree. In (C), we show the trajectories of the

RSVs in the largest discriminating clade (corresponding to a group of Ruminococcus RSVs) over time for each subject. For the taxonomic

information for each of these numbered RSVs see the mapping in supporting information S1 Table.

https://doi.org/10.1371/journal.pcbi.1005706.g007
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cleanout and then to return to a high level. We also see that most RSVs are present in only one

or two of the subjects, and it is not the same subject for each RSV. This is one reason why phylo-

genetic methods are important for microbiome studies: there are substantial individual differ-

ences in the RSVs present in each subject, but it is still possible to learn about groups of related

RSVs which show the same behavior conditional on them being present in a given subject.

To ensure that our results were not overly sensitive to the choice of transformation, we

repeated the procedure with asinh-transformed RSV abundances. This led to a slightly more

parsimonious model, 13 predictors corresponding to 61 leaves on the tree chosen by cross-val-

idation. However, the results were qualitatively the same: the largest clade discovered was com-

posed of RSVs from the Ruminococcus genus, and a low abundance of these RSVs was

predictive of the immediate post period. A group of RSVs from the Bacteroides genus had coef-

ficients of the opposite sign, meaning that large abundances of these RSVs were again predic-

tive of the immediate post period. (See S7 Fig and the code section S1 Data for more details.)

In the LEfSe test (whose results are shown in S9 Fig), only a few of the Ruminococcus RSVs

occur as loosely significant because many were filtered out before the testing procedure. A

group of RSVs from the Bacteroides genus also have coefficients of the opposite sign in this

LEfSe analysis. Thus the sparse LDA increases the power of detection of differences to similar

levels as LEfSe.

Diagnostics through resilience prediction

Even without discovering the underlying mechanisms of resilience, the development of predic-

tive diagnostics of resilience can be clinically relevant. With only 8 subjects, it is impossible to

make any definitive conclusions; however, it is not unreasonable to explore methodological

frameworks and propose possibly predictive factors.

One approach to this problem is to define a scalar measure of resilience within each subject,

and then attempt to predict this resilience measure using information known before any per-

turbation is performed. Any pre-perturbation features that may be predictive of resilience

could become potential diagnostics.

To characterize resilience, we use the relative change in Shannon diversity, computed over

windows immediately preceding and following the cleanout. We use a window of length 3

days. As potential predictors of community recovery following severe perturbation, we con-

sider taxonomic composition at the family level. Additional potential predictors include fea-

tures from other measurement domains and/or derived features, a more complete supervised

model would require more subjects and will be the focus of a complete followup study. While

it is not unreasonable that the relative abundance of particular taxa (e.g. nutritional generalists

or specialists) might influence community resilience, we are choosing this particular measure

primarily to demonstrate the predictive methodology.

Upon applying an elastic net regression to this problem, tuned by bootstrap resampling, we

identify three families with nonzero coefficients, displayed in S8 Fig.

There is a hint of an association between early presence of these bacteria and change in

diversity after cleanout. For example, it seems that when Streptococacceae or Enterobacteria-

ceae are present at the onset of sampling, diversity actually increases post-cleanout, while when

Prevotellaceae is more abundant at onset, diversity decreases. Of course, new data would need

to be collected to validate these claims.

Data and code availability

Sequencing reads from the V4 16S survey and shotgun metagenomic sequencing are available

from the NCBI Short Read Archive via BioProject PRJNA388263. The adaptive generalized
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PCA programs have been combined into an R package called adaptiveGPCAon CRAN

(https://cran.r-project.org), the tree-aware sparse discriminant analysis code is available as the

R package treeDA available on CRAN.

All code Rmarkdown,R scripts, and data have been combined into the supporting informa-

tion S1 Data which contains a tar file. There is also a larger docker file (cleanout_submit.
tar) available at the Stanford digital repository permanent url: https://purl.stanford.edu/

cf264md0197 for those who do not want to install Rmanually.

Discussion

By assembling a rich set of taxonomic and metagenomic data from longitudinal sampling and

examining these through several statistical lenses, we investigated the effect of IIOD on the gut

microbiome. Specifically, we pursued the following study aims: 1) determine whether and how

quickly the gut microbiota demonstrates resilience after IIOD perturbation, 2) elucidate pat-

terns of taxonomic and functional change that characterize the community recovery process,

and 3) develop statistical methods for the examination of multidomain data that provide

greater biological interpretability than existing methods.

Immediate response to IIOD is a transient community shift followed by

recovery of pre-perturbation state

The present study constitutes an investigation of unprecedented rigor—with regard to length

of sampling time period, temporal resolution of sampling, and generation of multiple data

types—of the effects on the gut microbial community of a disturbance type, intestinal cleanout,

relevant to clinical practice and ecological theory.

As controls for comparison to the perturbed samples of each subject, we used unperturbed

samples of the same subject, rather than making a comparison between distinct groups of sub-

jects which did or did not experience IIOD. A simulation study (the details and associated fig-

ure of which are available in the supporting materials S5 and S6 Figs) confirms that in our

context within-subject comparisons have greater power to reveal IIOD effects because inter-

individual variation in the composition of the healthy adult human gut microbiota is greater

than temporal variation within an individual [67, 68], even across experimental perturbations

(see [14, 69, 70]).

As a result, this work resolves questions raised by previous studies of induced diarrhea [20–

24]. These previous studies solely examined 16S rRNA taxonomic data and reached conflicting

conclusions about effects of the perturbation on fecal microbiota in healthy adults. Some dif-

ferences in past reported outcomes are likely attributable to variation among studies in clinical

procedures and analytical methods. However, these prior studies collected only 2–5 samples

per subject, with gaps of one week to one month between a sample representing the perturbed

community and the earliest follow-up sample. Without fine-grained sampling beginning prior

to perturbation onset and continuing until the community regained stability, these past studies

could neither establish the timescale of recovery nor characterize the recovery process. In addi-

tion, by collecting samples at daily or weekly intervals for months before and after perturba-

tion, we were able to assess the effect of this disturbance within the context of ordinary

temporal variation for each subject. We have found and characterized a definitive but very

transient effect of the colon cleanout. That is, we identified consistent changes in microbial

community composition across all subjects in the first days following perturbation, after

which the communities reverted to their pre-cleanout states. Furthermore, we found that no

other phenomenon during the long sampling interval of normal temporal variation preceding

IIOD compared in magnitude to the perturbation effect of IIOD on the community.
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In both the adaptive gPCA and the sparse CCA, the samples before and after the cleanout

(excluding those from the period immediately after the cleanout) occupy the same region

on the axes, suggesting there is no long-term compositional change resulting from cleanout.

This rapid return to the pre-cleanout state is consistent with clinical observations that colon

cleanout prior to colonoscopy for screening purposes in healthy individuals rarely leads to

complications.

Response to IIOD perturbation differs among RSVs: Bacteroides blooms

while ruminococcus lags behind

The depth of sampling surrounding perturbation enabled characterization of the community

recovery process using both taxonomic and metagenomic data. While community-wide met-

rics rapidly attain pre-perturbation states, we observe variation in recovery patterns on finer

phylogenetic scales. Specifically, members of the Bacteroides genus recover quickly and domi-

nate samples taken immediately post-perturbation while Ruminococcus genus members are

slower to recover.

Examining loadings of the RSVs on the agPCA axes offers insight into details of the compo-

sitional changes that accompany the cleanout.

These results are partially consistent with some found in earlier studies. Gorkiewicz et al.
found elevated relative abundance of OTUs within Bacteroides in fecal samples collected on

the 3rd day of PEG-induced chronic diarrhea [24]. Drago et al. found reduced relative abun-

dance of Firmicutes in fecal samples collected the day after bowel preparation with a combined

stimulatory and osmotic laxative [21]. Shobar et al. found an elevated Bacteroidetes:Firmicutes

ratio in dilute fecal material recovered via endoscopy from healthy subjects within a day of

bowel lavage [22].

Several related biological mechanisms may explain the increased relative abundance of the

Bacteroidetes phylum and Bacteroides genus, and decreased relative abundance of the Firmi-

cutes phylum and Ruminococcus genus in the period immediately after the cleanout. We

describe four potential mechanisms here: physical partitioning, substrate preference, growth

rate, and differential oxygen tolerance.

Physical partitioning could elevate Bacteroides abundance and decrease Ruminococcus
abundance post-cleanout because paired fecal and mucosal biopsy samples from the

unprepped colon of healthy humans revealed that members of Bacteroidetes are enriched in

the mucosal layer, which would favor their retention during cleanout, while members of the

Firmicutes are enriched in feces [71]. Furthermore, Firmicutes, and in particular members of

the Ruminococcus genus, prefer attachment to undigested food particles over inhabiting the

liquid phase of the gut lumen [69]. Attachment to food particles may enhance removal of

Ruminococcus during cleanout.

Differential use of growth substrates among the phyla may also contribute to elevated Bac-
teroides abundance and decreased Ruminococcus abundance post-cleanout. IIOD removes

essentially all diet-derived substrates from the colon. Species capable of growth on the host-

derived resources that would be available during and immediately after cleanout could begin

to repopulate the colon earlier than specialist species that rely on specific diet components.

Prominent gut Firmicutes tend to be nutritional specialists, whereas gut Bacteroidetes and

members of the Bacteroides genus in particular are versatile foragers capable of growth on

host-derived mucin [72, 73].

A related but distinct potential explanatory mechanism for the compositional changes seen

immediately post-cleanout is variation in intrinsic growth rates. Differential growth rates are

related to the generalist/specialist mechanism in that generalists preferentially consume the
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resources that permit the fastest growth. Competition for labile substrates ensures their rapid

depletion and advantages organisms capable of resource switching. On the other hand, nutri-

tional specialists can persist in a flowing environment like the gut only if their preferred

resource is reliably available, which requires that the resource not be easily degraded. The

lower energy yield and/or slower rate of the catabolic reactions in degradation of a recalcitrant

substrate, perhaps coupled with greater investments in requisite enzymes, imply slower maxi-

mal growth rates for specialists. In the unperturbed gut, reduced resource competition means

that microorganism growth need only keep pace with the flow rate of the gut, so rapid growth

is not as important for specialist fitness. The median ribosomal RNA operon copy number per

genome is correlated with maximal growth rates of microbes [74, 75]. On this basis, Bacter-
oides (median 6 rrn copies/genome) are likely to be capable of faster growth than Ruminococ-
cus (median 4 rrn copies/genome [76]) Comparisons of microbial growth rates in culture are

challenging to interpret because experimental conditions may not reflect the native habitat of

the gut, but existing data from such experiments are consistent with the hypothesis that Bacter-
oides are generally capable of faster growth than Ruminococcus [77, 78].

A final mechanism that may contribute to the over-representation of Bacteroides and

underrepresentation of Ruminococcus in the post-cleanout period is differential oxygen toler-

ance. Under normal conditions, oxygen diffusing into the colon is rapidly depleted by faculta-

tively anaerobic and microaerophilic microbes, allowing oxygen-sensitive anaerobes to grow

in the colonic lumen [79]. The loss of most microbial biomass during cleanout and more rapid

diffusion of oxygen through the less viscous intestinal contents that remain would increase

oxygen concentration in the lumen of the colon. David et al. reached the same conclusion after

observing a shift in the relative abundance of low-affinity vs. high-affinity cytochrome oxidases

in the gut microbiome during early stages of succession following secretory diarrhea due to

cholera [80]. According to the published literature summarized in Albenberg et al., the Bacter-
oides genus includes both anaerobic and microaerophilic species, while Ruminococcus as well

as all other genera in the Ruminococcaceae family are anaerobic [79]. The published literature

may be biased by the relatively recent recognition of widespread microaerophily; a systematic

investigation into the respiratory reductases encoded by 254 complete and partial genomes of

human gut microbes found evidence for microaerophily in all 43 Bacteroides genomes that

were examined, but only 4 of 9 genomes from Ruminococcus [81].

Perturbation-associated GO functional terms include both directly-

relevant and genomically-linked terms

In addition to the 16S rRNA analyses employed by previous studies of IIOD, we collected

metagenomic data and integrated analysis of the two data types using multitable methods. We

applied sparse CCA to the combined 16S and metagenomic data to examine possible func-

tional implications of the perturbation. To this end, we recovered a perturbation-related gradi-

ent across samples based on GO terms, indicating that changes in community functional

capacity from baseline exist in the perturbed state.

The GO terms included in this gradient may elucidate the survival advantages and disad-

vantages of organisms that recover quickly or more slowly, respectively, after IIOD. However,

caution is necessary in the interpretation of GO terms included in the perturbation-associated

gradient for several reasons. The GO terms defining the perturbation-associated gradient

include a wide range of generality and specificity (e.g., “cellular metal ion homeostasis” and

“tetrahydrobiopterin metabolic process”), and the method cannot establish the directionality

of the causal relationship between microbial abundance and functional capabilities. That is,

based on our data alone, we cannot say whether the GO terms we identified are functionally
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relevant to the response to perturbation or simply enriched (or depleted) in the genome of

microbes that have a characteristic response to the perturbation due to other functional traits.

In fact, we note two types of terms highlighted by the gradient: terms reflecting functions of

importance for survival in the post-cleanout environment (e.g., catabolism of alanine and

pyruvate family amino acids) and terms carried by organisms systematically affected by the

cleanout that are not themselves of direct functional importance for the carrier organisms’ sur-

vival (e.g., teichoic acid metabolic processes).

We can nonetheless identify the predominant variation in functional terms, without speci-

fying the underlying mechanism, based on Figs 3 and 5. From the relatively small set of terms

found to be more strongly associated with the perturbation, we highlight the presence of tei-

choic acid metabolic processes, which may indeed be a genomic marker of microbes with a

characteristic response rather than a function with direct relvance to post-IIOD recovery. Tei-

choic acid is a cell wall component of the Gram-positive Firmicutes but not the Gram-negative

Bacteroidetes, and appears with the expected positive association with both CCA axes. We

have no reason to suggest that the presence or absence of teichoic acid per se influences micro-

bial survival during the cleanout, but it is reassuring that a functional term known to be corre-

lated with those taxa that are differentiated by other relevant functional traits is identified by

this statistical technique. A functional trait that appears in several distinct clades of bacteria

and is also selected by sparse CCA is more likely to reflect a function that is relevant to the per-

turbation, and such may be the case for the cluster of functional terms related to the catabolism

of alanine and pyruvate family amino acids. Protein-coding genes from members of the Bac-

teroidetes, Firmicutes and Proteobacteria phyla (among others) are annotated with these

terms and amino acid fermenting microbes belonging to 6 genera in these 3 phyla are known

to associate with the human colonic mucosa [79] where they may resist elimination during the

cleanout and would have access to host-derived protein. Furthermore, because proteolytic

microbes are typically much less common in the gut relative to saccharolytic microbes, the

selection of these functional terms by sparse CCA is less likely to be due to chance association

with a broader taxonomic group.

Statistical regularization improves interpretability and facilitates

multidomain analysis

While analyzing these data, we developed new methods and applied existing methods in novel

ways. Some of the key issues were: high dimensionality, the simultaneous study of multiple

data sources, and our desire to have biologically interpretable results. The issues of interpret-

ability and high dimensionality were both addressed with statistical regularization, either

through the use of a sparsity constraint, through incorporation of the phylogenetic structure

or using both approaches. The simultaneous study of multiple data sources was performed in

an interpretable way using sCCA (sparse CCA).

Adaptive gPCA and tree-based discriminant analysis offer more flexible and interpretable

incorporation of information regarding phylogenetic relatedness among observed RSVs than

existing methods. In both cases, the aim was to obtain an explanation of the variation between

the samples in terms of groups of closely-related RSVs. We expected this constraint to be use-

ful both because groups of closely-related RSVs are more biologically interpretable than lists

of unrelated RSVs and because we expect closely-related RSVs to respond in similar ways to

IIOD. In adaptive gPCA, we are interested in explaining the overall variability between the

samples in these terms. Currently, the most common approaches for comparing samples in

microbiota studies either ignore the phylogeny entirely (e.g. Bray-Curtis) or incorporate the

phylogeny in a fixed way (e.g. weighted Unifrac). Furthermore, the ordination axes resulting

Multidomain analyses of a longitudinal perturbation experiment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005706 August 18, 2017 20 / 29

https://doi.org/10.1371/journal.pcbi.1005706


from these approaches are not directly interpretable in terms of which microbial taxa are most

important for positioning samples in the lower dimensional space. In contrast, adaptive gPCA

allows more fine-tuned control of the extent to which phylogeny is reflected in the analysis

and offers explanations of the ordination axes in terms of closely related RSVs.

In tree-based discriminant analysis, we were interested in explaining the difference between

the samples at baseline and the samples immediately after IIOD, but we again wanted the

explanation to be in terms of groups of phylogenetically-related RSVs. By including features

associated with internal tree nodes, the tree-based discriminant analysis allows identification

of larger evolutionary units whose members are all associated with the response. Without this

enrichment in the feature space, it is only possible to read off individual RSVs associated with

the response and then attempt to assess phylogenetic relatedness in follow-up analysis. Fur-

ther, in a limited sample-size setting, individual microbe effects may be undetectable, while

aggregate evolutionary-unit level signals may be clear. In this situation, only a model incorpo-

rating these higher level units as features would succeed. The analysis also incorporates a spar-

sity constraint, meaning that in the final model most of the RSVs are considered unimportant

in explaining the differences between the groups and giving us just a small number of related

RSVs to focus our attention on.

sCCA described here offers improved integration of analysis on multiple datatypes collected

from the sample set. Most microbiota studies have employed only a single analytical technique

(most often 16S rRNA gene surveys), although an increasing number of studies apply addi-

tional techniques (e.g. metagenomics, metabolomics) to at least a subset of samples. However,

the data derived from each technique has typically been studied in isolation, not exploiting the

fact that various techniques have been applied to the same set of samples. By explicitly seeking

aspects of the data structure that are shared across multiple data types, multitable statistical

analyses can provide insight into the fundamental biological processes responsible for the pat-

terns observed via different techniques. For example, sCCA defines ordinations based on the

latent factors present across all data sources, down-weighting the influence of factors present

in isolated data types. Consequently, the positions of samples in the reduced space is informed

by relatedness across multiple data types. Further, the factors recovered by sCCA can illumi-

nate sets of features across multiple data types that are correlated with one another, suggesting

the presence of fundamental biological processes driving parallel changes across data types.

Both sparse LDA and sCCA induce sparsity through ℓ1 regularization, reducing variance

and improving interpretability in the high-dimensional regime. The high dimensionality of

modern ‘omics’ data poses a problem for traditional statistics because the hundreds or thou-

sands of identified features (e.g., microbial taxa, functional genes) generally greatly exceeds the

number of samples analyzed. The problem of identifying meaningful associations in high-

dimensional data is often handled with a FDR approach, which seeks to provide the largest

possible list of features that vary in the comparison, while keeping the rate of false positive fea-

ture identifications below a certain threshold. The resultant long lists of features can be diffi-

cult to interpret, especially when separate lists of significantly varying features are generated

from different analytical techniques. An alternative approach is to apply a sparsity constraint

during feature selection, which seeks to restrict the list of significant features to the small set

most strongly associated with the comparison of interest. In contrast to testing, sparse models

can encode specific structure—for example, phylogenetic or multidomain structure—while

still providing a parsimonious description of the essential signals in a data set. Dense LDA

coefficients or CCA factors can be difficult to inspect, relative to sparse versions which allow

attention to be focused on the subset of coordinates with nonzero values. Further, without

some form of regularization, ordinary LDA and CCA are statistically unidentifiable in the case

that the number of features exceeds the number of samples, as in the IIOD experiment. Even
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in the case that the number of features is slightly smaller than the number of samples, unregu-

larized models can be alarmingly unstable. Across analysis types, sparse models can encode

known structure, simplify inspection of coefficients, and improve model stability.

Implications and limitations of the study results

The recovery process post-IIOD observed here has potential implications for clinical practice.

While colonoscopy (and a fortiori the IIOD used to prepare the bowel for the procedure) has a

low rate of complications for healthy adults undergoing colonoscopy for colorectal cancer

screening, for ulcerative colitis patients colonoscopy is associated with an exacerbation of

symptoms [82]. Both the reduced abundance of Ruminococcus that are prominent producers

of anti-inflammatory butyrate in the human gut [72] and the potential for increased abun-

dance of pro-inflammatory facultative anaerobes of the Proteobacteria phylum [83] could con-

tribute to this phenomenon. Prebiotic interventions to increase the relative abundance of

butyrate-producing microbes before and after the colonoscopy [84] (given the depletion of

such organisms in IBD [85]), as well as irrigation of the colon with sodium butyrate solutions

at the time of colonoscopy [86] may help reduce post-colonoscopy symptoms and hasten the

return to a balanced microbiota in IBD patients.

One way forward in illuminating the microbial and functional landscape related to pertur-

bations and temporal variability would be to augment metagenomic data with metabolomic or

transcriptomic measurements, applying the statistical techniques described here. These meth-

ods provide data that could be used to interrogate microbial function and activity with less

potential for confounding due to the covariation of relevant functional traits with other genes

carried on the same bacterial genomes. For example, it would be possible to directly quantify

short chain fatty acids or secondary bile acids using metabolomic techniques and relate these

measurements to the expression of recognizable genes from both characterized and uncharac-

terized microbial taxa. The provisioning of these and many other compounds are recognized

as ecosystem services of the gut microbiota, with health effects both locally in the gut and sys-

temically throughout the host [87, 88].

The new tools and insight described in this work provide guidance and a framework for a

more comprehensive assessments of stability and resilience in complex ecosystems, such as the

human microbiome. The use of longitudinal study design and multidomain analysis, as we and

others are now undertaking, will reveal ecosystem features that are both predictive and diagnos-

tic of key health-associated attributes, and will guide new forms of informed intervention.

Supporting information

S1 Data. Reproducible research through R markdown and data files. This archive contains

the R code, data and html output with figures as generated by the code in png and eps formats.

All code and data for reproducing the analysis and figures in this study are also available on

the Stanford Digital Repository purl https://purl.stanford.edu/cf264md0197. A docker image

containing code and data, with all required packages preinstalled, is available at the SDR purl

https://purl.stanford.edu/cf264md0197.

(ZIP)

S1 Fig. Stacked bars display showing community composition within subjects, in the days

surrounding the perturbation. Each row corresponds to a subject, and the x-axis provides the

day number, relative to the perturbation. For a single x-value, bars are colored according to

the taxonomic composition of that sample, at the family level.

(TIF)

Multidomain analyses of a longitudinal perturbation experiment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005706 August 18, 2017 22 / 29

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005706.s001
https://purl.stanford.edu/cf264md0197
https://purl.stanford.edu/cf264md0197
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005706.s002
https://doi.org/10.1371/journal.pcbi.1005706


S2 Fig. Stacked bars for weeks around perturbation. Each row corresponds to a subject, and

the x-axis provides the week number, relative to the perturbation. For a single x-value, bars are

colored according to the taxonomic composition of that sample, at the family level.

(TIF)

S3 Fig. MDS using Bray-Curtis distances. This plot shows that simple MDS on Bray-Curtis

distances fails to convincingly separate immediately post-cleanout samples from the rest.

(TIF)

S4 Fig. sCCA factors for a subset of taxa. Only taxa members of the Bacteroides genus were

used in this sCCA analyis. These taxa were identified by agPCA to be relatively more abundant

in the period after the cleanout. The numeric labels represent indices of RSVs, they serve as

shorthand for full sequence identity, the corresponding taxonomic information is available in

S1 Table.

(TIF)

S5 Fig. Power study simulation. Simulated data at a subset of parameter settings provide a

comparison of the crossover longitudinal design with a parallel design. This snapshot shows

some of the data from the simulation experiment. From left to right across columns, the true

effect size is increased, while from top to bottom, intersubject variability is increased. In the

Experimental design subsection of the Methods section we discussed the motivation behind

dividing each subject into treatment and control timepoints, rather than allocating separate

study subjects as controls, who would never receive any IIOD. To quantitatively characterize

the impact of this choice, we performed this simulation experiment. We considered two exper-

imental designs. In both, 8 subjects are tracked for 21 days, with 10 days before and after an

IIOD day, respectively. For both, we suppose an IIOD effect appears for five days, with the

same strength each day, and across all subjects. In the first design, every subject is given an

IIOD, while in the second, half are set aside as controls. We call these two designs “internal”

and “external”, respectively. We vary two parameters across simulation repetitions—the

strength of the treatment effect, and the intersubject variation. More formally, suppose i
indexes every sample and s(i) and t(i) map the sample to its associated subject label and time-

point, respectively. Let T be the set of labels of subjects who are given the treatment. Then, we

simulate measurements yi according to

yijðmsÞ
8

s¼1
� N ðmsðiÞ þ b1fsðiÞ 2 T and tðiÞ 2 ½0; 5�g; s2Þ

ms � N ð0; t2Þ:

τ2 and β parameterize the intersubject variability and treatment effect sizes, respectively. In

our simulations, we vary τ2 across 12 values between 0 (no intersubject variation) and 5 (high

intersubject variation), and we vary β across 30 values between 0 (no treatment effect) and 2

(large effect). Throughout, we set σ2 = 1. For each parameter combination, we simulate 10 rep-

licates.

(TIF)

S6 Fig. Simulated comparison of the crossover longitudinal design with a parallel design.

We consider two inference approaches, for both experimental designs. These are (1) a mixed

effects model with a random effect for subject and fixed treatment effect and (2) an ordinary

linear regression that ignores possible intersubject variability. The results displayed in this fig-

ure show points that represent one realization of the experiment, with effect sizes on the x-axis

and t-statistics on the y-axis. From top-left to bottom-right, the degree of intersubject variation

increases. When there is little treatment effect, no method successfully detects it. However,

Multidomain analyses of a longitudinal perturbation experiment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005706 August 18, 2017 23 / 29

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005706.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005706.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005706.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005706.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005706.s007
https://doi.org/10.1371/journal.pcbi.1005706


when treatment effects increase, the difference between methods becomes amplified. As

expected, when there is no intersubject variation, there is no difference between the mixed and

fixed-effects models. Even here, however, it is better to apply treatments to all subjects. After

increasing intersubject variability, the performance of the fixed-effects model deteriorates, as

its assumptions are no longer met, even approximately. Throughout all intermediate regimes,

the model that applies an IIOD treatment to every subject and accounts for intersubject varia-

tion is most powerful.

(TIF)

S7 Fig. Plots of held-out samples for cross-validation in sLDA. Plots of held-out samples for

cross-validation. Cross-validation was performed holding one subject out at a time. To visual-

ize how the model performed on the held-out data, for each fold of the cross-validation we

projected the samples from the held out subject onto the discriminating axis fit on the other

subjects. The projections of the samples for each subject are plotted above. The separation

between the samples in the two groups is not as dramatic as in the model fit with all of the sub-

jects, but for the most part the discriminating axis generalizes to the held out samples, as seen

by the fact that for each subject, the samples in the immediate post period tend to have the

highest scores.

(TIF)

S8 Fig. Resilience prediction using the elasticnet. Here, we display the raw data associ-

ated with each nonzero coefficient in the resilience prediction problem. Within each panel, the

initial abundance fraction for that family is plotted along the x-axis. On the y-axis is the mod-

el’s response—the relative change in diversity between windows immediately preceding or fol-

lowing the perturbation. The text label is the name of the associated subject. The dashed line

corresponds to the situation that diversity does not change at the cleanout.

(TIF)

S9 Fig. Results from LEfSe analysis. The analysis was run on the Pre/Post status class vari-

ables and the RSV relative abundance matrix. LEfSe uses the Kruskal-Wallis (KW) sum-rank

test to find the significantly differentially abundant RSVs in the pre and immediate post clean-

out conditions at each taxonomy level. An RSV is retained if at least the Phylum level taxon-

omy is significantly different in pre and immediate post cleanout conditions. The reduced

RSV abundance will be used to compute the linear discriminant analysis coefficients, which

separates the pre and immediate post cleanout conditions. The contribution of each RSV to

the discriminant axes is given by the corresponding loadings shown in the barplot (A). Red

denotes shows RSVs that have an elevated abundance immediately post cleanout, green identi-

fies the RSVs with lower abundances post-cleanout. When applying LEfSe on the relative

abundances at the RSV level alone, no RSVs were significant. The sample by sample transfor-

mation recommended in this case by the LEfSe implementation increases differential abun-

dance detection power by multiplying the relative abundance by 1,000,000. After this

transformation, LEfSe shows elevated Bacteroidetes and a decrease in Firmicutes immediately

after the cleanout, consistent with findings from adaptive gPCA and tree-structured sLDA.

However, we do not actually recommend this transformation unless all the sampling depths

are of order 1,000,000 as this transformation corresponds to artificially inflating the amount of

data available and reducing the standard errors (i.e. it is anti-conservative). (B) shows a simpli-

fied tree plot of significant RSVs in pre and immediate post cleanout conditions from the

LEfSe output using this taxonomy information. In fact, LEfSe also proposes a sequence of tests

at different taxonomic levels, however we did not do this here as we believe that it would be

preferable to use a multiple testing procedure that incorporates the hierarchy such as that
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implemented in [64] as illustrated in [42].

(TIF)

S1 Table. RSV identifier mapping table. Identifiers for RSV numbers used in text and figures

and the taxonomic information for these RSVs. See supporting information S1 Data for the

actual R commands that generate this mapping table.

(CSV)
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